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1 Introduction 
Exponential functions, functions of the form 

x

y ka
λ

= , where k, λ and 0>a  are constants 
(parameters) and x is a real variable, are among the 
simplest, yet most applicable of the transcendental 
functions, forming the basis for many 
mathematical descriptions (models) of real world 
situations.  
When operating in an environment involving 
calculus it is, for technical reasons, usual to take 

: lim(1 1/ ) 2.71828
→∞

= = + ≈n

n
a e n , the base of the 
natural logarithm, leading to the exponential 
function xe (or exp(x)). However, in other contexts 
a different choice of a may be more expeditious. 
Indeed, as we will show below, the choice 2=a , 
and so 2 xy k λ= , is especially prudent. 

The Standard 2 Mathematics syllabus states: 
 
“A4.2 [page 67 of the pdf version]: Non-linear 
relationships 
Students: 
*use an exponential model to solve problems 
- graph and recognise an exponential function in 
the form = xy a  and −= xy a  ( 0)>a  using 
technology 
- interpret the meaning of the intercepts of an 
exponential graph in a variety of contexts 
- construct and analyse an exponential model to 
solve a practical growth or decay problem.” 
Also, NESA has indicated that, building on work 
from 5.2 of the Standard 2 syllabus [see page 14 of 
the pdf] this encompasses students encountering 
functions of the type xy c ka= +  [and xy c ka−= + ], in 
order to use “exponential models”. 
 
NOTE: Both + xc ka  and −+ xc ka  are subsumed by 
the single expression 2 xc k λ+  since λ  can be either 
positive or negative, 0>a  can be written as 2log ( )2 a  
and the 2log ( )a absorbed as a factor of λ  . 

Such models, and the underlying rate assumptions 
(differential equations) from which they derive also 
provide excellent motivational and extension 
material for the Advanced and Extension courses, 
which could well be the basis for independent 
investigation and assessment tasks. 

2 Practical Applications  
(Standard 2 and Advanced Courses) 
2.1 Simple exponential models 

xy ka= , or xy ka−= , 

where k and 0>a are constants or the more 
convenient equivalent form  

2 xy k λ= , where k and λ are constants    (1) 

Below are some real-world situations to which 
simple exponential models can be applied. 
(a) Malthusian population growth, 0λ > . 
Exponential growth describes the development of a 
quantity when at any given instant its rate of 
increase is directly proportional to the amount 
present at that instant. Thomas Malthus (1766-
1834), an early pioneer of political economics, 
employed exponential growth to model the increase 
of human populations in times of plenty. 
Malthusian models have the form 0( ) 2 tP t P λ= , 
where:  
=t  time, 
( )P t is the population size at time t, 

0 (0)=P P is the initial population size, and 

λ  is the specific growth rate (number of births per   
head per unit of time), sometimes called the 
Malthusian parameter. 
(b) A nuclear chain reaction. When struck by a 
neutron the atomic nucleus of certain heavy 
elements splits (fissions) into the nuclei of two 
lighter elements with the release of a certain 
amount of energy, ε, and 2ν ≥ new neutrons. Under 
these circumstances, initially bombarding a 
sufficiently large sample of the heavy element with 
neutrons triggers a chain reaction in which the 
total energy released after t seconds is = tE ka , 
where k depends on ε and the intensity of the 
bombarding neutron beam, 1 ( 1)ν= + −a p , and p is 
the likelihood of a free neutron striking a heavy 
nucleus within a second . (Of course, the whole 
process will likely terminate catastrophically when 
only a small fraction of the heavy element has 
undergone fission.) 
(c) Radioactive decay, 0λ < . In 1896 the French 
scientist Henri Becquerel found that uranium 
emits rays capable of fogging photographic plates 
in much the same way as light and the then 
recently discovered X-rays do. Marie and Pierre 
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Curie named this phenomenon radioactivity and 
furthered Becquerel’s work by identifying other 
heavy elements that exhibited radioactivity. For 
their discoveries all three shared the 1903 Nobel 
Prize for Physics. In 1913 the New Zealand born 
British physicist Ernest Rutherford (known as the 
‘father of nuclear physics’; awarded the Nobel Prize 
for Chemistry in 1921) conclusively demonstrated 
that radioactivity involves the transmutation of an 
element’s nuclei into those of a different element 
(the alchemist’s dream); for example when a 
uranium nucleus emits an α-ray (essentially, a 
helium nuclei ejected at high speed) it becomes a 
nucleus of thorium. Earlier (1899) Rutherford 
determined that at any moment the amount of a 
radioactive element decays at a rate proportional to 
the quantity present at that moment, and so in 
accordance with the exponential formula, 

0( ) 2 tm t m λ= × , 

where ( )m t  is the mass present at the time t, 

0 (0)=m m is the initial quantity (quantity at 0=t ) 
and 0λ < is the negative rate constant. 
The speed at which this decay happens is different 
for each element. We use the concept of half-life to 
indicate the rate at which decay occurs, that is the 
time, 1/ λ− , taken for half the mass to decay, see 
section 3.3. For example, 238U , the most common 
isotope of uranium, has a half-life of about 94.47 10×  
years, while the inert gas radon-220 (a decay 
product of thorium) has a half-life of 55.6 seconds.  
Discussion exercise: Nuclei of a radioactive element 
decay at random with the probability that any 
given nucleus will decay during a particular unit of 
time being constant. How is this probability related 
to the decay rate λ ? 
(d) Chemical kinetics. Certain chemical 
reactions proceed according to an exponential law 
similar to that for radioactive decay. For example, 
when dinitrogen pentoxide decomposes into 
nitrogen dioxide and oxygen at 45ºC;

2 5 22→ +N O NO O ,the concentration (in moles) of 

2 5N O , denoted 2 5[ ]N O , satisfies,  
66.6 10

2 5 2 5 0[ ] [ ] 2
−− ×= × tN O N O , 

where t is measured in seconds. 
(e)  Decomposition of litter on a forest floor. 
Fallen leaves and other organic matter form a layer 
of litter on the floor of a forest. Aerobic bacteria act 
to break the litter down into carbon dioxide and 
humus (the dark coloured, nitrogen rich, organic 
component of soil), a process known as composting. 
While the process is complicated the amount of 
bacteria adjusts quickly so that it remains at a 
constant level (the carrying capacity) in the 
undecomposed litter. This means that at any 

moment the rate at which material is composted is 
proportional to the amount of litter available, 
which therefore decays exponentially. 
2.2 Modified exponential model 

 xy c ka= + , or xy c ka−= +  

where 0>a , c and k are constants.  
Or, as suggested above, it is convenient to always 
employ powers of 2, and work with the unified, 
equally general, model 

2 x
ay y k λ= + , where λ , ay and k are constants. (2) 

We use the subscript a on ay as this is the height of 
the model’s horizontal asymptote. 
(a) Spread of mould on a piece of bread, or 
rust on a wheat crop. Suppose that an initially 
fresh slice of bread is left exposed so that airborne 
mould spoors settle at a fixed rate onto random 
points on the top surface of the slice. If A is the total 
area of the top surface, then a simple model 
describing the area of the top surface covered by 
mould at time t is: 

( ) (1 ),tm m t A e λ−= = −  

where λ  is related to (in fact, directly proportional 
to) both the density of spoors in the air and the rate 
at which mould cells replicate in situ on the bread. 
For a vindication of this model see section 4.2 (a). 
As with the other two situations introduced below, 
this could form the basis of a student investigation. 
Daily photographs of the developing mould could be 
taken using a mobile phone, see Figure 1. The area 
of mould could be measured by superimposing a 
grid over each photograph and counting squares. 
The measurements could be plotted and, as 
detailed below, a model fitted. 
 

       
Figure 1: Growth of mould on a slice of bread. Left 

after 2 days, right after 4 days. 
(b) How your soft drink warms or your coffee 
cools. Consider a cold [hot] object warming 
[cooling] to the ambient (room) temperature aT  . 

Let T(t) be the temperature of the object at time t 
and let its initial temperature at time 0=t  be 

0 0 [ ]< >a aT T T T . 

Newton’s law of cooling tells us that  

0( ) ( )2 ,t
a aT t T T T λ−= − −  
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Where λ  is a positive constant related to the 
thermal conductivity of the surrounding media 
(air). 
(c) Why your party balloon deflates, or 
Diffusion across a semi-permeable 
membrane. Diffusion is the mechanism whereby 
a substance (typically a gas or solute) disperses 
from regions of high concentration to those of lower 
concentration. Often the regions of high and low 
concentration are separated by a semi-permeable 
barrier/membrane (in which case the process is 
sometimes referred to as osmosis). The rate at 
which diffusion occurs is proportional to the 
difference in concentrations and the area of the 
surface through which the substance is 
permeating. Consequently, for a substance (helium 
say) enclosed by a rigid semi-permeable vessel (for 
example, a plastic bottle) from which it diffuses 
into a large exterior reservoir in which the 
concentration ac remains effectively constant (for 
example, the atmosphere), the concentration inside 
the vessel varies with the time according to  

0( ) ( )2 t
a ac t c c c λ−= + − . 

Modelling how a party balloon slowly deflates is 
more complex. As helium escapes, the helium 
concentration and the volume of the balloon, and 
hence the surface area through which the helium is 
diffusing, all decrease in a complicated way linked 
to the amount of helium remaining in the balloon 
and the elasticity of the rubber. 
Diffusion is one of the most ubiquitous processes in 
nature; regulating everything from respiration, the 
uptake or excretion of a drug, the intake of water 
by a plant, to the leaking of energy from the core of 
a star to its photosphere and hence into space. 

3 Fitting Models to Data 
Sophisticated algorithms, akin to a mixture of 
Newton’s method and linear regression (least 
square best fit), have been developed to determine 
values for the parameters in our models so that 
they best describe known data (a process known as 
parameter identification). However, we will assume 
that we have enough data points to let us sketch a 
curve that reasonably fits the data. We then seek 
parameter values for which our model will mimic 
the curve. 
3.1 Estimating ay from asymptotic behaviour 

This is often the hardest parameter in (2) to 
estimate, requiring data that captures long term 
behaviour. We need out graph to extend far enough 
that we can read off the value to which it 
asymptotes, either as  ( 0)→∞ <x a , or less 
commonly as  ( 0)→ −∞ >x a . Fortunately, 
however, in many situations the value of ay is 

known a priori. For exponential models it is zero; 
for our mould growth it is the area of the top 
surface of the bread slice; while for our 
warming/cooling drink it is the ambient 
temperature of the room, which we can measure 
with a thermometer. 
3.2 Estimating k from an initial condition 
Once ay  is known (see section 3.1), setting 0x =  
in (2) leads to 0(0) a ak y y y y= − = − , allowing k to be 
determined from the initial condition. Since x is 
often time and what we take as the origin for time 
is somewhat arbitrary, we are at liberty to take it 
as the moment one of our observations was made. 
Usually, but not necessarily, when the first 
(earliest) observation was made. 
3.3 Estimating λ  using half-life 
This is where working with powers of 2 really 
comes to the fore, allowing us to avoid the need for 
logarithms. We work with half-lives. 
From (2), we have 0( )2 x

a ay y y y λ− = − , where ay is 
known via section 3.1. We ask for what value, 1/2x , 
of x, is ay y−  reduced to half its initial value of 

0 ay y− ; that is when 0( ) / 2ay y y= + , a value that 
can be read directly from the graph of our data, see 
Figure 2. This occurs when  

1/2
0 0( ) / 2 ( )2 x

a ay y y y λ− = − ; 

that is, when 1/2 11 2 xλ += , whence 1/2 1 0xλ + = , or  

1/21 / .xλ = −  

 
Figure 2: Modified exponential model with 

0.3, 1 and 1ay kλ = − = = −  

When the situation being modelled required that α 
be positive, 1/2x  will lie to the left of the origin 
where there may be few or no data points. In this 
less common case it is better to work with the 
double-life, 2x , where 02( )a ay y y y− = − , in which 
case 21/ xλ = . 

Using different choices for where the origin is 
located on the x-axis (see the remark in section 3.2), 
leads to different values for α. These may be 
averaged to obtain a more robust estimate. 
However, that all these values lie relatively near to 
one another is a good test that an exponential 
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model is appropriate. 

4 Underlying Differential Equations 
(Extension 1 Course) 
4.1 Exponential model 
The assumption that at any instant the rate at 
which a quantity ( )y y t= varies is proportional to 
the amount present at that instant is captured by 
the differential equation 

dy y
dt

λ= , with initial condition 0(0) ,y y=  

where λ is positive for exponential growth and 
negative for exponential decay. Verify by 
substitution, or otherwise, that  

0( ) .ty t y eλ=  

is a solution, and show that it is the only solution   
[Hint: suppose ( )x t  is another solution and 

consider d x
dt y
 
 
 

]. 

4.2 Modified exponential model 

0/ ( ),  (0)  ( 0)ady dt y y y yλ λ= − = >     (3) 

This may be solved either: 
(i) using the change of variable ax y y= − , so 

/dx dt xλ= − and hence xx Ce λ−= , or 
(ii) using separation of variables (Extension 1 – 
C3.2) to obtain 

( )a

dy dt
y y

λ=
−∫ ∫  

Both ways lead to the solution, 

0( ) t
a ay y y y e λ−= − −  

In the following subsections we justify why some of 
the models introduced in section 2 are appropriate. 
(a) Spread of mould on a slice of bread. 
Consider mould growing on a slice of bread under 
the circumstances described in section 2.2(a). A 
spoor that happens to land on a part of the bread 
that is already covered by mould does not lead to 
an increase in the area infested. On the other hand, 
one that lands where no mould is currently present 
becomes a nucleus for new mould growth. Thus, at 
any moment, the rate at which mould develops, 
dm/dt, is proportional to the area of bread free of 
mould, A-m; that is, 

( ),  with (0) 0dm A m m
dt

λ= − =     (4) 

and so, using the techniques of solution described 
in 4.2 

(1 ).tm A e λ−= −  

(b) Newton’s law of cooling. Another instance of 
(3) in action is provided by Newton’s law of cooling, 
which states that at any moment the rate of change 
of an object’s temperature, dT/dt, is proportional 
to the difference between the ambient temperature,

aT , and that of the object, ( )T T t= ,  at that moment, 
leading to the differential equation 

0/ ( ),  (0)  (with 0)adT dt T T T Tλ λ= − = > . 

4.3 Relation to models involving powers of 2 
To convert from a model involving powers of e to 
one involving powers of 2 we need to introduce a 
factor of 2log ( ) 1/ log (2) 1.443ee = ≈ into λ . Thus, the 
model 0.37 xy e−=  becomes  

20.3log ( ) 0.437 2 7 2 .e x xy − −= × ≈ ×  

5 The Logistic Model (Extension 1 – 
C3.2) 
Exponential growth or decay often provides a good 
description for small values of time, while the 
modified exponential model frequently works well 
for larger values of times when growth limiting 
factors have a greater effect. A superior 
description, resting upon the underlying 
assumptions of both, is offered by the logistic 
equation: 

0 / ( ),  (0)  ( 0).ady dt y y y y yλ λ= − = >  

Separation of variables leads to,  

( )a

dy dt
y y

λ=
−∫ ∫ . 

Which, after observing that  

1 1 1 1
( )a a ay y y y y y y

 
= + − − 

, 

integrating and solving for y yields the logistic 
model: 

0 0,  where ( ) / .
1 a

a
ay x

y
y C y y y

Ce λ−= = −
+

    (5) 

The sigmoid curve of a logistic model provides an 
even better description for the growth of mould on 
our slice of bread. Rather than there being a 
constant level of airborne spores, spores are more 
likely to be released into the air from the mould 
already present on the bread. Thus, the density of 
airborne spores will be proportional to m, and so 
the constant factor λ  in equation (4) is replaced by 
a factor of the form λ m, leading to a logistic 
equation for m, dm/dt = λ m(A-m). 
While the logistic model is usually a better model, 
the drawback, besides having a more complicated 
solution, is in estimating a value for λ  that will fit 
the data. (Can you see how this might be done? A 
hint lies in one step in the derivation of (5).) 


