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Summary ]
An integral is presented as a real-valued funciion with demain a subset

af the real-valued functions of a real variable, which is required 1o satisfy a
Aumber of .axioms, capiuring our intuitive expeciations for ‘areas under

curves’.
The fundamental results of integration theory are shown to follow easi-
Iy from these axioms and a brief discussion of the various ways by which
futegrals may be ‘constructed’ is included.

It is suggested that the axiomatic approach has the advantage of plac-
ing integration in a proper mathematical perspective, reinforcing studeiits’'
earlier {deas af the funciion concept and allowing many associated iopics,
such as approximaiion (Simpson’s Rule) to be approached more ewsily and
naturaliv,

¥
Question:  Find [ 1/xdx.
, :
Answer: I} Vxdx = .. = .. = 3SQUARE UNITS,

Recently I had the disturbing experience of seeing just how many of
our H.8.C. students answered the above question in the way indicated
(about 50% of those students who could answer the question st ali). Of
course the answer is numerically quite correct, but the inclusion of units in-
dicates a basic misconception of the meaning of integration.

Ivis true that we often use the problem of finding the ares under a
curve to introduce students to the idea of an integral, and had the question
been. . :

Find the area of ((x, y) : 0y < 1/x where 1 x<el),
then the above answer would be right.

Integrals however atise naturally in many contexts and it is the context,
not some intrinsic property of the integral, which determines what units, if
any, should be attached to the answer. For example:

(i} = particle moving along a straight line, stationary at time /=1
second, subject to an acceleration of #~! cm/sec? would w?ﬁ velocity

;.« 1/tdi = 3 en/second after ¢ seconds;

(i) afier e seconds the temperature (heat accumulated) in a reservoir
at 0°C aifter | second and into which heat flows at & rate varying inversely

~with time might be “._ 'dt = 3°C.

To the mathematician however .ﬁ ¢ (&&.« is just a number, in
this case the number 3,

So if *areas under curves’, velocities ete. are merely interpretations of
integrals, we are led to ask, “What then is an integrai?”.

There are as many different answers to this question (all of them essen-
tially equivalent of course) as there are approaches to the theory of
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integration. In the next few pages [ will briefly o:::._m what my answer
might be, suppressing many of the less mmmnzﬂ._m_ details. .

I .# denotes the set of real valued functions of & _.m& <.E,EEP then
essentially an integral is a real-valued function whose %EE:. is a subset of
.#; technically such & function is known as a funciional, _.. is of nn.EHmn.H
very particular function satisfying a number of mawo_.:ma axioms which wi
be listed below after introducing the necessary notaton.

For fig €. and A € .# (the real b .
multiple A/ will dencte those elements of .# defined respectively by

U+ o) = fO+80 | orall e 7.
WHD) = M) .
With any f€.7 and a,b €..4 with a < b associate of

where Sl = ( Sx) for a<x< b
0 for x<aorx>bh

anything for x=a or x=b )
Thus, for example, if I denotes the constant function assigning ! to every
XE .4,
then

N

lfor0<x <!
OQforxn<Darx> L

We now offer the following
DEFINITION: .7 <. is a set of integrable functions {f

o) =

I

(Aly L, €7 forailla < bE A

(Al) S €T ffET

(Aii) [+ &7 ﬁu‘ﬁ.& m\wu‘h c.p i.e.,.7 is a linear space;
(Aiv) MNe. 7 iffe.r, e

and i there exists a function :.7 — 2 sausfying ) o ]

(AV) for fg€.7 and NE #, I+ Ag) = I} + M) ie., { is __Emn.u....

(Avi) iff€.7 is such that fix} 2 0 for all x € -4, then N=20;ie,lisa
pasitive mapping. u

(Avil) (1) = b—u jorall a{bE.7.

Alternatively: If we require that .7 be closed under ‘translation’ and [

transtatjonally invariant (i.e., if f€ 1 then f, €.7 and I(f,} = I{f} where

LX) = fle+ ) all x,h €.4), then (Ai) may be repiaced by ,/, .7 and
i ) =1. . o
ﬁ><_:$\c_w.m: r__.m”vE:dacnmzm integration to students one might m<oa.n=ﬁ:n=
mention of (AD) to (Aiv), tacitly assuming the set of integrable _.csm.:osm.wu.
ing considered is closed under the operations needed to talk m_uo:.m integrals.
The function f is called an jategral on .7 and we speak ._un.:.m value m”,
[€ .7, I), as the integral of f. I have purposely chosen to write 1 522:.”, m
the more conventicnal | to help eliminate any preconceived idens we might
bout integrals. .
e MH first mﬁm: these formal axioms may appear strange and E:._nc_m.
However, if we interpret f{/) as the area between the graph o._.& E.#_ the x-
axis (an interpretation which we hope is sensible), then each axiom is merely
the formalisation of an intuitively obvious result lor such areas.

bers), the sum [+ g-and-scalar—-
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While (Av), with A = 1, siuates that the aren under a curve whose or-
dinate at x is flv) + m.i.c is the sum of the arens under the curves with or-
dinates flv) and plx) at v 1t i5 lefl to the reader to supply similar
interpretations for :Mﬁ remaining axioms.

© Granted that a et 7 of integrable functions ¢an be found {(more will be
said on this later) :L:w_ ol the basic results of integration then follow easily
from the axioms. We illustrate this with just two.
NoTtaTion: For .\,_m 7 and a < HE 2 we write JU(f) for {(_f;) and call
this the definite integral of f from a 1o b,
|

|

INTEGRAL MEAN VALUE THEOREM: If f€.7 and mM € .4 are such
that m < flx) <M for alf x with a<<x<b, then *

mlh —a) < 15N < M(b — a).
{The more usual form follows from this and Belzano's Theorem i fis ussumed continuous.)
Proof. The ?nn:o:m # = ofy —m,1, is such that g{x) > 0 for all x € ..# and
so by (Avi) H{g) > 0, but using (Av) and (Avii) f(g) = I*{/) — m(b — a),
whence m(h — a) £ NWS.
The result that (/) < M(b — a) follows similarly and is left to the reader.
MNow, since we can take /. = f, +,f. wherea < & < ¢ €., it follows from
(Av) that £2() = 5D+ IS for all fE.7, .
It is consistent with|this ta define FE()=—72(f) when a <5, for then
BN =N+ 5{)=0 as expected,

DEFINITION:  For any f€.7 and g €. # we can define a new function F
by Flx) = £() for alllv €. #. Such a function will be colled & primitive ol /.

FUNDAMENTAL THEQREM OF CALCULUS: [f f'&.7 is continuous at
N €2 and Fois ajprimitive of fi then F is differentiable ar x, and
Flxg) = flxy).
FProaf. [ Flxy+ A —Fe /b = | o N — o)/ k= vl

Thus, by the Integraf Mean Vatue Theorem, m < [Fx,+h)— Flx,) /b < M
where mm is the minimum of f'and Af is the maximum of f for x between X
and x,+4, which exist, for sufficiently small 4, by the continuity of / at &,
and further as f— 0,

M = flx,).
Su Flyy) = fim [ Ay +|)—Fle )ik exists and equals flx, ).

One could continae in this vein developing other standard results: The
Substitution Theorem, |Integration by Parts Formula, and the like. However
further developments follow from the theorems already established in quite
orthodox ways (see any introductory calculus text book) and would serve
no purpose in this noie.

We have seen that given a set of integrable functions, the standard
theorems of integral ﬂ%m_n:_cm are readily shown to hold for it. The fun-
damenual problem of integration is then to construct {or establish the ex-

istence of, and then characterise) suitably ‘large’ sets of integrable functions,




15 The Austrulian Mathematics Teacher

Considering the large number of axioms such a sc. .nust satisfy, it is
perhaps surprising that any such sets exist. However they do, and can be
arrived at in a great variety of ways, which it would take us far beyond the
scope of this note to do more than mention a few. .

A ‘small’ but important set of integrable functions can be arrived at
directly from the axioms. This is the set of step functions S, where f€ S il
there exists a finite set of paints x, < x, < ... < x, and numbers £}, /3. oo fy
such that - S : e
0for x<x, or x>x,

I = Sifory, < ﬂ. X = 1200n)

n
Since such as fcan be written as N f, 1, it follows from (Ai),
=1

(Aiii) and (Aiv) that fis integrable while (Av)} and {Avii) necessitate that

) = YN fi(x,—x,._,) and so the integral is uniquely determined on S.
=1 )

One way of proceeding might be to try and ‘extend’ S to a larger set

of Tunctions. Thus the set of f€.7 for which there exists a sequence

Jivfov e fon o of step functions converging “uniformly™ to / and for which

p = lim (/) is finite, can, afler the appropriate checking, be shown to
Ll

form a set of integrable functions, for which the integral is given by f{f) = p.
In this way we arrive at the integrability of the set of wmhi&ml\.::nz.a.zm
considered by J. Dieudonné {(Foundations of Modern Analysis, >nmam&_n.
N.Y., 1960): a set, containing all the integrable continuous functions, ,.e.d.n__
is sufficient to adequately serve most needs of the applied Emprmam:n_mm_.

More ambitiously, one might show that if f,, fi. « foo w15
an ‘increasing’ sequence of step functions for Ezmz the sequence
). 1), ... I(f)), ... converges, then except for points x lying in a
suitably “small” set (a set of measure zero to be precise) ._‘.aﬁ.q.v — f{x) ns
n— oo, for some f€. 7. The set of all functions [ arising in this way can
then be shown to satislfy (Ai) to (Avii) with 7{/} = lim (/) and one

A~=C0
arrives at the set of Lebespue integrable functions {see Weir, Lebesgue
Integration & Measure, Cambridge 19713). o

Alternatively we might start with a given set of functions in mind and
after ensuring that it satisfied (Ai) to (Aiv) attempt to construct an integral,
1, on it which satisfies the remaining axioms. This is essentially the approach
taken in Riemnann integration. One starts with an adequate subset of func-
tions of ‘bounded variation' and using the machinery of upper and lower
sums {essentially step function devices) arrives at a suitably defined integral
for it.

Lastly, as is often done in school calculus courses we may no:&En.ﬁ a
limited, though valuable, set of integrable functions by ,mE_._.m inspiration
from the fundamental theorem ol the calculus established earlier.

Thus, let /'€ .7 be continuous except at a finite number of points, and
assume we can find a continuous function F which is an antiderivative ol f
except possibly st the points of discontinuity of /- That is: F'{(x) = f{x) for all
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points x at which |/ is cuntinuous,

Then after some, though not very difficult. checking we can show that
S is integrable E::W I = __nﬂ_ F(z)~F(~z) provided this limit exists. The
important point 1o note is that for f€.7 with antiderivative F we have that

Fa) for x<a

Flx) for ag<x<b

FB) for x> b
is a suitable antiderjvative of ,/, whence ,/, € .7 and from which it follows
that F8(N)= ESIﬂE.

In conclusion then, we see that an jntegral is a very distinguished func-
tion, the existence of which and in particular the connection between it and
the aperation of differentiation (Fundamental Theorem of Calculus) allows
a great variety of problems to be solved. For cxample, the physical problems
presented at the start of the article. Because of this importance many
theories have been developed 1o establish the existence of “integrals™ on sels
other than subsets ol . 7. In most of these cases the starling point is an
appropriately modified version of the axioms (A} to {(Avii). For instance the
Haar integeal {or real-valued functions from a compact topological group.

, Once we see |integrals in this light it becomes as silly to write
[} 1/x dx = 3 SQUARE UNITS as it would be to write of the function € .7,
defined by f{x) = x\|f{2) = 8 CUBIC UNITS.

Apart from the likelihood of a student, who does not appreciate this,
committing an error| his ability to see the central and important role played
by integration theory will necessarily be severely handicapped. It is therefore
essential that students studying integration are made aware of the distinction
between an integral and the answer it may produce to any given problem.

' Glx)=




