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Consumer Preference Theory

All economic models have to build some model of how
consumer (and producers) tend to react to market
pricing of commodities.
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Consumer Preference Theory

All economic models have to build some model of how
consumer (and producers) tend to react to market
pricing of commodities.

Let R
n
+ :=

{

x ∈ R
n | xi ≥ 0 for all i

}

denote the set of
commodity bundles.

A Utility function u : Rn
+ → R := R∪{−∞} reflects the

preference structure with respect to possible
consumption of n commodities x ∈ R

n
+.
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We say x1 is weakly preferred to x2 if u (x1) ≥ u (x2).
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We say x1 is weakly preferred to x2 if u (x1) ≥ u (x2).

Depending on the expected behaviour of the consumer,
economic theory has developed expectations on what
the functional structure of such functions should be and
a "toolbox" of apriori determined functional forms
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We say x1 is weakly preferred to x2 if u (x1) ≥ u (x2).

Depending on the expected behaviour of the consumer,
economic theory has developed expectations on what
the functional structure of such functions should be and
a "toolbox" of apriori determined functional forms

It is natural to assume u is non-decreasing and so
u(x1) ≤ u(x2) when x1 ≤ x2 in the order defined by the
positive cone R

n
+ ("more is not worse").
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In reality one does not have direct access to such
information but only the responses a consumer makes
to offer of a commodity bundle at a given price structure
p ∈ R

n
+.
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In reality one does not have direct access to such
information but only the responses a consumer makes
to offer of a commodity bundle at a given price structure
p ∈ R

n
+.

Thus one might observe that a consumer bought a
certain bundle at a given price in preference to another
bundle that might have also been "within budget".

We refer to this as a revealed preference.

In actual fact we are making observations of a
consumption relation

x ∈ X (p) := {the commodities x preferred at price p}
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The problem of revealed preferences asks the following
question: Given the ability to take any finite sample
xi ∈ X (pi) for i = 1, . . . ,m can one claim the actions of
the consumer are governed by a preference order
derived from a utility function u?
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The problem of revealed preferences asks the following
question: Given the ability to take any finite sample
xi ∈ X (pi) for i = 1, . . . ,m can one claim the actions of
the consumer are governed by a preference order
derived from a utility function u?

Part of revealed preference theory concerns itself with
the properties u must possess to define a valid
preference relation yRx (y is preferred to x) via a utility
using y ∈ S−u(x) :=

{

z ∈ R
n
+ | −u(z) ≤ −u(x)

}

.

CARMA workshop 2009, Newcastle – p. 6/51



The problem of revealed preferences asks the following
question: Given the ability to take any finite sample
xi ∈ X (pi) for i = 1, . . . ,m can one claim the actions of
the consumer are governed by a preference order
derived from a utility function u?

Part of revealed preference theory concerns itself with
the properties u must possess to define a valid
preference relation yRx (y is preferred to x) via a utility
using y ∈ S−u(x) :=

{

z ∈ R
n
+ | −u(z) ≤ −u(x)

}

.

One basic proper it that S−u(x) must be convex for each
x, a property forcing −u to be quasi-convex.
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Another property that is assumed is the nonsatiation
assumption which amounts to saying that in every
neighbourhood of U of x there exists a y preferred to x
i.e. u(y) > u(x) (i.e. "no flats").

6

-

�
Direction of decreasing v

Level Cures of v

Figure 1: The level curves of a quasi-convex func-

CARMA workshop 2009, Newcastle – p. 7/51



The inner product 〈p, x〉 indicates the value of the
consumption represented by x under the price vector p.
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The inner product 〈p, x〉 indicates the value of the
consumption represented by x under the price vector p.

The consumer is assumed to choose a consumption
bundle within his budget w i.e.

x ∈ BG(p, w) :=
{

x ∈ R
n
+ | 〈p, x〉 ≤ w

}

that is at least weakly preferred to all elements in
BG(p, w).
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The inner product 〈p, x〉 indicates the value of the
consumption represented by x under the price vector p.

The consumer is assumed to choose a consumption
bundle within his budget w i.e.

x ∈ BG(p, w) :=
{

x ∈ R
n
+ | 〈p, x〉 ≤ w

}

that is at least weakly preferred to all elements in
BG(p, w).

As BG(p, w) = B(λp, λw) for all λ > 0 we may as well
assume that w = 1 (unit wealth) and denote
BG(p, 1) = BG(p).
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In reality the data one has is a finite expenditure
configuration which consists of a set X of all elements
taken from (x, p) ∈ XR.
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In reality the data one has is a finite expenditure
configuration which consists of a set X of all elements
taken from (x, p) ∈ XR.

We say that x is a revealed preference to y and denote
this by x �XR

y when 〈p, x− y〉 ≥ 0. That is y was in
budget as 1 = 〈p, x〉 ≥ 〈p, y〉 but as (x, p) ∈ XR we have
x chosen instead of y.
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taken from (x, p) ∈ XR.

We say that x is a revealed preference to y and denote
this by x �XR

y when 〈p, x− y〉 ≥ 0. That is y was in
budget as 1 = 〈p, x〉 ≥ 〈p, y〉 but as (x, p) ∈ XR we have
x chosen instead of y.

The transitive closure of �XR
gives a partial order �R

that denotes x �R y when there exists x = x0, x1,
. . . , xn = y with xi+1 �XR

xi for all i.
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In reality the data one has is a finite expenditure
configuration which consists of a set X of all elements
taken from (x, p) ∈ XR.

We say that x is a revealed preference to y and denote
this by x �XR

y when 〈p, x− y〉 ≥ 0. That is y was in
budget as 1 = 〈p, x〉 ≥ 〈p, y〉 but as (x, p) ∈ XR we have
x chosen instead of y.

The transitive closure of �XR
gives a partial order �R

that denotes x �R y when there exists x = x0, x1,
. . . , xn = y with xi+1 �XR

xi for all i.

Similarly we denote x ≻R y when x �R y and there
exists i with xi+1 ≻XR

xi or 〈pi+1, xi+1 − xi〉 > 0 for
(xi, pi) ∈ XR.
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The generalised axiom of revealed preference (GARP)
says that there can not exists a cycle
{(xi, pi) | i = 0, . . . ,m} (with x0 = xm+1) such that all

〈pi+1, xi+1 − xi〉 ≥ 0

unless
〈pi+1, xi+1 − xi〉 = 0.
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The generalised axiom of revealed preference (GARP)
says that there can not exists a cycle
{(xi, pi) | i = 0, . . . ,m} (with x0 = xm+1) such that all

〈pi+1, xi+1 − xi〉 ≥ 0

unless
〈pi+1, xi+1 − xi〉 = 0.

That is xi+1 �XR
xi for i = 0, . . . ,m with x0 = xm+1

implies the transitive closure satisfies x0 �R x0.

Now we cannot have some 〈pi+1, xi+1 − xi〉 > 0 because
we obtain the contradiction x0 ≻R x0 and so
〈pi+1, xi+1 − xi〉 = 0 for all i.
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At this point we don’t know if there exists a utility that
might rationalize the whole expenditure configuration
space.
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At this point we don’t know if there exists a utility that
might rationalize the whole expenditure configuration
space.

When the order relation is induce by a utility then the
demand relation can be written in terms of an
optimization problem

Xu(p) :=
{

x ∈ R
n
+ | u(x) ≥ u(y) for all y s.t. 〈p, y〉 ≤ 1

}

= {x ∈ BG(p) | u(x) = v(p)}

where v(p) := sup {u(y) | 〈y, p〉 ≤ 1} (2)
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The indirect utility function v(p) assigns to any price
vector the greatest utility the consumer may achieve
when he is constrained to spend no more than one unit
of money (and must be quasi–convex non–increasing).
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The indirect utility function v(p) assigns to any price
vector the greatest utility the consumer may achieve
when he is constrained to spend no more than one unit
of money (and must be quasi–convex non–increasing).

When v is associated with u via (1) then (under minimal
assumptions, presuming the original quasi–concavity of
u) one may recover u via the duality formula

u(x) = inf {v(p) | 〈x, p〉 ≤ 1} . (4)
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The indirect utility function v(p) assigns to any price
vector the greatest utility the consumer may achieve
when he is constrained to spend no more than one unit
of money (and must be quasi–convex non–increasing).

When v is associated with u via (1) then (under minimal
assumptions, presuming the original quasi–concavity of
u) one may recover u via the duality formula

u(x) = inf {v(p) | 〈x, p〉 ≤ 1} . (5)

Thus one only needs to construct the indirect v in order
to effective obtain the utility u.
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Normal Cones and Cycles

As the "non-satiation" assumption implies any optimal
value satisfies 〈x, p〉 = 1. We have p attains the infimum
in

u(x) = inf {v(p) | 〈x, p〉 ≤ 1} . (6)

when u(x) = v(p) or x ∈ Xu(p) which implies

〈p′, x〉 ≤ 1 = 〈p, x〉 =⇒ v(p′) ≥ v(p).

CARMA workshop 2009, Newcastle – p. 13/51



Normal Cones and Cycles

As the "non-satiation" assumption implies any optimal
value satisfies 〈x, p〉 = 1. We have p attains the infimum
in

u(x) = inf {v(p) | 〈x, p〉 ≤ 1} . (7)

when u(x) = v(p) or x ∈ Xu(p) which implies

〈p′, x〉 ≤ 1 = 〈p, x〉 =⇒ v(p′) ≥ v(p).

Thus we may write

Xu(p) =
{

x ∈ R
n
+ | 〈x, p〉 = 1 and 〈p′ − p, x〉 ≤ 0 implies v(p′) ≥ v(p)

}
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Under the "non-satiation" assumption we can also say
that when x ∈ X(p), 〈x, p〉 = 1 and 〈p′ − p, x〉 < 0 implies
v(p′) > v(p). This is because 〈p′, x〉 < 1 and so is strictly
in budget. Thus it is possible to improve the utility
obtained from x at price p′ (via the "non-satiation"
assumption).
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Under the "non-satiation" assumption we can also say
that when x ∈ X(p), 〈x, p〉 = 1 and 〈p′ − p, x〉 < 0 implies
v(p′) > v(p). This is because 〈p′, x〉 < 1 and so is strictly
in budget. Thus it is possible to improve the utility
obtained from x at price p′ (via the "non-satiation"
assumption).

Thus when duality and non-satiation applies we have
x ∈ Xu(p) corresponds to the statement that for

Sv(p) :=
{

p′ ∈ R
n
+ | v(p′) ≤ v(p)

}

then

∀p′ ∈ Sv(p) =⇒ 〈p′ − p,−x〉 ≤ 0

or x ∈ [−Nv(p)] ∩ {x | 〈x, p〉 = 1} . (9)
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The normal cone to Sv(p) at p used before is denoted by

Nv(p) :=
{

y | 〈p′ − p, y〉 ≤ 0 for all p′ ∈ Sv(p)
}

.

6

-

p

p′*

?

�

−x∈Nv(p)

Sv(p)

p′−p

The normal cone to the level set S(p) at p.
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It is well known when v is convex

Nv(p) = cone ∂v (p) := ∪λ≥0λ∂v (p)

and so our symmetric duality and nonsatiation
assumption holds then for all p ∈ R

n
+ we have

[− cone ∂v (p)] ∩ {x | 〈x, p〉 = 1} = Xu(p).
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It is well known when v is convex

Nv(p) = cone ∂v (p) := ∪λ≥0λ∂v (p)

and so our symmetric duality and nonsatiation
assumption holds then for all p ∈ R

n
+ we have

[− cone ∂v (p)] ∩ {x | 〈x, p〉 = 1} = Xu(p).

Here the convex subdifferential of v is given by

∂v (p) := {x | v(q) − v(p) ≥ 〈x, q − p〉 for all q}.
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A Satisfactory Class of Utilities

When is does a utility satisfy the non-satiation property?
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A Satisfactory Class of Utilities

When is does a utility satisfy the non-satiation property?

A functions v : Rn
+→R whose closure of the (convex)

strict level sets S̃v satisfies

S̃v(p) = Sv(p)

where S̃v(p) =
{

p′ ∈ R
n
+ | v

(

p′
)

< v (p)
}

. (11)

is said to be in the class Π (or graphically
pseudo-convex).
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A Satisfactory Class of Utilities

When is does a utility satisfy the non-satiation property?

A functions v : Rn
+→R whose closure of the (convex)

strict level sets S̃v satisfies

S̃v(p) = Sv(p)

where S̃v(p) =
{

p′ ∈ R
n
+ | v

(

p′
)

< v (p)
}

. (12)

is said to be in the class Π (or graphically
pseudo-convex).

When int S̃v(p) 6= ∅ for all v (p) > inf v we say v is solid.
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Suppose the indirect utility v : Rn
+ → R is a proper, solid

function in the class Π that admits the duality formula
(3). Then the utility u : Rn

+ → R is a proper, solid and
−u ∈ Π. In particular we must have u non-satiated.
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Suppose the indirect utility v : Rn
+ → R is a proper, solid

function in the class Π that admits the duality formula
(3). Then the utility u : Rn

+ → R is a proper, solid and
−u ∈ Π. In particular we must have u non-satiated.

Suppose the direct utility u : Rn
+ → R is a proper, solid

and −u ∈ Π. Then the indirect utility v : Rn
+ → R is a

proper, solid and in the class Π. In particular we must
have v non-satiated.
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The Strong Axiom (SARP)

Suppose p0, . . . , pq ∈ R
n
+ such that there exist xi ∈ Xu(pi)

with

〈pi, xi+1〉 ≤ 〈pi, xi〉 then xi+1 could have been purchased
at price pi as it is in budget. Since xi ∈ Xu (pi) we have
chosen xi instead of xi+1. Thus xi+1 is not strictly
preferred to xi or u(xi) ≥ u (xi+1) and
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The Strong Axiom (SARP)

Suppose p0, . . . , pq ∈ R
n
+ such that there exist xi ∈ Xu(pi)

with

〈pi, xi+1〉 ≤ 〈pi, xi〉 then xi+1 could have been purchased
at price pi as it is in budget. Since xi ∈ Xu (pi) we have
chosen xi instead of xi+1. Thus xi+1 is not strictly
preferred to xi or u(xi) ≥ u (xi+1) and

Iteration of this gives u (x0) ≥ u (x1) ≥ · · · ≥ u (xq).
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The Strong Axiom (SARP)

Suppose p0, . . . , pq ∈ R
n
+ such that there exist xi ∈ Xu(pi)

with

〈pi, xi+1〉 ≤ 〈pi, xi〉 then xi+1 could have been purchased
at price pi as it is in budget. Since xi ∈ Xu (pi) we have
chosen xi instead of xi+1. Thus xi+1 is not strictly
preferred to xi or u(xi) ≥ u (xi+1) and

Iteration of this gives u (x0) ≥ u (x1) ≥ · · · ≥ u (xq).

If 〈pq, xq〉 > 〈pq, x0〉 then by non-satiation a ξ close to x0

exists with 〈pq, xq〉 > 〈pq, ξ〉 with u(ξ) > u (x0) ≥ u (xq)
violating the assumption that xp solves the maximum
utility problem at price pq.
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The Strong Axiom (SARP)

Suppose p0, . . . , pq ∈ R
n
+ such that there exist xi ∈ Xu(pi)

with

〈pi, xi+1〉 ≤ 〈pi, xi〉 then xi+1 could have been purchased
at price pi as it is in budget. Since xi ∈ Xu (pi) we have
chosen xi instead of xi+1. Thus xi+1 is not strictly
preferred to xi or u(xi) ≥ u (xi+1) and

Iteration of this gives u (x0) ≥ u (x1) ≥ · · · ≥ u (xq).

If 〈pq, xq〉 > 〈pq, x0〉 then by non-satiation a ξ close to x0

exists with 〈pq, xq〉 > 〈pq, ξ〉 with u(ξ) > u (x0) ≥ u (xq)
violating the assumption that xp solves the maximum
utility problem at price pq.

That is

〈pq, xq − x0〉 ≤ 0 for all xq ∈ Xu(pq)\ {0} .
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This is closely related to a mathematical notion called
cyclically quasi–monotonicity.
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This is closely related to a mathematical notion called
cyclically quasi–monotonicity.

Suppose for all i = 0, . . . , q − 1 we have xi ∈ Γ(pi), with
pi > 0 , we have for all pq ∈ Γ(xq) that

〈pi, xi+1 − xi〉 ≥ 0 implies 〈pq, x0 − xq〉 ≤ 0. (14)
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This is closely related to a mathematical notion called
cyclically quasi–monotonicity.

Suppose for all i = 0, . . . , q − 1 we have xi ∈ Γ(pi), with
pi > 0 , we have for all pq ∈ Γ(xq) that

〈pi, xi+1 − xi〉 ≥ 0 implies 〈pq, x0 − xq〉 ≤ 0. (15)

We say that Γ is called cyclically pseudo–monotone if in
addition to (13) we also have for all pq ∈ Γ(xq)\ {0}

∃ i such that 〈pi, xi+1 − xi〉 > 0 then 〈pq, x0 − xq〉 < 0.
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This is closely related to a mathematical notion called
cyclically quasi–monotonicity.

Suppose for all i = 0, . . . , q − 1 we have xi ∈ Γ(pi), with
pi > 0 , we have for all pq ∈ Γ(xq) that

〈pi, xi+1 − xi〉 ≥ 0 implies 〈pq, x0 − xq〉 ≤ 0. (16)

We say that Γ is called cyclically pseudo–monotone if in
addition to (13) we also have for all pq ∈ Γ(xq)\ {0}

∃ i such that 〈pi, xi+1 − xi〉 > 0 then 〈pq, x0 − xq〉 < 0.

The first part is just the SARP for the multi-function
Γ = −Xu.
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We can prove the following in total generality:
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We can prove the following in total generality:

A multifunction Γ : S⇉R
n is cyclically

pseudo–monotone if and only if we have for all
i = 1, . . . , q and pi ∈ Γ (xi)

∀i 〈pi, xi+1 − xi〉 ≥ 0 ⇒ 〈pi, xi+1 − xi〉 = 0 for all i.
(18)
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We can prove the following in total generality:

A multifunction Γ : S⇉R
n is cyclically

pseudo–monotone if and only if we have for all
i = 1, . . . , q and pi ∈ Γ (xi)

∀i 〈pi, xi+1 − xi〉 ≥ 0 ⇒ 〈pi, xi+1 − xi〉 = 0 for all i.
(19)

Factoring the minus sign in we have shown the
surprising results that GARP holds iff SARP holds (in
the strengthened form of pseudo-monotonicity of −Xu

or equivalently of Nv).
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Concave Utilities and Finite Data

Placing I = {1, . . . ,m} let

aij := 〈pi, xj − xi〉 for i, j ∈ I and

bij := 〈xi, pj − pi〉 for i, j ∈ I

We refer to the following inequalities as the direct Afriat
inequalities

φj ≤ φi + λiaij for i, j ∈ I.

We refer to the following inequalities as the indirect Afriat
inequalities

ψj ≥ ψi − µibij for i, j ∈ I. (20)

CARMA workshop 2009, Newcastle – p. 22/51



We note that the following are equivalent:

SARP≡GARP holds for Xu

there is a feasible solution to the direct Afriat
inequalities (in (φi, λi) for i, j ∈ I)

there is a feasible solution to the indirect Afriat
inequalities (in (ψi, µi) for i, j ∈ I).

As λi simply imposes a scaling of the function values
we can demand that λi ≥ 1 and can fit an Afriat utility.

As µi simply imposes a scaling of the function values
we can demand that µi ≥ 1 and can fit an indirect Afriat
utility.
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Given a set of data ({xi, pi})i∈I and a set of direct
parameters {(φi, λi)}i∈I we define the indirect Afriat
utility as:

vm (p) := max {ψ1 − µ1〈x1, p− p1〉, . . . , ψm − µm〈xm, p− pm〉}
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Given a set of data ({xi, pi})i∈I and a set of direct
parameters {(φi, λi)}i∈I we define the indirect Afriat
utility as:

vm (p) := max {ψ1 − µ1〈x1, p− p1〉, . . . , ψm − µm〈xm, p− pm〉}

One can easily show that ψi = vm(pi) and

xi ∈ Xum
(pi) ∀i = 1, . . . ,m

and so vm rationalizes the finite data set.
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Given a set of data ({xi, pi})i∈I and a set of direct
parameters {(φi, λi)}i∈I we define the indirect Afriat
utility as:

vm (p) := max {ψ1 − µ1〈x1, p− p1〉, . . . , ψm − µm〈xm, p− pm〉}

One can easily show that ψi = vm(pi) and

xi ∈ Xum
(pi) ∀i = 1, . . . ,m

and so vm rationalizes the finite data set.

Similar results hold for the direct utility.
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We now combine this with the following observation that
allows us to conclude that an Afriat utility can be fitted
to any finite data set that is sampled from a solid
pseudo-convex indirect utility.
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We now combine this with the following observation that
allows us to conclude that an Afriat utility can be fitted
to any finite data set that is sampled from a solid
pseudo-convex indirect utility.

Suppose a function v : Rn
+ → R is is a proper, solid

pseudo-convex function then the correspondence
p 7→ Nv (p) is maximally cyclically pseudo-monotone.
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We now combine this with the following observation that
allows us to conclude that an Afriat utility can be fitted
to any finite data set that is sampled from a solid
pseudo-convex indirect utility.

Suppose a function v : Rn
+ → R is is a proper, solid

pseudo-convex function then the correspondence
p 7→ Nv (p) is maximally cyclically pseudo-monotone.

Thus any such finite sample from the demand function
generated by such an indirect utility must satisfy GARP
because Nv is cyclically pseudo-monotone.
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Approximations via Afriat Utilities

Roughly speaking, a sequence of extended-real-valued
functions {fm}∞m=0 epi-converges to an
extended-real-valued function f if their level sets Sfm

(x)

converges as sets to Sf (x) for all x /∈ arg min f .
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extended-real-valued function f if their level sets Sfm

(x)

converges as sets to Sf (x) for all x /∈ arg min f .

As level sets correspond to indifference curves this is
exactly the behaviour we seek from an approximation.
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Approximations via Afriat Utilities

Roughly speaking, a sequence of extended-real-valued
functions {fm}∞m=0 epi-converges to an
extended-real-valued function f if their level sets Sfm

(x)

converges as sets to Sf (x) for all x /∈ arg min f .

As level sets correspond to indifference curves this is
exactly the behaviour we seek from an approximation.

Any epi-convergent family must converge to a lower
semi-continuous function. In general as lower
semi-continuity is not considered a fundamental notion
when studying quasi-convex functions.
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Approximations via Afriat Utilities (cont.)

Definition 1 Given a family of extended-real valued,
quasi-convex function {gv}v∈N we say this family essentially
epi-converges to g as v → w iff for all λ we have

There exists a λv → λ such that we have
S̃λ (g) ⊆ lim infv S̃λv

(gv) ;

For all λv → λ we have lim supv Sλv
(gv) ⊆ Sλ (g) .

This concept appears to be weaker than epi-convergences
as it does not require lsc of g.

CARMA workshop 2009, Newcastle – p. 27/51



Approximations via Afriat Utilities (cont.)

Denote f̄ (x) := inf
{

λ | x ∈ Sλ (f)
}

and indeed f is lsc

at a if and only if f(a) = f̄(a).
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Approximations via Afriat Utilities (cont.)

Denote f̄ (x) := inf
{

λ | x ∈ Sλ (f)
}

and indeed f is lsc

at a if and only if f(a) = f̄(a).

Proposition 3 If we have a family of extended-real
valued, functions {gv}v∈N that essentially epi-converges
to g as v → w then {gv}v∈N actually epi-converges to g
(and hence also essentially epi-converges to g as well).
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Approximations via Afriat Utilities (cont.)

Denote f̄ (x) := inf
{

λ | x ∈ Sλ (f)
}

and indeed f is lsc

at a if and only if f(a) = f̄(a).

Proposition 4 If we have a family of extended-real
valued, functions {gv}v∈N that essentially epi-converges
to g as v → w then {gv}v∈N actually epi-converges to g
(and hence also essentially epi-converges to g as well).

There exists theorems that link epi–convergence of a
sequence of convex functions {fm}∞m=1 to f and
graphical convergence of the subdifferential of f i.e.

∂f (x) = g- lim
m→∞

∂fm (x) .
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Can we assert that the sequence of fitted Afriat utilities
provide us with a sequence of level curve families that
converge in some sense?
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Can we assert that the sequence of fitted Afriat utilities
provide us with a sequence of level curve families that
converge in some sense?

This may be done by first defining for each m the strictly
increasing, continuous function via the fitted indirect
Afriat utility vm (p) i.e.

km (t) := vm (p1t) where t > 0.
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Can we assert that the sequence of fitted Afriat utilities
provide us with a sequence of level curve families that
converge in some sense?

This may be done by first defining for each m the strictly
increasing, continuous function via the fitted indirect
Afriat utility vm (p) i.e.

km (t) := vm (p1t) where t > 0.

We then renormalise our Afriat utilities

v̂m (p) := −k−1
m (vm (p))

which is the composition of a convex function on R
n

and a concave increasing mapping on R.
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Now p1 lies on the level curve {p | v̂m (p) = −1} for each
m and also τ 7→ v̂m (τp1) = −τ is finite.
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Now p1 lies on the level curve {p | v̂m (p) = −1} for each
m and also τ 7→ v̂m (τp1) = −τ is finite.

As km strictly decreasing continuous then −k−1
m is

strictly increasing and so the normal cone to the level
set Sm (p̄) := {p | v̂m (p) ≤ v̂m (p̄)} is given by

Nm (p̄) = cone ∂v̂m (p̄) . (22)
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Now p1 lies on the level curve {p | v̂m (p) = −1} for each
m and also τ 7→ v̂m (τp1) = −τ is finite.

As km strictly decreasing continuous then −k−1
m is

strictly increasing and so the normal cone to the level
set Sm (p̄) := {p | v̂m (p) ≤ v̂m (p̄)} is given by

Nm (p̄) = cone ∂v̂m (p̄) . (23)

We may make the following change of origin and basis
of the local coordinate system around p1. Consider the
direction d = p1/ ‖p1‖ of strict monotonicity of v̂m to be
the nth vector in the canonical basis and p1 the origin.
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Now a neighbourhood of p1may be taken to have the
form V = Y × T where Y and T are closed convex
neighbourhoods of the origin in R

n−1 and R

respectively and the resultant function we will denote by
t 7→ fm(y, t) is decreasing and lower semi-continuous.
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Now a neighbourhood of p1may be taken to have the
form V = Y × T where Y and T are closed convex
neighbourhoods of the origin in R

n−1 and R

respectively and the resultant function we will denote by
t 7→ fm(y, t) is decreasing and lower semi-continuous.

Define the indifference curves (continuous in λ) as

gm(y, λ) = inf{t | fm(y, t) ≤ λ}, λ ∈ (λ0,+∞) and

Nfm
(y, t) = cone {(z,−1) | z ∈ ∂ygm (y, λ) for λ = fm (y, t)}

Then

fm(y, t) = sup {λ | gm(y, λ) > t} for (y, t) ∈ Y × T (∗)
(25)
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Direction of decreasing f

Level Cures of f
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The monotonic decreasing property in λ and a continuity
property of λ 7→ g (y, λ) for any such family of proper, convex
level set functions {g (·, λ)}λ∈Λ correspond directly to a
solid, pseudo–convex function f , as defined via the
transformation (*), being strictly decreasing in t.
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Now suppose we have the epi-convergence of the
convex functions {gm (·, λ)}λ∈Λ. As epi gm (·, λ)

corresponds to the indifference curve at level
λ = fm (0, t) = −t, convergence of epi gm (·, λ)
corresponds to convergence of level curves, precisely
the epi-convergence of {fm}∞m=1!
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Now suppose we have the epi-convergence of the
convex functions {gm (·, λ)}λ∈Λ. As epi gm (·, λ)

corresponds to the indifference curve at level
λ = fm (0, t) = −t, convergence of epi gm (·, λ)
corresponds to convergence of level curves, precisely
the epi-convergence of {fm}∞m=1!

Epi–convergence satisfies a compactness property:
From any sequence of functions {gm}∞m=1 we may
extract an epi-convergent subsequence and in this
manner we may extract an epi–convergent
subsequence from {fm}∞m=1.
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Now suppose we have the epi-convergence of the
convex functions {gm (·, λ)}λ∈Λ. As epi gm (·, λ)

corresponds to the indifference curve at level
λ = fm (0, t) = −t, convergence of epi gm (·, λ)
corresponds to convergence of level curves, precisely
the epi-convergence of {fm}∞m=1!

Epi–convergence satisfies a compactness property:
From any sequence of functions {gm}∞m=1 we may
extract an epi-convergent subsequence and in this
manner we may extract an epi–convergent
subsequence from {fm}∞m=1.

Now we may use graphical convergence of
subdifferentials.
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Main Convergence Result

Theorem Suppose we have an underlying preference relation � and
define

Γ (p) := {−x | x � y whenever 〈y, p〉 ≤ 〈x, p〉}

with the demand correspondenceX (p) = −Γ (p)∩{x | 〈x, p〉 = 1} .

1. Suppose Γ : D ⇉ R
n is cyclically pseudo–monotone (i.e. SARP

holds for X);

2. has closed graph and convex, conic images on a closed, bounded

set D ⊆ dom Γ such that intD = D and

3. there exists a d ∈ R
n such that 〈x, d〉 < 0 for all x ∈ Γ(p)\{0}

and p ∈ D.

Then there exists a solid, pseudo-convex indirect utility function

v : D → R such that pi ∈ arg min {v(p) | 〈xi, p〉 ≤ 1} for all i and

X (p) = −Nv (p) ∩ {x | 〈x, p〉 ≤ 1} for all p ∈ intD.
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The proof is constructive in the sense that we
approximate v via a subsequence of renormalised Afriat
indirect utilities {v̂mk

}∞k=1 and show that we have
epi-convergence of a subsequence.
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The proof is constructive in the sense that we
approximate v via a subsequence of renormalised Afriat
indirect utilities {v̂mk

}∞k=1 and show that we have
epi-convergence of a subsequence.

In particular if we only have access to a countably
dense set of values X := {(xi, pi)}

∞
i=1 ⊆ GraphX then

we may write

X (p) =

[

lim sup
δ↓0

cone coX
(

Bδ (p) ∩ {pi}
∞
i=1

)

]

∩{x | 〈x, p〉 = 1}
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The proof is constructive in the sense that we
approximate v via a subsequence of renormalised Afriat
indirect utilities {v̂mk

}∞k=1 and show that we have
epi-convergence of a subsequence.

In particular if we only have access to a countably
dense set of values X := {(xi, pi)}

∞
i=1 ⊆ GraphX then

we may write

X (p) =

[

lim sup
δ↓0

cone coX
(

Bδ (p) ∩ {pi}
∞
i=1

)

]

∩{x | 〈x, p〉 = 1}

That is the demand correspondence can be recovered
from only a dense selection.
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A Best Fit Problem and Sampling Errors

In this section we assume we have access to a set of
raw data {(xi, pi) | i ∈ I}, I := {0, . . . ,m} where xi is "not
far" from Xu(pi).
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A Best Fit Problem and Sampling Errors

In this section we assume we have access to a set of
raw data {(xi, pi) | i ∈ I}, I := {0, . . . ,m} where xi is "not
far" from Xu(pi).

We assume the error in (GARP) is due to inaccurate
values of {xi}i∈I then we need to introduce errors
{si}i∈I and move xi to xi + si.
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A Best Fit Problem and Sampling Errors

In this section we assume we have access to a set of
raw data {(xi, pi) | i ∈ I}, I := {0, . . . ,m} where xi is "not
far" from Xu(pi).

We assume the error in (GARP) is due to inaccurate
values of {xi}i∈I then we need to introduce errors
{si}i∈I and move xi to xi + si.

here we enforce s0 = 0 so as to not disturb the nominal
state of the economy, but this is optional.
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We formulate the least squares best fit problem as:

min
(φ,λ,s)

∑

i∈I, i6=0

s2i +
∑

i∈I

λi

subject to

φj − φi ≤ λi [〈pi, xj − xi〉 + 〈pi, sj − si〉] for i, j ∈ I, i 6= j

〈pi, si〉 = 0, λi ≥ 1 and xi + si ≥ 0, (NLPA+)

Then we may place u (x) = min {φi + λi〈pi, x− xi − si〉} for
all x.
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Some Unsolved issues with Errors

We expect that the least squares method will help
remove errors.

CARMA workshop 2009, Newcastle – p. 41/51



Some Unsolved issues with Errors

We expect that the least squares method will help
remove errors.

We assume that we have the observed data xi = x̄i + s̄i,
the correct data {x̄i} (satisfying GARP) plus an
“unseen” error {s̄i} which is i.i.d.
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We expect that the least squares method will help
remove errors.

We assume that we have the observed data xi = x̄i + s̄i,
the correct data {x̄i} (satisfying GARP) plus an
“unseen” error {s̄i} which is i.i.d.

We expect the least squares to remove some of the
introduced error (at least the biggest ones).
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Some Unsolved issues with Errors

We expect that the least squares method will help
remove errors.

We assume that we have the observed data xi = x̄i + s̄i,
the correct data {x̄i} (satisfying GARP) plus an
“unseen” error {s̄i} which is i.i.d.

We expect the least squares to remove some of the
introduced error (at least the biggest ones).

We answer these questions by performing a sensitivity
analysis on the slack values si by introducing errors to
data that initially satisfied GARP. By randomly
generating price data and the data is now of the form
(xi + s̄i, pi). We Run (NLPA+) and compare the shifts in
the slacks si for different sizes of the variance in s̄i.
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Some Unsolved issues with Errors

We expect that the least squares method will help
remove errors.

We assume that we have the observed data xi = x̄i + s̄i,
the correct data {x̄i} (satisfying GARP) plus an
“unseen” error {s̄i} which is i.i.d.

We expect the least squares to remove some of the
introduced error (at least the biggest ones).

We answer these questions by performing a sensitivity
analysis on the slack values si by introducing errors to
data that initially satisfied GARP. By randomly
generating price data and the data is now of the form
(xi + s̄i, pi). We Run (NLPA+) and compare the shifts in
the slacks si for different sizes of the variance in s̄i.
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Are the real errors corrected for a dense set?
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Scatter plots of the two componets sji against s̄ji for j = 1, 2.
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Estimating Elasticities from the Utility

We use sensitivity analysis of the utility maximization
LP to estimate elasticities and assume that the data
pairs have been modifies to satisfy GARP and a utility
has been fitted.
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Estimating Elasticities from the Utility

We use sensitivity analysis of the utility maximization
LP to estimate elasticities and assume that the data
pairs have been modifies to satisfy GARP and a utility
has been fitted.

We will only look at the elasticity of prices with respect
to demand, given a fixed utility level.
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Estimating Elasticities from the Utility

We use sensitivity analysis of the utility maximization
LP to estimate elasticities and assume that the data
pairs have been modifies to satisfy GARP and a utility
has been fitted.

We will only look at the elasticity of prices with respect
to demand, given a fixed utility level.

Denote input prices by p and changed prices as P
(similarly X for a commodity bundle changed from x).
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Estimating Elasticities from the Utility

We use sensitivity analysis of the utility maximization
LP to estimate elasticities and assume that the data
pairs have been modifies to satisfy GARP and a utility
has been fitted.

We will only look at the elasticity of prices with respect
to demand, given a fixed utility level.

Denote input prices by p and changed prices as P
(similarly X for a commodity bundle changed from x).

We take X = x0 and P = p0 as the base point for this
calculation. That is Xl = x0l and Pk = p0k. We need to
estimate ∆Xl and ∆Pk.

CARMA workshop 2009, Newcastle – p. 43/51



Calculating Compensated Elasticity

Approximate the compensated elasticity by:

ecij =
pj

xi

(

∂xi

∂pj

)

dU=0

≃
pj

xi

∆xi

∆pj
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Calculating Compensated Elasticity

Approximate the compensated elasticity by:

ecij =
pj

xi

(

∂xi

∂pj

)

dU=0

≃
pj

xi

∆xi

∆pj

The elasticity we want to compute is a little bit complex
because we are interested price elasticity with respect
to demand subject to utility remaining constant.
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Consider the parametric optimization problem

min
X

〈P, X〉

Subject to X ≥ 0

u(X) ≥ u(x0).

CARMA workshop 2009, Newcastle – p. 45/51



Consider the parametric optimization problem

min
X

〈P, X〉

Subject to X ≥ 0

u(X) ≥ u(x0).

Since u is piecewise linear and concave, this problem
can be written as a parametric linear program,

min 〈P, X〉

Subject to X ≥ 0

φ0 ≤ φi + λi〈pi, X − xi〉, ∀i = 0, . . . , N.
(LP(P))
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For P = p0, by looking at the constraint on φ0

corresponding to i = 0, we see that any feasible X
satisfies 〈p0, X〉 ≥ 〈p0, x0〉. Thus x0 solves (LP(p0)).
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For P = p0, by looking at the constraint on φ0

corresponding to i = 0, we see that any feasible X
satisfies 〈p0, X〉 ≥ 〈p0, x0〉. Thus x0 solves (LP(p0)).

The compensated elasticity is directly related to the
change in the solution of this LP under changes in price
p0.
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For P = p0, by looking at the constraint on φ0

corresponding to i = 0, we see that any feasible X
satisfies 〈p0, X〉 ≥ 〈p0, x0〉. Thus x0 solves (LP(p0)).

The compensated elasticity is directly related to the
change in the solution of this LP under changes in price
p0.

This is a standard sensitivity problem for an LP!
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Calculating Uncompensated Elasticity

(Engel Aggregation)

The uncompensated elasticity Ei allows the consumer
to maximise their utility subject to a budget constraint Y
whilst holding commodity prices fixed.
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Calculating Uncompensated Elasticity

(Engel Aggregation)

The uncompensated elasticity Ei allows the consumer
to maximise their utility subject to a budget constraint Y
whilst holding commodity prices fixed.

Hence we consider the problem of optimizing the utility
subject to a given budget Y :

max
(X,r)

r

subject to 〈X,P 〉 ≤ Y

X ≥ 0

r ≤ φi+λi〈P,X − xi〉 ∀ i = 1, . . . , k
(LP(Y))
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In this problem we determine an upper and lower bound
on the budget y so that the solution to (LP (Y )) remains
optimal for X.

Y ∗ =

(

Y ∗−

Y ∗+

)
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In this problem we determine an upper and lower bound
on the budget y so that the solution to (LP (Y )) remains
optimal for X.

Y ∗ =

(

Y ∗−

Y ∗+

)

We then define the lower change in budget as
Y − = Y ∗− − ε and solve (LP (Y −)) to obtain X−.
Similarly define Y + = Y ∗+ + ε and solve (LP (Y +)) to
find X+.
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In this problem we determine an upper and lower bound
on the budget y so that the solution to (LP (Y )) remains
optimal for X.

Y ∗ =

(

Y ∗−

Y ∗+

)

We then define the lower change in budget as
Y − = Y ∗− − ε and solve (LP (Y −)) to obtain X−.
Similarly define Y + = Y ∗+ + ε and solve (LP (Y +)) to
find X+.

The Engel aggregation (uncompensated elasticity) is
now defined as

Ei =
y

xi

∂xi

∂y
≃
Y

xi

X+
i −X−

i

Y + − Y −
∀i = 1, . . . , L (28)
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Hicks-Slutsky Partition

The Hicks-Slutsky Partition allow us to find the elasticities
from ecij and Ei:

eij = ecij − αjEi. (29)

Where

αj =
xjpj

y
, eij =

pj

xi

(

∂xi

∂pj

)

(30)
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Tea vs Coffee (ABS statistics)

We fitted a utility and calculated elasticities for tea vs
coffee form ABS data.
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Tea vs Coffee (ABS statistics)

We fitted a utility and calculated elasticities for tea vs
coffee form ABS data.

The Engel elasticities are,

Ei =

(

E1

E2

)

=

(

0.6216

1.1964

)
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Tea vs Coffee (ABS statistics)

We fitted a utility and calculated elasticities for tea vs
coffee form ABS data.

The Engel elasticities are,

Ei =

(

E1

E2

)

=

(

0.6216

1.1964

)

Now the calculated elasticities of demand are,
(

ec11 − α1E1 ec12 − α2E1

ec21 − α1E2 ec22 − α2E2

)

=

(

−2.3106 0.4923

0.8488 −1.2306

)

.

(

α1

α2

)

=

(

0.3547

0.6453

)

.
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Tea vs Coffee (ABS statistics)
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The Afriat Utility has fit parallel lines to the data which are
slightly skewed to the right. Tea and coffee are still
considered to be perfect substitutes with coffee favoured
slightly more than tea as one would give up less coffee to
gain more tea.
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