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Introduction

A function f : X → R is non-expansive

(or 1-Lipschitz) if

|f (x) − f (y)| ≤ ‖x− y‖ ∀x, y ∈ X.

(X will be an arbitrary real Banach space through-

out, however we may imagine X = R without

compromising anything.)

The Clarke derivative of f at x in direction v is

f ◦(x; v) := lim sup
y→x
t↓0

f (y + tv) − f (y)

t
.

For each x ∈ X , f (x; v) is sublinear in v.
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The Clarke subdifferential ∂cf is

∂cf (x) := {x∗ ∈ X∗| 〈x∗, v〉 ≤ f ◦(x; v) for all v ∈ X},

and each x∗ ∈ ∂cf (x) is a subgradient of f at x.

Example: If f (x) = |x|, then

∂cf (x) =



{−1} x < 0

[−1, 1] x = 0

{1} x > 0

Here the Clarke subdifferential is identically the

dual ball at x = 0.
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Borwein, Moors and Wang (2000, 2001) —

‘almost all’ non-expansive functions on ‘lots of’

Banach spaces have Clarke subdifferential

identically equal to the dual unit ball.

Compare and contrast this result with —

‘almost all’ continuous functions are nowhere

differentiable.

For non-expansive functions we know they are densely

differentiable (at least on many Banach spaces;

Preiss’ Theorem), but the result of BMW tells us

the derivatives are almost always as badly

discontinuous as they could possibly be!

Explicit constructions of such functions unknown

even in 2-dimensions.

Our aim today is to provide an explicit recipe for

constructing such a function on an arbitrary real

Banach space.
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A measure theoretic construction on R

A set E ⊂ R is called ubiquitous if both E and

EC have positive measure in every interval. It is

easy to construct such a set.

Define

χ
E
(x) =


1 if x ∈ E

−1 if x ∈ EC

Define

f (x) =
∫ x

0
χ

E
(t)dt.

Then f is non-expansive, and differentiable almost

everywhere with derivative χ
E
. Hence there is a

dense set of points where f ′ = 1 and a dense set

of points where f ′ = −1. It follows that ∂cf is

identically the dual unit ball.

Unfortunately there is no obvious way to extend

this simple argument to higher dimensions.
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“DIMPLES” — a first attempt

Imagine building a function by putting little dints

— or dimples — into a flat surface.

If each ‘dimple’ is made using the norm, then

∂cf = B(X∗)

at each local minimum.

Now just add more dimples!
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If we just keep doing that, until the dimples be-

come dense, then we are done, aren’t we?

A problem! Since our dimples will have to start

overlapping, later dimples can eliminate earlier ones.
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“DIMPLES” — try again!

Choose (Zorn’s Lemma) sets Un such that

(i) Un is a dense union of open balls, radius < 1
n

(ii) Un is a nested family

(iii) if x is a centre of a ball of Un then x /∈ Un+1

This may be easiest to visualise in 2-dimensions.

U1

U2

U3

Each ball is a “region of influence” of a dimple.
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Use U1 to add dimples of slope 1
2 to create f1.

Add lower bounding function, g1.

Notice, on each “region of influence”, g1 ≤ f1 with

equality only at the ball centres. At these points

the directional derivatives of f1 and g1 agree, and

equal 1
2 in all directions.
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Use U2 to add dimples of slope 3
4 to create f2.

Notice that since Un is a nested family, we are

adding (smaller and steeper) dimples to our exist-

ing dimples.

We can ensure they do not penetrate the lower

bound g1, and we can ensure they do not extend

outside their preset “region of influence”.
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And adjust the lower bound to create g2.

Notice, on each “region of influence” from U2, g2 ≤
f2 with equality only at the ball centres. At these

points the directional derivatives of f2 and g2 agree,

and equal 3
4 in all directions. This has been achieved

without altering the directional derivatives at the

ball centres from U1.

Now use the most powerful word in all mathem-

atics....
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etc.
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The functions fn converge to a function f which is

non-expansive, so

∂cf (x) ⊆ B[X∗] ∀x ∈ X.

So if xn is a ball centre of Un then

(1 − 1

2n
)B[X∗] ⊆ ∂cf (xn) ⊆ B[X∗].

However, given any x ∈ X we can choose xn → x

where xn is a ball centre from Un. It follows that

∂cf (x) = B[X∗] ∀x ∈ X.
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Closing Remarks

The existence, indeed abundance, of such non-expansive

functions has long been known (BMW); but re-

quired geometric conditions on the Banach space,

or rotundity properties of the norm, and no explicit

construction was available even in 2-dimensions.

Here we have produced an explicit construction

(once the initial family of open sets Un is chosen)

requiring nothing but elementary real analysis. It

therefore lifts effortlessly from the 1-dimensional

case to an arbitrary Banach space without the need

for any geometric conditions on the space.
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In fact we have done more. The Clarke subdif-

ferential is the ‘bulkiest’ of all the subdifferentials

used to study the differentiability of Lipschitz func-

tions. The ‘leanest’ such subdifferential is called

the approximate subdifferential (definition omit-

ted), and the construction also serves to make this

identically equal to the dual unit ball.

Finally, it should be clear that by altering the

shape of the dimples, we can make a function whose

subdifferential is identically anything we like (within

reason).
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FINIT AMEN
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