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Outline of talk

History and significance of the Ising model

Crash course in Statistical Mechanics

Three key quantites, free energy, magnetisation,
susceptibility

Solution in 1 dimension

Solution in 2 dimensions (Onsager, free energy; Yang,
magnetisation)

Progress in finding the susceptibility

Concept of a differentiably finite or D-finite function. A
linear ODE with polynomial coefficients.

Direct analysis, based on correlation functions

An analysis based on n-particle contributions
(Feynman-type integrals)
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Proposed by Wilhelm Lenz 1920

Proposed as a model of ferromagnetism.

Ferromagnetism known for millenia. After the discovery of
the electron, a viable mechanism was proposed.

Magnetism is due to the electron’s spin.

Short range interaction between electrons. How do local
interactions have a global effect?

More precisely, how could short range forces lead to
long-range correlations?
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This phenomenon is very widespread.

The order-disorder transformation in binary alloys.

The gas-liquid transition.

Co-operative behaviour is the key feature, which has led to
the widespread application of the Ising model.
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Biology e.g. Montroll and Goel

Neurology Hopfield

Genetics Majewski et al. in 2001,

Economics Sornette published Why Stock Markets Crash,
in 2003, using the Ising model.

Sociology In 2001 Weidlich, published Sociodynamics
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More generally, the Ising model is relevant to any system
described by random binary variables, constrained by
conditions on the pairwise interactions. Such systems
occur frequently in the physical, biological and social
sciences.

The Ising model has been the subject of about 20,000
publications.

Wilhelm Lenz in 1920, suggested to Ernst Ising (born
1900),
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Ising PhD in 1925, General Electric Company in Berlin.
1935 head of a private Jewish school near Potsdam. 1939
to Luxembourg. He emigrated to the US in 1947, taught for
a year at a teacher’s college in N.D, since 1948 taught
physics at a small university (Bradley), in Illinois. He died in
1998.

Ising solved the model in 1-dimension, found no phase
transition, and gave an heuristic (and incorrect) argument
that there would be no phase transition in two dimensions.

Saved by order-disorder transition of binary alloys
connection.
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In 1942 Lars Onsager, in a mathematical tour de force
solved the model (free-energy) in two dimensions.

It had previously been suggested that additional conditions
would be needed to “tell” atoms or molecules to behave
co-operatively.

Since then, a paradigm of systems that exhibit
co-operative behaviour.
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Statistical mechanics

Write down the Hamiltonian H. (Energy of a configuration)
Then the partition function

Z (T , H) =
∑

all configs.

exp(−H/kT ).

(k is Boltzmann’s constant, T is temperature, H is an
external magnetic field.)
The (Helmholtz) free energy F (T , H) = −kT log Z (T , H).

We need F(T , H) = limN→∞ F (T , H)/N.

All quantities follow by differentiation. The three primary
quantities are:

The specific heat C0 = −T d2F(T ,0)
dT 2

The (zero-field) magnetisation m0(T ) = ∂F(T ,H)
∂H |H=0

The (zero-field) susceptibility χ0(T ) = ∂2F(T ,H)
∂H2 |H=0
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One-dimensional model

A one-dimensional array of “spins" {µi , i = 1 . . . N}, “up" or
“down”, µi = ±1. The Hamiltonian H of a configuration of
spins, denoted {µ}, is

H{µ} = −J
∑

〈i ,j〉
µiµj + H

N
∑

i=1

µi = −J
∑

i

µiµi+1 + H
N

∑

i=1

µi .

∑

〈i ,j〉 means a sum over nearest-neighbour pairs, J is the
strength of the interaction between adjacent spins. The
second sum gives the interaction of each spin with an
external magnetic field H.
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One-dimensional model

The partition function is

ZN =
∑

{µ}
exp (−βH{µ}),

where β = 1/(kBT ).

We want the Helmholtz free-energy,
F/kBT = − limN→∞ 1/N log ZN .

The zero-field free energy then follows (set H=0 in the
above),

the zero-field magnetisation, limH→0 ∂(−F/kT )/∂H,

and the zero-field susceptibility, limH→0 ∂2(−F/kT )/∂H2.

Tony Guttmann Departmental colloquium
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One-dimensional model

In 1 dimension, impose cyclic boundary conditions, so that
µN+1 = µ1. Then symmetrise the energy function

H{µ} = −J
N

∑

i=1

µiµi+1 + H
N

∑

i=1

µi

= −J
N

∑

i=1

µiµi+1 + H/2
N

∑

i=1

(µi + µi+1).

The partition function sum
∑

{µ} can be written
∑

µ1=±1
∑

µ2=±1
∑

µ3=±1 . . .
∑

µN=±1 .

Tony Guttmann Departmental colloquium
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One-dimensional model

The summand is

e(−βH{µ}) = e[βJ
PN

i=1 µiµi+1+βH/2
PN

i=1(µi +µi+1)].

Summing this over a particular value of µi is just taking a
matrix product. Indeed, consider the matrix

T =

(

e(βJ+βH) e−βJ

e−βJ e(βJ−βH)

)

Then
ZN =

∑

µ1=±1

T N = Tr(T N) = λN
1 + λN

2

When βJ > 0, λ1 > λ2, so in the TL we only consider λ1.

Tony Guttmann Departmental colloquium
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One-dimensional model

So to solve the 1d Ising model we need only the
eigenvalues of a 2 × 2 matrix

Thus

F(T , H)

−kT
=

[

βJ + log
(

cosh βH +

√

sinh2 βH + exp(−4βJ)

)]

.

Thus
F(T , 0) = −kT log(2 cosh βJ),

m0(T ) = 0 for T > 0, and m0(T ) = ±1 for T = 0.

χ0(T ) = exp(2βJ)/kT .
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Two-dimensional model

In 1942 Onsager solved the two-dimensional model for the
zero-field free energy (published 1944), noting that the
transfer matrices generated a finite Lie algebra.

In 1948 he wrote down the solution for the zero-field
magnetisation on the blackboard at a conference at
Cornell, and later at IUPAP, Florence.

C. N. Yang published the first proof in 1952.

Tony Guttmann Departmental colloquium
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Two-dimensional model

Onsager’s solution was refined by Kaufmann, who pointed
out that a Clifford algebra could be used. Kac and Ward
sought a simpler solution. Sherman pointed out a flaw.
Feynman conjectured a fix. Sherman proved Feynman’s
conjecture.

Later, Schutzenberger informed Sherman that his proof
extended an identity of W. Witt on “the dimension of the
linear space of Lie elements of degree r in a free Lie
algebra with k generators over a field of characteristic
zero," and made some remarks on further extensions that
might be of use in proving results in three dimensions.
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The two-dimensional model

Let µi ,j be the spin at lattice site (i , j) of a lattice of m rows
and n columns, wrapped as a cylinder. The Hamiltonian is

H{µ} = −J
∑

i ,j

µi ,jµi+1,j − J
∑

i ,j

µi ,jµi ,j+1 − H
∑

i ,j

µi ,j

The partition function

Z =
∑

{µ}
exp(−H{µ}/kT )

can be calculated by diagonalising a 2m × 2m matrix in the
limit as m → ∞.

This was Onsager’s triumphant achievement (with H set to
zero).
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Two-dimensional model

The final result for the internal energy is relatively simple:

U = −J coth 2K
[

1 + (2 tanh2 2K − 1)
2
π

K (k1)

]

k1 = 2 sinh 2K/ cosh2 2K , K = J/kT and K (k1) is the
complete elliptic integral of the first kind.
Denote by M the magnetisation. It is zero for T > Tc and,
M = (1 − s−4)1/8 for T < Tc, where s = sinh(2J/kT ) .
The two-point correlation function is

C(m, n) = 〈µ0,0µm,n〉.

In terms of this two-point correlation function, the
susceptibility χ is given by

kT · χ =
∑

m

∑

n

(

C(m, n) −M2),
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The susceptibility

No one has managed to find a closed form expression for
the susceptibility, despite strenuous efforts by many of the
world’s greatest mathematical physicists.

However, considerable progress has been made.

In 1976, Wu, McCoy, Tracy and Barouch showed that the
susceptibility can be expressed as an infinite sum of
n-particle contributions. The susceptibility is given by

kTχH(w) =
1
s
· (1 − s4)

1
4

∑

n

χ̃(2n+1)(w)

where w = 1
2s/(1 + s2) and s = sinh(2J/kT ).

The n-particle contributions are given by
(n − 1)-dimensional integrals:
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The susceptibility

χ̃(n)(w) =
1
n!

·
(

n−1
∏

j=1

∫ 2π

0

dφj

2π

)(

n
∏

j=1

yj

)

· R(n) ·
(

G(n)
)2

,

G(n) =
∏

1 ≤ i < j ≤ n

hij , hij =
2 sin ((φi − φj)/2) · √xi xj

1 − xixj
,

R(n) =
1 +

∏n
i=1 xi

1 − ∏n
i=1 xi

,

xi =
2w

1 − 2w cos(φi) +

√

(1 − 2w cos(φi))
2 − 4w2

,

yi =
2w

√

(1 − 2w cos(φi))
2 − 4w2

,

n
∑

j=1

φj = 0
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The susceptibility

To evaluate χ̃(n) convert to an n-fold integration with the
explicit phase constraint

∑

φi = 0 now in the integrand. A
Fourier transform decouples all φi integrations at the
expense of a sum over the Fourier integer k . Next expand
all denominator factors in the integrand, thereby converting
it into a sum of n-fold products

∏

yix
ni
i . Each i integration

picks out the k th Fourier coefficient of yix
ni
i . This coefficient

is proportional to a 4F3 hypergeometric function. The
integrand becomes a nested sum of products of
hypergeometric functions.
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The susceptibility

In 1996, Guttmann and Enting gave compelling arguments
(though not a proof) that the Ising susceptibility was in a
different class of functions to that of most solutions of
exactly solved lattice models.

In particular, both the Ising free-energy and magnetisation
are holonomic functions (i.e. differentiably finite or D-finite
functions), while the susceptibility, they argued, was not.

In 1999 and 2000, Nickel suggested that the Ising
susceptibility possessed a natural boundary on the unit
circle |s| = 1.
(Note that functions with a natural boundary cannot be
D-finite.)

Tony Guttmann Departmental colloquium



university-logo

The susceptibility

In 1996, Guttmann and Enting gave compelling arguments
(though not a proof) that the Ising susceptibility was in a
different class of functions to that of most solutions of
exactly solved lattice models.

In particular, both the Ising free-energy and magnetisation
are holonomic functions (i.e. differentiably finite or D-finite
functions), while the susceptibility, they argued, was not.

In 1999 and 2000, Nickel suggested that the Ising
susceptibility possessed a natural boundary on the unit
circle |s| = 1.
(Note that functions with a natural boundary cannot be
D-finite.)

Tony Guttmann Departmental colloquium



university-logo

The susceptibility

In 1996, Guttmann and Enting gave compelling arguments
(though not a proof) that the Ising susceptibility was in a
different class of functions to that of most solutions of
exactly solved lattice models.

In particular, both the Ising free-energy and magnetisation
are holonomic functions (i.e. differentiably finite or D-finite
functions), while the susceptibility, they argued, was not.

In 1999 and 2000, Nickel suggested that the Ising
susceptibility possessed a natural boundary on the unit
circle |s| = 1.
(Note that functions with a natural boundary cannot be
D-finite.)

Tony Guttmann Departmental colloquium



university-logo

The susceptibility

In 2001, Orrick, Nickel, Guttmann and Perk gave a
polynomial time algorithm for the generation of the
coefficients of the series expansion of the susceptibility, in
time O(N6).

From an algebraic-combinatorics viewpoint, a polynomial
time algorithm is considered a solution.

Orrick et al. gave a detailed asymptotic analysis, based on
a series expansion of some 323 terms in both high- and
low-temperature expansions.
Various exponents and amplitude parameters were
extracted to unimaginable accuracy.

Tony Guttmann Departmental colloquium



university-logo

The susceptibility

In 2001, Orrick, Nickel, Guttmann and Perk gave a
polynomial time algorithm for the generation of the
coefficients of the series expansion of the susceptibility, in
time O(N6).

From an algebraic-combinatorics viewpoint, a polynomial
time algorithm is considered a solution.

Orrick et al. gave a detailed asymptotic analysis, based on
a series expansion of some 323 terms in both high- and
low-temperature expansions.
Various exponents and amplitude parameters were
extracted to unimaginable accuracy.

Tony Guttmann Departmental colloquium



university-logo

The susceptibility

In 2001, Orrick, Nickel, Guttmann and Perk gave a
polynomial time algorithm for the generation of the
coefficients of the series expansion of the susceptibility, in
time O(N6).

From an algebraic-combinatorics viewpoint, a polynomial
time algorithm is considered a solution.

Orrick et al. gave a detailed asymptotic analysis, based on
a series expansion of some 323 terms in both high- and
low-temperature expansions.
Various exponents and amplitude parameters were
extracted to unimaginable accuracy.

Tony Guttmann Departmental colloquium



university-logo

The susceptibility directly from correlation functions

Recall

kT · χ =
∑

m

∑

n

(

C(m, n) −M2),

Quadratic partial difference equations give C(m, n)
efficiently for high- and low-temperature series. A series of
N terms requires C(m, n) for m + n ≤ 2N, m < n.

The diagonal C(n, n) is the initial value data.

Subsequently, by using modular arithmetic and FFT to
perform multiplications of polynomials we reduced the
complexity to O(N4 log(N)).

We calculated the first 2000 terms using just 240 CPU
hours (2008).
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The susceptibility from n-particle contributions

In 2004, Zenine, Boukraa, Hassani and Maillard obtained
the Fuchsian linear ODE for χ̃(3). In 2005, the same group
found the Fuchsian linear ODE for χ̃(4) by similar methods.

They found singularities that had not been predicted by
earlier singularity analysis.
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The susceptibility

In 2008 Zenine, Boukraa, Hassani, Maillard, Jensen,
Guttmann and Nickel announced the solution of χ̃(5)

modulo a prime, (and more recently χ̃(6)). They provided a
(probably) complete description of all singularities of all
χ̃(n), explained why the total susceptibility had terms in the
asymptotics not possessed by any individual χ̃(n), and
provided a suite of new tools for analysing Feynman
integrals, as typified by the χ̃(n).
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The susceptibility

A number of computational "tricks" were used, including a
partial fraction rearrangement of the denominators,
recursion relations for the summations and FFT to perform
multiplications.

This produces an algorithm of complexity O(N4 log(N)).

We calculated the series for χ(5) to order 2000, and for χ(6)

to order 3260 in w .

This took 100000 CPU hours on a variety of machines.

Finally, for χ(5) and χ(6) we calculated the first 10000 terms
modulo a single prime. This took 17000 CPU hours each.
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The susceptibility

Returning to the full susceptibility, we found the following
asymptotic behaviour:

kTχ = const .|τ |−7/4F± + Bf

where τ = (1/s − s)/2, is a parameterisation of the
temperature deviation from criticality, 1 − Tc/T .

First, note the (1 − Tc/T )−7/4 leading order behaviour of
the susceptibility. All the more subtle behaviour is
contained in the two terms F± and Bf .

We found

F± = 1+τ/2+5τ2/8+3τ3/16−23τ4/384−35τ5/768+f (6)
± τ7+O(τ8

and f (6)
+ = −0.1326933 . . . , while f (6)

− = −6.3307469 . . . .
We have this expansion through to order τ15.
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The susceptibility

For afficionadoes, this differs, at order τ4, from the scaling
function that follows from the assumption that the Ising
model can be described by only two non-linear scaling
fields. This is evidence for at least one and probably two
irrelevant operators.

The second term Bf has an even more remarkable
structure. We find

Bf =

∞
∑

q=0

√
q

∑

p=0

b(p,q)τq(log |τ |)p.

Note that the first term is a constant, and that we obtain
polynomials in log |τ | multiplying each order of τq.
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The full susceptibility

More transparently,

kTχ = const .|τ |−7/4 + const .|τ |−3/4 + const . + const .|τ |1/4

+const .τ + const .τ log τ + . . .

The constants are known to about 30 significant digits.
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The susceptibility from n-particle contributions

Idea: find the differential equation from the power series
expansion of the integrals.

We include information about the location of singularities.
First, we find some at

s + 1/s = cos(
2πk

n
) + cos(

2πm
n

), 0 ≤ k , m < n,

on the unit circle in the complex s-plane. (Leads to a proof
of non-D-finiteness)

There are others found, unique to each integral.
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The susceptibility from n-particle contributions

We consider only Fuchsian ODEs. So x = 0 and x = ∞ are
regular singular points. We use operators of the form

LMD =

M
∑

m=0

D
∑

d=0

amd xd(x
d

dx
)m, aM0 6= 0, aMD 6= 0.

The operator x d
dx ensures that the origin is a regular singular

point. There are NMD = (M + 1)(D + 1) unknown coefficients.
Given more terms, we can find the ODE. Just solve a system of
NMD linear equations
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The susceptibility from n-particle contributions

From the integral representation, we generate the series.
Then we searched for a Fuchsian ODE.

Identified by integer coefficients (that predict subsequent
ones).

For χ(3) an ODE of order 7 with polynomials of degree 12.

For χ(4) an ODE of order 9 with polynomials of degree 7.

For χ(5) we generated 2000 terms in the series, and didn’t
find the ODE.

We use Chinese Remainder Theorem and run the program
hundreds of times modulo a prime.
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The susceptibility from n-particle contributions

We tried one prime with 10000 terms, and found the ODE
for χ(5) modulo a prime.

We found an ODE of order 56 with polynomials of degree
129. This is sufficient to check for all predicted
singularities.

We have very recently found the ODE for χ(6) modulo a
prime.

Analysing the differential operators we found that
combinations of χ(2n) and χ(2n−2) simplify the problem.

For example, the series 2χ(5) − χ(3) “only" requires an
ODE of order 52, with polynomials of degree 120, saving
nearly 1000 terms in the analysis.
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The susceptibility and the susceptibility from n-particle
contributions

In all previous analyses of the full χ and the individual
χ(n), a point appeared that was left unresolved.

The power/log behaviour of each χ(n) is not the same as
the behaviour of the full χ.

χ ∼ ct . |τ |−7/4 + ct . |τ |−3/4 + ct . + ct . |τ |1/4 + O(|τ | log |τ |),

whereas:

χ(n) ∼ ct . |τ |−7/4 + ct . |τ |−3/4 + ct . |τ |1/4(log |τ |)n−1 + O(log |τ

where ct . denotes constants.

We have resolved the issue of how the individual terms
|τ |1/4(log |τ |)n−1 in χ(n) combine to give a constant in χ.
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Conclusion

We have provided an O(N4 log N) complexity algorithm for
the susceptibility of the Ising model, and n-particle
contributions.

This enables us to generate some 2000 terms in the
series, and subsequent analysis provides a complete
description of the asymptotics (scaling function).

This is arguably more useful than a complete solution.

An alternative description of the susceptibility, in terms of
n-particle contributions, perhaps provides greater insight.
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Conclusion

We now know the ODEs for the first 6 such integrals.

This is sufficient to answer many of the questions as to
how the full susceptibility develops from the contributions,
including how logarithmic singularites resum to a constant.

It is easy to demonstrate the non-D-finite nature of the
solution, and to see how D-f components produce non-D-f
sums.

Various tricks like working with the CRT, and combining
differential operators, are applicable to a range of problems
involving Feynman type integrals.
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Conclusion

Despite all this, it would be intellectually satisfying to have
a closed form solution, even though it is likely to be
extremely ugly!

The Ising model is still a very active research topic, and
likely to continue to be so, even in 2020, on the occasion of
its 100th birthday.

FIN
Merci.

Tony Guttmann Departmental colloquium



university-logo

Conclusion

Despite all this, it would be intellectually satisfying to have
a closed form solution, even though it is likely to be
extremely ugly!

The Ising model is still a very active research topic, and
likely to continue to be so, even in 2020, on the occasion of
its 100th birthday.

FIN
Merci.

Tony Guttmann Departmental colloquium



university-logo

Conclusion

Despite all this, it would be intellectually satisfying to have
a closed form solution, even though it is likely to be
extremely ugly!

The Ising model is still a very active research topic, and
likely to continue to be so, even in 2020, on the occasion of
its 100th birthday.

FIN
Merci.

Tony Guttmann Departmental colloquium


