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Introduction

We shall say that a Banach space (X, ‖·‖) is an L1-predual if

X∗ is isometric to L1(µ) for some suitable measure µ. Some

examples of L1-preduals include (C(K), ‖ · ‖∞), and more

generally, the space of continuous affine functions on a Cho-

quet simplex endowed with the supremum norm. The other

notion we shall consider in this talk is that of a boundary.

Specifically, for a non-trivial Banach space X over R we say

that a subset B of BX∗, the closed unit ball of X∗, is a

boundary, if for each x ∈ X there exists a b∗ ∈ B such

that b∗(x) = ‖x‖. The prototypical example of a boundary

is Ext(BX∗) - the set of all extreme points of BX∗ , but there

are many other interesting examples. In a recent paper by

Moors and Reznichenko the authors investigated the topol-

ogy on a Banach space X that is generated by Ext(BX∗) and,

more generally, the topology on X generated by an arbitrary



boundary of X. In this talk we continue this study.

To be more precise we must first introduce some notation. For

a nonempty subset Y of the dual of a Banach space X we shall

denote by σ(X, Y ) the weakest linear topology on X that

makes all the functionals from Y continuous. In the paper

by MR they showed that “for any compact Hausdorff space

K, any countable subset {xn : n ∈ N} of C(K) and any

boundary B of (C(K), ‖ · ‖∞), the closure of {xn : n ∈ N}

with respect to the σ(C(K), B) topology is separable with

respect to the topology generated by the norm”.

In this talk we extend this result by showing that if (X, ‖ · ‖)

is an L1-predual, B is any boundary of X and {xn : n ∈ N}

is any subset of X then the closure of {xn : n ∈ N} in the

σ(X, B) topology is separable with respect to the topology

generated by the norm whenever Ext(BX∗) is weak∗ Lindelöf.



Preliminary Results

Let X be a topological space and let F be a family of nonempty,

closed and separable subsets of X. Then F is rich if the fol-

lowing two conditions are fulfilled:

(i) for every separable subspace Y of X, there exists a

Z ∈ F such that Y ⊆ Z;

(ii) for every increasing sequence (Zn : n ∈ N) in F ,

⋃
n∈N

Zn ∈ F .

For any topological space X, the collection of all rich families

of subsets forms a partially ordered set, under the binary rela-

tion of set inclusion. This partially ordered set has a greatest

element, namely,

GX := {S ∈ 2X : S is a closed and separable subset of X}.

On the other hand, if X is a separable space, then the partially

ordered set has a least element, namely, G∅ := {X}.



The raison d’être for rich families is revealed next.

Proposition 1 Suppose that X is a topological space. If

{Fn : n ∈ N} are rich families of X then so is
⋂

n∈N
Fn.

Throughout this talk we will be primarily working with Banach

spaces and so a natural class of rich families, given a Banach

space X, is the family of all closed separable linear subspaces

of X, which we denote by SX . There are however many other

interesting examples of rich families.

Theorem 1 Let X be an L1-predual. Then the set of all

closed separable linear subspaces of X that are themselves

L1-preduals forms a rich family.



Lemma 1 Let Y be a closed separable linear subspace of a

Banach space X and suppose that L ⊆ Ext(BX∗) is weak∗

Lindelöf. Then there exists a closed separable linear subspace

Z of X, containing Y , such that for any l∗ ∈ L and any x∗,

y∗ ∈ BZ∗ if l∗|Z = 1
2
(x∗ + y∗) then x∗|Y = y∗|Y .

Using this Lemma we can obtain the following theorem.

Theorem 2 Let X be a Banach space and let L ⊆ Ext(BX∗)

be a weak∗ Lindelöf subset. Then the set of all Z in SX such

that {l∗|Z : l∗ ∈ L} ⊆ Ext(BZ∗) forms a rich family.

Proof: Let L denote the family of all closed separable linear

subspaces Z of X such that {l∗|Z : l∗ ∈ L} ⊆ Ext(BZ∗). We

shall verify that L is a rich family of closed separable linear

subspaces of X. So first let us consider an arbitrary closed

separable linear subspace Y of X, with the aim of showing

that there exists a subspace Z ∈ L such that Y ⊆ Z. We



begin by inductively applying Lemma 1 to obtain an increasing

sequence (Zn : n ∈ N) of closed separable linear subspaces

of X such that: Y ⊆ Z1 and for any l∗ ∈ L and any x∗, y∗ ∈

BZ∗

n+1
if l∗|Zn+1

= 1
2
(x∗ + y∗) then x∗|Zn

= y∗|Zn
.

We now claim that if Z :=
⋃

n∈N
Zn then l∗|Z ∈ Ext(BZ∗)

for each l∗ ∈ L. To this end, suppose that l∗ ∈ L and

l∗|Z = 1
2
(x∗ + y∗) for some x∗, y∗ ∈ BZ∗.

Then for each n ∈ N,

l∗|Zn+1
= (l∗|Z)|Zn+1

=
1

2
(x∗+y∗)|Zn+1

=
1

2
(x∗|Zn+1

+y∗|Zn+1
)

and x∗|Zn+1
, y∗|Zn+1

∈ BZ∗

n+1
Therefore, by construction

x∗|Zn
= y∗|Zn

. Now since
⋃

n∈N
Zn is dense in Z and both x∗

and y∗ are continuous we may deduce that x∗ = y∗; which in

turn implies that l∗|Z ∈ Ext(BZ∗). This shows that Y ⊆ Z

and Z ∈ L .

To complete this proof we must verify that for each increas-

ing sequence of closed separable subspaces (Zn : n ∈ N) in



L ,
⋃

n∈N
Zn ∈ L . This however, follows easily from the

definition of the family L . k��

Let X be a normed linear space. Then we say that an element

x∗ ∈ BX∗ is weak∗ exposed if there exists an element x ∈ X

such that y∗(x) < x∗(x) for all y∗ ∈ BX∗ \ {x∗}. It is

not difficult to show that if Exp(BX∗) denotes the set of all

weak∗ exposed points of BX∗ then Exp(BX∗) ⊆ Ext(BX∗).

However, if X is a separable L1-predual then the relationship

between Exp(BX∗) and Ext(BX∗) is much closer.

Lemma 2 If X is a separable L1-predual, then Exp(BX∗) =

Ext(BX∗).

Let us also pause for a moment to recall that if B is any

boundary of a Banach space X then

Exp(BX∗) ⊆ B ∩ Ext(BX∗) ⊆ Ext(BX∗) ⊆ B
weak∗

.



The fact that Ext(BX∗) ⊆ B
weak∗

follows from Milman’s

theorem and the fact that BX∗ = coweak∗(B); which in turn

follows from a separation argument.

Let us also take this opportunity to observe that if BX denotes

the closed unit ball in X then BX is closed in the σ(X, B)

topology for any boundary B of X.

Finally, let us end this part of the talk with one more sim-

ple observation that will turn out to be useful in our later

endeavours.

Proposition 2 Suppose that Y is a linear subspace of a Ba-

nach space (X, ‖ · ‖) and B is any boundary for X. Then for

each e∗ ∈ Exp(BY ∗) there exists b∗ ∈ B such that e∗ = b∗|Y .

Proof: Suppose that e∗ ∈ Exp(BY ∗) then there exists an

x ∈ Y such that y∗(x) < e∗(x) for each y∗ ∈ BY ∗ \ {e∗}.

By the fact that B is a boundary of (X, ‖ · ‖) there exists a



b∗ ∈ B such that b∗(x) = ‖x‖ 6= 0. Then for any y∗ ∈ BY ∗

we have

y∗(x) ≤ |y∗(x)| ≤ ‖y∗‖‖x‖ ≤ ‖x‖ = b∗(x) = (b∗|Y )(x).

In particular, e∗(x) ≤ b∗|Y (x). Since b∗|Y ∈ BY ∗ and

y∗(x) < e∗(x) for all y∗ ∈ BY ∗ \ {e∗}, it must be the case

that e∗ = b∗|Y . k��

The Main Results

Theorem 3 Let B be any boundary for a Banach space X

that is an L1-predual and suppose that {xn : n ∈ N} ⊆ X,

then {xn : n ∈ N}
σ(X,B)

⊆ {xn : n ∈ N}
σ(X,Ext(BX∗ ))

.

Proof: In order to obtain a contradiction let us suppose that

{xn : n ∈ N}
σ(X,B)

6⊆ {xn : n ∈ N}
σ(X,Ext(BX∗ ))

.

Choose x ∈ {xn : n ∈ N}
σ(X,B)

\ {xn : n ∈ N}
σ(X,Ext(BX∗ ))

.

Then there exists a finite set {e∗1, e
∗
2, . . . , e

∗
m} ⊆ Ext(BX∗)



and ε > 0 so that

⋂

1≤k≤m

{y ∈ X : |e∗k(x) − e∗k(y)| < ε} ∩ {xn : n ∈ N} = ∅.

Let Y := span({xn : n ∈ N}∪{x}), let F1 be any rich family

of L1-preduals; whose existence is guaranteed by Theorem 1,

and let F2 be any rich family such that for every Z ∈ F2

and every 1 ≤ k ≤ m, e∗k|Z ∈ Ext(BZ∗); whose existence is

guaranteed by Theorem 2. Next, let us choose Z ∈ F1 ∩ F2

so that Y ⊆ Z. Recall that this is possible because, by

Proposition 1, F1∩F2 is a rich family. Since Z is a separable

L1-predual we have by Lemma 2 that e∗k|Z ∈ Exp(BZ∗) for

each 1 ≤ k ≤ m. Now, by Proposition 2 for each 1 ≤ k ≤ m

there exists a b∗k ∈ B such that e∗k|Z = b∗k|Z . Therefore,

|b∗k(x) − b∗k(xj)| = |(b∗k|Z)(x) − (b∗k|Z)(xj)|

= |(e∗k|Z)(x) − (e∗k|Z)(xj)|

= |e∗k(x) − e∗k(xj)|.



for all j ∈ N and all 1 ≤ k ≤ m. Thus,

⋂

1≤k≤m

{y ∈ X : |b∗k(x) − b∗k(y)| < ε} ∩ {xn : n ∈ N} = ∅.

This contradicts the fact that x ∈ {xn : n ∈ N}
σ(X,B)

; which

completes the proof. k��

Corollary 1 Let B be any boundary for a Banach space

X that is an L1-predual. Then every relatively countably

σ(X, B)-compact subset is relatively countably σ(X, Ext(BX∗))-

compact. In particular, every norm bounded, relatively count-

ably σ(X, B)-compact subset is relatively weakly compact.

Proof: Suppose that a nonempty set C ⊆ X is relatively

countably σ(X, B)-compact. Let {cn : n ∈ N} be any se-

quence in C then by Theorem 3

∅ 6=
⋂

n∈N

{ck : k ≥ n}
σ(X,B)

⊆
⋂

n∈N

{ck : k ≥ n}
σ(X,Ext(BX∗ ))



Hence C is relatively countably σ(X, Ext(BX∗))-compact. In

the case when C is also norm bounded the result follows from

an earlier result of Kharana. k��

Recall that a network for a topological space X is a family

N of subsets of X such that for any point x ∈ X and

any open neighbourhood U of x there is an N ∈ N such

that x ∈ N ⊆ U , and a topological space X is said to

be ℵ0-monolithic if the closure of every countable set has a

countable network.

Corollary 2 Let B be any boundary for a Banach space X

that is an L1-predual and suppose that {xn : n ∈ N} ⊆ X.

Then {xn : n ∈ N}
σ(X,B)

is norm separable whenever X is

ℵ0-monolithic in the σ(X, Ext(BX∗)) topology. In particular,

{xn : n ∈ N}
σ(X,B)

is norm separable whenever Ext(BX∗) is

weak∗ Lindelöf.



Proposition 3 Let B be any boundary for a Banach space X

that is an L1-predual and suppose that A is a separable Baire

space. If X is ℵ0-monolithic in the σ(X, Ext(BX∗)) topology

then for each continuous mapping f : A → (X, σ(X, B))

there exists a dense subset D of A such that f is continuous

with respect to the norm topology on X at each point of D.

Proof: Fix ε > 0 and consider the open set:

Oε :=
⋃

{U ⊆ A : U is open and ‖ · ‖ − diam[f(U)] ≤ 2ε}.

We shall show that Oε is dense in A. To this end, let W

be a nonempty open subset of A and let {an : n ∈ N} be a

countable dense subset of W . Then by continuity

f(W ) ⊆ {f(an) : n ∈ N}
σ(X,B)

;

which is norm separable by Corollary 2. Therefore there exists

a countable set {xn : n ∈ N} in X such that f(W ) ⊆



⋃
n∈N

(xn+εBX). For each n ∈ N, let Cn := f−1(xn+εBX).

Since each xn + εBX is closed in the σ(X, B) topology each

set Cn is closed in A and moreover, W ⊆
⋃

n∈N
Cn. Since W

is of the second Baire category in A there exist a nonempty

open set U ⊆ W and a k ∈ N such that U ⊆ Ck. Then

U ⊆ Oε ∩ W and so Oε is indeed dense in A. Clearly, f is

‖ · ‖-continuous at each point of
⋂

n∈N
O1/n. k��

Theorem 4 Suppose that A is a topological space with count-

able tightness that possesses a rich family F of Baire sub-

spaces and suppose that X is an L1-predual. Then for any

boundary B of X and any continuous function f : A →

(X, σ(X, B)) there exists a dense subset D of A such that f

is continuous with respect to the norm topology on X at each

point of D provided X is ℵ0-monolithic in the σ(X, Ext(BX∗))

topology.



Proof: In order to obtain a contradiction let us suppose

that f does not have a dense set of points of continuity with

respect to the norm topology on X. Since A is a Baire space

this implies that for some ε > 0 the open set:

Oε :=
⋃

{U ⊆ A : U is open and ‖ · ‖-diam[f(U)] ≤ 2ε}

is not dense in A. That is, there exists a nonempty open

subset W of A such that W ∩ Oε = ∅. For each x ∈ A, let

Fx := {y ∈ A : ‖f(y) − f(x)‖ > ε}.

Then x ∈ Fx for each x ∈ W . Moreover, since A has count-

able tightness, for each x ∈ W , there exists a countable

subset Cx of Fx such that x ∈ Cx.



Next, we inductively define an increasing sequence of sep-

arable subspaces (Fn : n ∈ N) of A and countable sets

(Dn : n ∈ N) in A such that:

(i) W ∩ F1 6= ∅;

(ii)
⋃
{Cx : x ∈ Dn ∩W} ∪Fn ⊆ Fn+1 ∈ F for all n ∈ N,

where Dn is any countable dense subset of Fn.

Note that since the family F is rich this construction is pos-

sible.

Let F :=
⋃

n∈N
Fn and D :=

⋃
n∈N

Dn. Then D = F ∈ F

and ‖ · ‖-diam[f(U)] ≥ ε for every nonempty open subset

U of F ∩ W . Therefore, f |F has no points of continuity

in F ∩ W with respect to the ‖ · ‖-topology. This however,

contradicts Proposition 3. k��



Corollary 3 Suppose that A is a topological space with count-

able tightness that possesses a rich family of Baire subspaces

and suppose that K is a compact Hausdorff space. Then for

any boundary of (C(K), ‖ · ‖∞) and any continuous function

f : A → (C(K), σ(C(K), B)) there exists a dense subset D

of A such that f is continuous with respect to the ‖ · ‖∞-

topology at each point of D.

——————————– The End ——————————–


