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Abstract

This monograph provides a foundation for the theory of Drinfeld modular
forms of arbitrary rank r and is subdivided into three parts. In the first part, we
develop the analytic theory. Most of the work goes into defining and studying the
u-expansion of a weak Drinfeld modular form, whose coefficients are weak Drinfeld
modular forms of rank » — 1. Based on that we give a precise definition of when a
weak Drinfeld modular form is holomorphic at infinity and thus a Drinfeld modular
form in the proper sense.

In the second part, we compare the analytic theory with the algebraic one that
was begun in a paper of the third author. For any arithmetic congruence subgroup
and any integral weight we establish an isomorphism between the space of analytic
modular forms with the space of algebraic modular forms defined in terms of the
Satake compactification. From this we deduce the important result that this space
is finite dimensional.

In the third part, we construct and study some examples of Drinfeld modular
forms. In particular, we define Eisenstein series, as well as the action of Hecke
operators upon them, coefficient forms and discriminant forms. In the special case
A =T [t] we show that all modular forms for GL,(I'(t)) are generated by certain
weight one Eisenstein series, and all modular forms for GL,(A4) and SL,.(A) are
generated by certain coefficient forms and discriminant forms. We also compute
the dimensions of the spaces of such modular forms.
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INTRODUCTION 1

Introduction

In [Dr74], Drinfeld introduced elliptic modules, now called Drinfeld modules, in
order to prove a special case of the Langlands conjectures for GLy over function
fields. These objects share many properties with elliptic curves, though their rank
can be an arbitrary integer r > 1. In particular, Drinfeld constructed a moduli space
of Drinfeld modules of rank r with a suitable level structure, both as an algebraic
variety and with an analytic uniformisation as a quotient of an r — 1 dimensional
symmetric space 2". This Q" is a rigid analytic space over a field C., of positive
characteristic and plays the role of the complex upper half plane. In the case r =2
Drinfeld [Dr77] used automorphic forms on Q" with values in Q, to prove a case of
the Langlands conjectures for the associated automorphic representations on GLs.

But there is also a natural definition of Drinfeld modular forms on Q" with
values in the field C of positive characteristic. Goss [Go80b] was the first to
explicitly refer to these, defining them both algebraically, in the way Katz did in
[KaT73|, and analytically as (rigid analytic) holomorphic functions on Q". In the
case r = 2, where these are functions of one variable, it was relatively straightforward
to write down the necessary condition of holomorphy at infinity. This led to the
development of a theory of Drinfeld modular forms of rank 2, for instance by Gekeler
[Ge86]; see [Ge99b] for a survey.

For r > 3 the situation concerning holomorphy at infinity is more subtle. In the
related case of Siegel modular forms of genus > 2 the problem disappears, because
the necessary condition at infinity holds automatically by the Kocher principle.
One explanation for this is the fact that in the Satake compactification of the Siegel
moduli space of abelian varieties the boundary has codimension > 2. By contrast,
the moduli space of Drinfeld modules is always affine, so in any compactification as
an algebraic variety the boundary has codimension 1; hence a condition at infinity
is always required.

That condition is important for several reasons. On the one hand many relevant
modular forms that one can construct naturally, such as Eisenstein series, satisfy
it automatically. On the other hand a condition at infinity is necessary for one of
the main structural results, the fact that the space of modular forms of given level
and weight is finite dimensional.

The condition at infinity can be expressed in two quite different ways. The
analytic way says that the u-expansion (which is a kind of Fourier expansion) of a
modular form consists only of terms with non-negative index. For the algebraic way
one identifies the analytic modular forms with sections of an invertible sheaf on a
moduli space. Then one requires a compactification of this moduli space as a pro-
jective algebraic variety over Co, together with an extension of the invertible sheaf.
The crucial step is to prove that a modular form satisfies the analytic condition
at infinity if and only if the corresponding section on the moduli space extends to
a section on that compactification. The finite dimensionality is then a direct con-
sequence of the fact that the space of sections of a coherent sheaf on a projective
algebraic variety is always finite dimensional. Using the Satake compactification of
a Drinfeld moduli space, the third author [Pil3] has already established much of
the necessary algebro-geometric theory for this.



2 INTRODUCTION

The present monograph aims to provide the rest of the theory and thereby a
foundation for the theory of Drinfeld modular forms of arbitrary rank. It is sub-
divided into three parts, corresponding to three preprints released in 2018. Part
1 develops the basic analytic theory, including u-expansions and holomorphy at
infinity. Part 2 identifies the analytic modular forms discussed here with the alge-
braic modular forms defined in [Pil3] and deduces qualitative consequences such
as the finite dimensionality of the space of modular forms of given level and weight.
Part 3 illustrates the general theory by constructing and studying some important
families of modular forms.

For a discussion on the history of Drinfeld modular forms of higher rank, see
[BB17, §7].

We briefly mention here some recent developments. In a series of papers [Gel9),
Gel7, [Ge22al, [Gel8, [Ge22b), [Ge21] Gekeler constructs the building map from
Q" to the Bruhat-Tits building of GL, and uses this to study the growth and
vanishing behaviours of important families of modular forms for GL, (F,[t]). This
is a valuable complement to the theory presented in this monograph.

In [Sul8|, Sugiyama studies integrality of Drinfeld modular forms for GL,.(F,[t]).

In a recent preprint [HY20], Hartl and Yu develop an arithmetic Satake com-
pactification of Drinfeld moduli schemes and study arithmetic Drinfeld modular
forms of arbitrary rank.

An approach to higher rank Drinfeld modular forms via lattices is treated in
the Ph.D. thesis of Baker [Ba20].

In another direction [CG21], Chen and Gezmisg define and study the weight
2 “false Eisenstein series”, a first example of a Drinfeld quasi-modular form in
arbitrary rank.

Acknowledgements. We would like to thank Gebhard Boéckle and Federico
Pellarin for pointing out a gap in a previous proof of Proposition and Si-
mon Héberli for closing the gap with a suitable reference. We are grateful to the
anonymous referees for their helpful suggestions.
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Analytic Theory



Outline of Part 1

In Section [I] we introduce our notation and define the Drinfeld period domain
Q" with its action by GL,.(F) for a global function field F. Weak modular forms
for an arithmetic subgroup I" < GL,.(F') are defined as holomorphic functions from
Q" to C,, satisfying the functional equation linking f(y(w)) to f(w) for every
vel.

Further preparations are made in the next two sections. In Section [2 we collect
basic properties of exponential functions associated to strongly discrete subgroups
of C,, and we outline the rigid analytic structure of 2" in Section

Based on our choice of coordinates on Q", we identify a standard boundary
component, whose translates by GL,.(F) form all boundary components of codi-
mension 1. Thus a weak modular form is holomorphic at all boundary components
if and only if all its translates by GL,.(F) are holomorphic at the standard bound-
ary component. The holomorphy at the standard boundary component is tested
using the expansion with respect to a certain parameter wu.

This parameter is defined in Section [} We decompose elements w € Q" as
w= (‘:}1,), where w; € Co is the first coordinate of w and w’ € Q" consists of the
remaining coordinates. Next, we assign to I' a subgroup A’ ¢ F"~! isomorphic to
the subgroup I'y < T’ of translations which fix w’. Then A'w’ c C,, is a strongly
discrete subgroup and we can form the associated exponential function eys,. Now
e, (wy) is invariant under the translations I'yy and we define our parameter as its
reciprocal u = U, (wy) = eprwr(w1) ™t in .

In Definition [£.12) we define neighbourhoods of infinity in 2", then Theorem[4.16
states that the map (tj}) > (:f,) induces rigid analytic isomorphisms from quotients
of neighbourhoods of infinity by I'; to so-called pierced tubular neighbourhoods in
Cx x QL.

This allows us to show in Section [f] that every weak modular form f admits a
u-expansion

f(w) =3 fa(w)uw(wr)"
nez
converging on a neighbourhood of infinity (Proposition [5.4)), whose coefficients f,,
are themselves weak modular forms on Q" (Theorem. These are the main
results of Part 1.

Finally, we define modular forms in Section [6] as weak modular forms all of
whose translates by elements of GL,(F') admit u-expansions with terms of non-
negative index. It follows from Propositions [6.2] and that this condition only
needs to be tested for finitely many elements of GL,.(F'). It will be shown in Part
2 of this monograph that this definition agrees with the algebraic definition of
modular forms in [Pi13].

1. Weak modular forms

Throughout this monograph we fix a global function field F' of characteristic
p > 0, with exact field of constants F, of cardinality ¢g. We fix a place oo of F' and
let A denote the ring of elements of ' which are regular away from oco. This is a
Dedekind domain with finite class group and group of units A* =F}. Let m € I be
a uniformising parameter at oo, so that || = ¢"98*. Let Fuo 2 Fjace=((7)) denote
the completion of F' at oo, and C,, the completion of an algebraic closure of F.
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We fix an unspecified non-zero constant £ € C% , whose value can be set for
normalisation purposes. For example, if F' = Fy(¢) and A = Fy[t], there are certain
advantages in letting £ be a period of the Carlitz module. For more general function
fields F', a natural choice of £ is a period of a certain sign-normalised rank-one
Drinfeld module, see [Ge86l Chapter IV (2.14) and (5.1)]. However, we will not
explicitly need the normalisation in this monograph, so the reader loses nothing by
assuming that & = 1.

The Drinfeld period domain of rank r > 1 over F, is usually defined as the set of
points (wy :...:w,) € P'1(Cy) for which wy,...,w, are Fy-linearly independent.
Any such point possesses a unique representative with w, = £. We shall only work
with these representatives, so we identify Q" with the following subset of C7_:

(1.1) Q":= {(wl, w)T e, ’wl, ...,wy Fy-linearly independent and w, = 5}.

We write the elements of " as r x 1 matrices, i.e. column vectors.

For any point w € " and any matrix v € GL,(F ), the matrix product yw is
again a column vector with F-linearly independent entries. In particular its last
entry is non-zero. Defining

(1.2) j(y,w) =& (last entry of yw) e CX

e o)

we thus find that

(1.3) Y(w) = j (v, w) yw

again lies in Q". This defines a left action of GL,(Fs%) on Q7. Also, for any ~,
0 € GL,(Fs) a direct calculation shows that

(1.4) 3(v0,w) = j (7, 8(w))i (6,w).

For any function f:Q" - C. and any integers k and m we define the function
f|k,m’Y : Q)" - Coby

(1.5) (flrmy) (@) = det (1) 5 (v,w) " f(7(w)).
By direct calculation we deduce from that
(1.6) (fle;m¥6) (@) = ((flism¥)k,m) (W)

Thus ([1.5]) defines a right action of GL,.(F) on the space of all functions f: Q" —
Ceo.

For later use note also that, if v = a-Id, for the identity matrix Id, € GL,.(F),
then j(v,w) = a and y(w) =w and det(y) = a”; and hence

(1.7) Flom(a-1d,) = a™™ .

REMARK 1.8. There are different conventions about whether 2" consists of row
or column vectors and about how GL,(Fw) acts on it. For instance, the first and
third authors [Bald4], [Pil3] like Drinfeld [Dr74] use row vectors and the action
(v,w) = wy™, whereas Kapranov [Ka87] uses column vectors and the action by
left multiplication (v, w) = yw. These conventions differ not only by transposition,
but also by the outer automorphism v ~ (y7)~! of GL,. The present monograph
uses column vectors and left multiplication in order to make things compatible with
the existing literature on rank 2 Drinfeld modular forms.
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The set 2" can be endowed with the structure of a rigid analytic space. Experts
may be content with the fact that Q" is an admissible open subset of P""}(Cy,)
and inherits its rigid analytic structure, while others may consult Section [3| for
more details. A holomorphic function on Q" is a global section of the structure
sheaf of ", but a more useful characterisation is that a function f: Q" - Cy is
holomorphic if and only if it is a uniform limit of rational functions on P"~}(C,,)
whose poles all lie outside Q".

DEFINITION 1.9. Consider integers k and m and an arithmetic subgroup I' <
GL,.(F). A weak modular form of weight k and type m for T' is a holomorphic
function f: Q" — Co which for all v € I" satisfies

Flimy = f.
The space of these functions is denoted by Wy, (T').

Since T is an arithmetic subgroup of GL,(F'), its determinant det(T") is a finite
subgroup of F* and therefore contained in the multiplicative group of the field of
constants Fy. Thus its order is a divisor of ¢ — 1, and the definition depends only
on m modulo this divisor; in other words we have

(1.10) Wi m (T') = Wy (T') whenever m = m’ modulo |det(T)].
On the other hand, for any a € F; we have f[x ,(a-1d,) = o™ f by 1) Thus
(1.11) Wi,m (I') = 0 unless k = rm modulo |T' n {scalars}|.

In the case m = 0 we will suppress all mention of m and abbreviate f|pvy :=
flie.my and Wi(T') := Wi 1, (T'). By (1.10) we may always do this when I" < SL,.(F).

For later use we note the following direct consequence of (|1.6)):

PROPOSITION 1.12. For any 0 € GL,.(F) we have f € Wy, 1 (T') if and only if
flem0 € Wi m (671T9).

In general the space Wi ., (I') is infinite dimensional. A finite dimensional
subspace of ‘non-weak’ modular forms will be characterised by conditions at infinity.
The formulation of these conditions requires some preparation in the next two
sections.

2. Exponential functions

A subgroup H c C., is called strongly discrete if its intersection with every ball
of finite radius is finite. For any such subgroup, any z € C.,, and any ¢ > 0, there
are at most finitely many elements h € H {0} with |%| > €. In this case the product

(2.1) en(z)=z- [] (1—%)

heH~{0}

converges in Co, defining the exponential function ey : Coo = Co associated to H.

PROPOSITION 2.2. For any strongly discrete subgroup H c C, the function
er : Coo = Co is holomorphic, surjective, and has simple zeros at the points in H
and no other zeros. It induces an isomorphism of additive groups and rigid analytic
spaces

Coo/H — Co.
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The function ey possesses an everywhere convergent power series erpansion
bt i
_ P
er(z) =) eppiz
i=0

with eg i € Coo and egy = 1. If H is an Fy-subspace, the expansion has the form
er(z)=). eH,quqJ.
§=0

If H is finite, then eg(z) is a polynomial of degree |H| in z.

PrROOF. When H c C,, is an A-lattice (see below), this is proved in [Go96]
§4.2] and [Go80bl Prop. 1.27]. The case where H c C., is merely a strongly
discrete subgroup follows in exactly the same way. O

PROPOSITION 2.3. (a) For any two strongly discrete subgroups H' ¢ H c
Coo, the subgroup epy/(H) c Cu is strongly discrete and isomorphic to
H/H', and we have

ey = eeH,(H) oceqyr.
(b) For any strongly discrete subgroup H c Co, and any a € C%,, the subgroup
aH c Cy is strongly discrete, and we have
earr(az) = aeg(2).

PRrROOF. For (a) see [Ge88bl (1.12)], and (b) follows immediately from the
definition. O

An A-lattice of rank r in Cs is a strongly discrete projective A-submodule
A c Cq of rank 7.

PROPOSITION 2.4. Let H c Co, be an A-lattice of rank r. Then for any a € A
there exists a unique Fy-linear polynomial 0 (2) of degree |a|” satisfying

¢i (er(2)) = en(az)
for all z € Coo. The map ¢ :a— o is a Drinfeld A-module of rank r.
PrROOF. [G096| Thm.4.3.1] O

3. The rigid analytic structure of Q"

Throughout the following we denote by B(0,p) = {z € Cw : |2| < p} the closed
disk of radius p > 0 centred at 0, and by B(0,p)" = B(0,p) \ {0} the associated
punctured disk. We will also consider the annulus D(0, 0, p) := {z € C | 0 < |2| < p}.
Note that B(0,p) and D(0, 0, p) are affinoid whenever o, p € |CX|.

We will describe the rigid analytic structure of Q" by covering it by suitable
affinoid subspaces. Two such coverings already appear in [Dr74], and one of them
is described in more detail in [SS91]. We follow the approach in [SS91], but adapt
it to our convention that w, = &.

We say that a linear form F.L — F., is unimodular if its largest coefficient
has absolute value 1. For any F..-rational hyperplane H c P"~!(C,,), we choose a
unimodular linear form £ that defines it. Then |5 (w)| is well-defined and non-zero
for any w € Q". Using the standard norm |w| := max;¢;<. jw;i| on CL_, we set

(3.1) h(w) = L -inf{|fy(w)|: H an F,, hyperplane},

||
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which measures the distance from w € Q" to all boundary components combined.
For any n € Z>° we also define

(3.2) QO ={weQ :h(w) > |r"}.
Since || < 1, these subsets satisfy 2] ¢ Qf c ... and their union is Q".
LEMMA 3.3. Every w e Q7 satisfies |€| < |w| < [¢]|7]™".

PROOF. The first inequality follows from w, = & Next, since w ~» w, is a
unimodular Fi-linear form, (3.1)) implies that |w]|h(w) < [€], from which the second
inequality follows. O

PROPOSITION 3.4. For each n € Z7°, the set QU is an affinoid subdomain of
P} (Cs). Together they form an admissible covering of Q" , endowing it with the
structure of an admissible open subset of P'1(Co).

PRrROOF. See version (C) of the proof of [SS91] Prop.1]. O

Using the second (finer) covering in [Dr74l §6.2B], Drinfeld showed that, for
any arithmetic subgroup I' < GL,.(F'), the quotient T'\Q)" exists as a rigid analytic
space.

For the following recall that a function f : U - C, on an admissible open
subset U c Q" is called holomorphic if it is a section of the sheaf of functions on
this space, or equivalently, if it is a uniform limit f = lim, . f, of rational functions
fn: P 1(Cy) -» Co with no poles in U.

In the next section we shall need bounds on the values of certain exponential
functions when we restrict to w € )] . For this we require the following estimates:

LEMMA 3.5. For any v € GL,.(F) there exist positive constants c1, co and c3

such that for every w € Q" we have
(a) h(w) <eali(y,w)llw[ ™ <1;
(b) [y(w)] < e2h(w)™; and
(c) h(y(w)) > csh(w).

PROOF. Let z be an entry of the last row of v of maximal absolute value, and
set ¢; :=|r71¢| > 0. Then by the definition (1.2)) of j(v,w), the value z7'¢j (7, w) is
a unimodular F..-linear combination of the w;’s, so we obtain
2715 (v, w)

h(w) < ]

<L

This proves (a).
Next, let ¢ be the largest absolute value of an entry of 4. Then the matrix

product satisfies || < chlul and so [y(@)] = (@) el € [i(y,0) Ichlel <

cichh(w)™t, where the last inequality follows from (a). This proves (b) with ¢y =
/

C1Co.

For (c) let ¢4 denote the largest absolute value of an entry of v~'. Let ¢ be
an arbitrary unimodular Fs-linear form, which we write as a row vector, so that
{(w) = lw. Choose my € C%, such that £, := m,{7 is a unimodular linear form. Then
the entries of m,f = myfy-y~! have absolute value at most c4; hence |m,| < c4. Since
Y(w) = j(v,w) ' yw, using the linearity of ¢ and the definition of h(w) we find that

@] _ oyl _ el ] el | h(w)

@l hwl — hel 7 el T e
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Varying /, the definition of h(y(w)) now implies (c) with c3 := (chch) ™ . O

4. Neighbourhoods of infinity

From now on we assume that r > 2. Let U denote the algebraic subgroup of
GL, r of matrices of the form

(4.1)

where Id,._; denotes the identity matrix of size (r — 1) x (r — 1). Fix an arithmetic
subgroup I' < GL,.(F) and set

(4.2) Ty =T nU(F).

Then for all v € Ty and w € Q" we have det(v) = j(v,w) = 1; hence every weak
modular form for I' is a I'y-invariant function on ".

Viewing elements of F"™! as 1 x (r — 1)-matrices (row vectors), consider the
isomorphism

(4.3) G FT L UE), e (LY

’ ’ 0 Id,.—1)°
Since T' is commensurable with GL,.(A), the subgroup
(4.4) A =0 (Ty) c Frt
is commensurable with A", On the other hand, recall that 2" is the set of column
vectors w = (wi,...,w,)T € CT, with F-linearly independent entries and w, = &.
For any such w we have w’ := (wy, ..., w,)T € Q"7 hence

Qr c (Coo x Qr—l

inside C7, = Co, x C721. Accordingly we write w = (‘:}) The definition then
directly implies that h(w) < h(w’) and hence Q7 c Cqo x Q771

For any element N € A’ we can form the matrix product Nw’ € C,. The
definition of the action on Q" then implies that

w w1+ W’
(4.5) () = (),
which extends the action to Ce x 277! by the same formula. For any w’ e Q!
observe that A'w’ := {\w' | X € A’} is a strongly discrete subgroup of C.,, because

A’ is commensurable with A™! and the entries of w’ are F..-linearly independent.
Thus the function

(46) (Coo X Q'r—l — (Coo, [(L:}})] (=4 eer,(wl)

is well-defined and I'y-invariant.
As usual in a metric space, for any point z € Co, and any subset X c C., we
write d(z, X)) :=inf{|z — x| : z € X}. Then we have:

PROPOSITION 4.7. (a) The function ({.6) is holomorphic.
(b) For anyn € Z”° and c > 0 there exists a constant ¢, >0, such that for any
W' e Q7 and any wy € Coo with |w1| < ¢ we have |epr (w1)| < cp.
(c) For any n € Z7° and R, > 0 there exists a constant c, > 0, such that
for any W' € Q7' and any wy € Coo with d(wy, FL'w') < R, we have
|eA/w/(w1)| < Cp.
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(d) For any w' € Q™! and wy € Coo we have |epry, (w1)] > d(wi, FLlw").

PrROOF. The function is defined by the product e,ar(w1) = wi - TTogrear (1=
+1), whose factors we examine in turn. First, as A’ ¢ F"~! is commensurable with
A1 there exists a constant a € A~ {0} with A’ ca™ A", Let 0% X € A’. Recall
that )\’ determines an F., linear map C7;! - Co, by matrix multiplication v = v,
and denote by £ the associated unimodular F..-linear map. For any w’ € Q771 it
follows that

' n n
(4.8) V'] = IAIIEA'(w)| YW h@) - S W S Y- e

As X runs through A’ \ {0}, the value |\'w'| thus goes to oo uniformly over Q1.
Varying n this implies that the function is holomorphic proving (a).

To prove (b) observe next that all factors 1-71; with |\'w’| > |w;| have absolute
value less than or equal to 1. Since now |w;| < ¢, we deduce that

(4.9) lewnr (@) < ¢ J] —

0<|Mw’|<c |>\’w’| '

Since A’ c a™'A™! for any X € A’ \ {0} we have |\| > % From 1) we thus

deduce that |M'w'| > M. In particular each factor in the product (4.9

‘A,C 7 < ‘;Lg, hence it is bounded by a constant that is 1ndependent of w’. On the

other hand, if |\'w'| < ¢, the inequality (4.8) implies that [\| < Thus each

\W"&\'
coefficient of a)\ € A""! has absolute value < Iil’?él’ the number of possibilities for
which is bounded independently of w’. The number of factors in is thus also
bounded independently of w’, and so is therefore the total value of the product,
proving (b).

To prove (c) write w; = zw’ + ¥y, where z € F7, ! and y € Co, with |y| < R,.
Since A’ ¢ F™~! is commensurable with A"7!, the factor group F7 /A’ is compact.
Thus there exists a constant « > 0 depending only on A and A’, such that every
x € F77! can be written in the form z = A’ + o for some X € A’ and zy € Co, with
|zo| < . Together we then have wy = Nw' + (zow’ + y) with |zow’| < ofw’| < afén™|
by Lemma and hence |zow’ + y| < max{a|¢7™"|,R,}. By part (b) this implies
that |ear,(w1)] = |earw (Tow’ +y)| < ¢, for some constant ¢,, > 0 that is independent
of wy and W', proving (c).

To prove (d) write w; = Agw’ +y with Aj € A’ and y € Co such that |y] is
minimal. Then for all A € A" we have ly = Nw'| 2 |y|. If |y| > |Nw'|, this implies
that |y Nw'| > [Nw'| and hence |1- > 1. If |y| < |Nw'|, we directly deduce that

) satisfies

)\’w’
|1 7| = 1. Writing egrar(wi) = ewar(y) = yTopvear (1 = 575), we conclude that
all factors in the product satisfy |1 - 25| > 1. Thus it follows that |e.ar(w1)| > [y] >
d(wy, FZ7w"), proving (d). O

PROPOSITION 4.10. The quotient I'y\(Coo x Q"71) exists as a rigid analytic
space. Moreover we have an isomorphism of rigid analytic spaces

E: FU\((Coo X Qr_l) —> Co X Qr—l’ [(wl)] - (eA/w/(wl))'

w’ w’

PROOF. The existence of I';y\(Coo x 2771) as a rigid analytic space is shown in
Simon Héberli’s thesis, [H&21].
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By Proposition 2.2 we obtain a well-defined bijective and holomorphic map €.
As the derivative of epr,(X) with respect to X is identically 1, the morphism is
also étale. By Proposition below it is therefore an isomorphism. O

PROPOSITION 4.11. Let f : X — Y be a morphism of rigid analytic spaces
defined over an algebraically closed field K which is étale and bijective. Then f is
an isomorphism.

PROOF. (The proof is based on the analogous argument for schemes at [Stacksl,
Tag 02LC].) First we show that f is universally injective, i.e., for any morphism
g:Y’ - Y the morphism f': X' := X xy Y’ - Y is injective. So consider any points
z', 2" ¢ X' mapping to the same point 4’ € Y’. Then they also map to the same
point y € Y, and by the bijectivity of f they therefore also map to the same point
x € X. Thus 2’ and z” lie in the fiber product x x, y’ which, since all these points
have the same residue field K, is Sp(K ®x K) = Sp(K) and therefore consists of a
single point. This proves that 2’ = 2", as desired.

In particular, taking Y’ = X, the projection fyx : X xy X — X is injective, and
hence the diagonal morphism A : X - X xy X is surjective (since fx o A is the
identity on X). On the other hand A is an open immersion, because f is étale.
It follows that A and hence fy are isomorphisms. On the other hand f is flat
by étaleness and even faithfully flat by surjectivity. Since being an isomorphism
is local for the étale topology, and fx is an isomorphism, it follows that f is an
isomorphism, as desired. O

Now we look at the situation near the standard boundary component.

DEFINITION 4.12. For any n € 779 and R,, > 0 consider the I'y-invariant subset
I(n,Ry) = {w=(“}) e | e Q" d(wi, FL,'w') > Ry}

An arbitrary I'y-invariant admissible open subset N c 2", such that for each n >0
there exists an R, > 0 with I(n, R,) c A/, will be called a neighbourhood of infinity.

Note that every subset of the form I(n, R,,) is contained in Q" by construction;
hence neighbourhoods of infinity exist and Q" is itself one.

DEFINITION 4.13. Any subset of Coo x Q7! of the form
T = JB(0,r,) xQ!

n>1
for numbers 7, € |C%| will be called a tubular neighbourhood of {0} x Q"' or
just a tubular neighbourhood for the sake of brevity. The intersection of a tubular
neighbourhood with CX x Q"1 will be called a pierced tubular neighbourhood.

Any tubular neighbourhood is an admissible subset, because it is the union
of affinoid sets of the form B(0,p) x Q7! for p € |CX| and the intersection of
any two such affinoid sets is again of this form. The same holds for pierced tubular
neighbourhoods, but in this case we must use affinoids of the form D(0,0,p) x Q1.

Next recall that epr,(w1) # 0 whenever wy ¢ A'w’. In particular this holds for
any w = (z}) € Q", and so
1

(4.14) Uy (W) = 7@A,w1(w1)

e C,

is well-defined for all w = (‘:}1,) e Q.
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EXAMPLE 4.15. Suppose that A =F,[t], r=2, A= A% and £ = 7 is a period of
the Carlitz module. Then for w = (ng) € 02 we have

11
eea(w1) Tea(z)’

where z = w1 /€ € Coo \ Fo is the usual parameter at infinity in the rank 2 literature
(see, e.g., [Ge88al).

Ugr (w1) =

THEOREM 4.16. (a) The morphism

01 Tp\Q" — €L x 1 [(4)]— (Mrl)

w

induces an isomorphism of rigid analytic spaces from Ty\Q" to an admis-
sible open subset of CX x Q"L

(b) For any neighbourhood of infinity N c Q", the image 9(Ty\N') contains
a pierced tubular neighbourhood.

(c) For any pierced tubular neighbourhood T' c CX x Q™' contained in
the image of ¥, there is a neighbourhood of infinity N c Q" such that
HTy\N) =T, and 9 induces an isomorphism

ry\W —T".

PROOF. Part (a) is a direct consequence of Proposition To prove (b) we
must show that for any n >0 and R, > 0 there exists r, > 0 such that

B(0,rn) x 7" (Tu\I(n, Ry)).

For this let ¢, be the constant from Proposition (c) and set 7, := c,;'. Consider
any point (j,) e B(0,7,) x Q1. As the map epr, : Coo N A'w’ — CZ is surjective
by Proposition and u,, = e}, by definition, there exists a point w; € Coo N A'w’
with u,(wi) = 2. Since z € B(0,7,)’, we then have |epsr(w1)| 2 ¢,. By Proposition
(c) we thus have d(wi, FI, 'w') > Ry, and so (“!) € I(n, R,,). Therefore () =
()] € 9T\ (n, Ra)), proving (b).

To prove (c), let A c Q" denote the preimage of 7', this is an admissible subset
of Q" since T is an admissible subset of CX, x Q1. It remains to show that N is a
neighborhood of infinity. We must show that for any n > 0 and r,, > 0 there exists
R,, > 0 such that

HTo\I(n,Ry)) © B(0,7,)" x Q"

For this set R,, := r;! and consider any point (‘:}1,) e I(n,R,). Then by Proposition
(d) we have |epro (w1)| > d(w1, FL 'w') > R, and hence |u,(w; )| < 7. Therefore
I([(“2)]) € B(0,7,)" x Q7Y as desired. The isomorphy I'y\N — T then follows
from (a). O

5. Expansion at infinity

In this section we show that every I'y-invariant holomorphic function admits
a Laurent series expansion in wu.s(w;) which converges near infinity. As usual, we
measure the size of a holomorphic function g: Q7! - C,, by the supremum norm

lglls == sup{lg(w)]: " e 7}
Note that any rational function is bounded outside of a neighbourhood of its poles.
In particular, a rational function with no poles on 2" is bounded on ). Since g
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T

is a uniform limit of rational functions on 7,

always be finite.

the supremum defined above will

LEMMA 5.1. Let n € Z% and p € |Coo|. Any holomorphic function f : B(0, p)’ x
Q:L_l — Co has a unique Laurent series expansion
(5.2) f(z,0") = 3 (w2,
keZ

which converges uniformly on every affinoid subset, where the functions fi, : Q71 —
Co are holomorphic and satisfy the conditions

tmsup /T5T, < o and Jim YIAL = o

PROOF. Write p = ¢* with a € Q. Then the punctured disk B(0, p)’ is the union
of the affinoid annuli

D(O,U,p) = {Z €Co | o< |Z| Sp} = Spm Cm(%7 %b)
for all o = ¢” < p with b e Q. Since Q77! is also affinoid, say Q7! = Spm A7"L, the
product is affinoid and more precisely

D(0,0,p) x Q1 = Spm AITY(X =),

Thus the restriction of f to D(0, 0, p) x Q7! has a uniformly convergent expansion
of the form (5.2)) with unique holomorphic functions fy, : Q"' — C., that satisfy

limsup k\/ ”fk”n < p_l and hmsup _k\/ ”fk”n < 0.
k—oo k——o0

By uniqueness, the functions f; are independent of o, so the proposition follows by
letting o go to 0. O

LEMMA 5.3. For any pierced tubular neighbourhood T' c CX, x Q"~*, any holo-
morphic function f:T" — Co has a unique Laurent series expansion
f(zw) = Y fu(w)
kel

with holomorphic functions fi, : Q"1 - Ce, which converges uniformly on every

affinoid subset of T'.

PROOF. Suppose that T’ = U,s; B(0,7,) xQ" with r,, € |C%|. By Lemma
for any n > 1 the restriction of f to B(0,7,)" x Q71 admits a unique Laurent
series expansion Y.z f,g")zk with holomorphic functions f,g”) : Qr=1 - C,, which
converges uniformly on every affinoid subset. For any n > m > 1, the uniqueness
in Lemma for the restriction of f to B(0,min{r,,,r,})" x Q-1 implies that

(n)jyr-1 _
fk |Qm -
unique holomorphic functions fi : Q"' » Co with f;|Q771 = f,gn) for all n, and
they satisfy the desired conditions. O

fkm) . By the sheaf property for admissible coverings, there are therefore

PRrROPOSITION 5.4. For any I'y-invariant holomorphic function f: Q" - Ce
there exist unique holomorphic functions f, : Q"' - Ce, such that the series

> fu(W') uw (wi)"
nez

converges to f((“:}})) on some neighbourhood of infinity, and uniformly on every
affinoid subset thereof.
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PROOF. Being I'y-invariant f corresponds to a function f:I'y\Q" — Co. By
Theorem m (c) the function fo¥~! then induces a holomorphic function on a
pierced tubular neighbourhood 7’ c CX x Q"1 where T’ = 9(I'yy/\W) c C x Q!
for a neighbourhood of infinity A" ¢ Q". By Lemma that function has a unique

expansion of the form ~
Fo ™ ((5)) = X falw)z".
nez
By the definition of ¢ this yields a unique expansion
FUAS)) = X2 falw) uw (wi)"
nez

on N, which again converges uniformly on every affinoid subset, as desired. (I

REMARK 5.5. The series in Proposition 5.4 does not necessarily converge on all
of 7. For example, in [Ge99l Corollary 2.2], Gekeler shows that the u-expansion
of the rank 2 Drinfeld discriminant function has the radius of convergence ¢~/(4=1)
only. This is in contrast with the classical case, where the g-expansion of a modular
form converges on the entire upper half plane.

Any weak modular form for the group I' is a I'y-invariant function; hence it
possesses a u-expansion as in Proposition[5.4l Our next aim is to study its behaviour
under conjugation by the “stabiliser of the standard boundary component”. For
this consider the algebraic subgroups

* ‘ * L.k * ‘ 0...0
(5.6) P = 0 ¥ and M := 0 ok
0 * L% 0 * L%

of GL, , so that P = U x M is parabolic with unipotent radical U and Levi sub-
group M.

LEMMA 5.7. Consider any element of the form ~ = (
and v € GL,_1(F) and any point w = (f)}) € Q. Then:

0) e M(F) with « € F*

(07
0~

-1
(a) n:=j(v,w) =5(+",w) and v(w) = (", &)
(b) AL =0 (v ' Tyy) = a7 A,
(€) Uy (Wi) = enrwr(Wi) ™" =07 e oy (17 o).
(d) There exist constants k > 0 and cg > 0 such that for all n >0 and R > 0
we have
~v(I(n,R)) c I(n+k,cqR).

(e) For any neighbourhood of infinity N' c Q" the subset v 2(N) is also a
neighbourhood of infinity.

(f) For any Ty-invariant holomorphic function f : Q" - Cs with the ex-
pansion in Proposition [5.4) on N and any integers k and m we have the
following expansion on v *(N'):

(f|k,m’y)((f;)) = E:Zam_n(fn|k—n,m’7,)(wl) : u’y,w’(wl)n~
ne
PROOF. Assertion (a) follows directly from the definitions and (1.3), with
7' (w') =n1y'w’. Assertion (b) follows by direct calculation from the definition
of ¢. Using (b) and Proposition (b) we deduce that

eA,Ww,(wl) = ea—lA/,Y/wr(wl) = ea_lnA,,W,(w,)(wl) = ailn-e/\,‘y,(w,)(nflawl)
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Taking reciprocals thus shows (c).

To prove (d) consider any n > 0 and w’ € Q77'. Then by definition and
Lemma [3.5] (c), both with 7 — 1 in place of r, we have h(w’) > |x|" and h(y/(w')) >
csh(w') for some constant c¢3 depending only on 7’. Together we deduce that
h(y'(w")) > |x[™** for some k > 0 depending only on 7. By the definition
again this means that 7'(w’) € Q7). Next, by Lemmas (a) and again with
r—1 in place of r, we have |n| = |5 (7/,w")| < |w'|c7! < [€]|7|c7! for another constant
c1 depending only on ~’. Note also that, since 7/(w’) = n71y'w’, the associated
F..-vector space is F7 19/ (w') = 7L FZ7 MW’ For any wy € Co, we therefore have

d(n” ow, FT' (W) = d(n™ aw, ™ aF W)
= Inta)-d(wy, FMW) > |ar™ ey - d(wr, FLO ).

In view of Definition this implies (d) with ¢, := [am™¢ ey

To deduce (e) choose R, > 0 such that U,sqI(n,R,) ¢ N. Then (d) implies
that

Y(Unso I(n, cg* Ryi)) € UpsoI(n+k, Ryii) © N,

and hence U,so I(n, ¢  Rysr) € v H(N). Thus v 1(N) is a neighbourhood of in-
finity, proving (e).

Finally, using the definition 1} for any (‘:}) e v H(N') we can now calculate

Pl ()@ ¥ @et)™ F(05))

B (det )™ - 3 fu(7 (@) -ty (1 )™

nez

D Eadety)™ S Fuly (@) - (@7 g (w01))"

nez

= AR (dety )™ (Y (W) -ty e (w1)"

nez

= Z a™mm (fn'k—n,m’)/,)(wl) 'u%w’(wl)na

nez

proving (f). O

For a first application consider the subgroup
(5.8) Tar = {7 €GLa(F) | (5 ) eTn M(F)}.

THEOREM 5.9. Let f be a weak modular form of weight k and type m for the
group T, and let f, be its coefficients in the u-expansion from Proposition [5.4)
Then, for each n € Z, the function f, is a weak modular form of weight k —n and
type m for the group Ty < GL,_1 (F).

Proor. Consider any v’ € I'j; and set v := ((1) 70’), so that o =1 in the notation

of Lemma Since the subgroup I'y is normalised by -, Lemma (b) implies
that A’ = A" and hence . (w1) = Uy (w1). Let N be a neighbourhood of infinity
on which the expansion from Proposition converges. Then by Lemma (e)
the intersection N'n~y~1(N) is another neighbourhood of infinity. For any w =
(“4) e Nny 1 (N) we can compare the expansions of f(w) = (flk,m7)(w) from
Proposition and (f). Since « = 1, by the uniqueness part of Proposition
we conclude that f, = fy|k-n,m7’ for all n € Z, proving the theorem. O
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COROLLARY 5.10. Let f be a weak modular form of weight k and type m for the
group I'. Then for any n € Z, the coefficient f, in the u-expansion from Proposition
is identically zero unless

n=k-(r-1)m modulo |Tp n{scalars}|.

ProOF. Combine Theorem with (1.11)) for  — 1 in place of r. O
LEMMA 5.11. Consider any element of the form ~ = ((1] Ig _1) eU(F) for some

row vector B € F™~! and any point w = (wl) e Q". Then:

(a) j(7,w) =det(y) =1 and y(w) = (1)
(b) For any neighbourhood of infinity N c Q" the subset
N = {(“:J}) ey H(N) | learw (Bw") -t (wr)] < 1}
is also a neighbourhood of infinity.
(¢c) For any Ty-invariant holomorphic function f : Q" — Cs with the ex-
pansion in Proposition [5.4) on N and any integers k and m we have the
following expansion on N':

() = 2 (2 (%) farw) - ennwr (B')*) -t (w1)™

neZ k20

PROOF. Assertion (a) follows directly from the definitions and (L.3).

To prove (b) choose R,, > 0 such that U, I(n, R,) c N. Since Bu’ € F. W/,
we have d(w +Bw’, FT7w') = d(wy, FL7'w') and therefore v~ (I(n, R,)) = I(n, R,,)
by Deﬁnition On the other hand we have d(Bw’, F 'w’) = 0; applying Propo-
sition (c) thus yields constants ¢, > 0, such that learw (Bw)| < ¢y for any
W' € Q1. By Proposition (d) and Definition for any ( }) € I(n,c,) we
therefore have

learwr (W) > d(wi, F'w') 2 en > learr (Buw”)]-

By the definition of w,(wy) this implies that |epr (Bw’) - up (w1)] < 1. Together
this shows that I(n,max{R,,c,}) c¢ N'. Varying n we conclude that N’ is a
neighbourhood of infinity, proving (b).

Next, by (a) and the definition , the expansion from Proposition yields

FlemM () = F(0) = 2 Fa@) -t (wn + Bu)"

nez

Using the additivity of the exponential function we can rewrite
Uy (w1 + Bw ) = eprr(wr + B )"

= (eA/w/(wl) +eprw (Bw'))

(1+ eAfwf(ﬂw')uw/(wl))_n g (w1)™

For (“}) e N7 we have |earr(Bw’) -t (w1)| < 1, so we can plug the binomial series
into the above expansion and rearrange terms, yielding

() = X Fal@) - (X () - earwr (B - ()™

-n

nez k>0
= 22 () @) enwr (Bw')" - (wr) ™
neZ k=0

= N (S ) ) - enr (o))t (wr)™

n'eZ k>0
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with the substitution n + k = n’. Thus the stated expansion holds on N, proving
(c). O

DEFINITION 5.12. Let f: Q" - C, be a ['y-invariant holomorphic function
and let f,, be its coefficients in the u-expansion from Proposition [5.4] Then the
order at infinity of f is

ordr,, (f) = inf{neZ| f,(w’) # 0 for some w’ € Q"'} € Zu {xoo}.

The function f is called meromorphic at infinity if ordr,, (f) > —oo, that is, if f, is
identically zero for all n « 0. It is called holomorphic at infinity if ordr, (f) > 0,
that is, if f,, is identically zero for all n < 0.

PROPOSITION 5.13. Consider a I'y-invariant holomorphic function f:Q" — Ce
and an element v € P(F). Then f|imy is invariant under Ty iy == (v 'Ty)nU(F),
and we have

ordr,, (f) = ordr, ,, (flk,m7)-
In particular f is meromorphic, respectively holomorphic at infinity if and only if
fle,m7y has the corresponding property.

PROOF. Since P = U x M, it suffices to prove this separately for elements of
M(F) and U(F). In both cases the I', y-invariance follows by direct calculation
from the formula . The rest follows from the expansion in Lemma for
v € M(F), respectively by close inspection of the expansion in Lemma |£ for
~yeU(F). |

PROPOSITION 5.14. Let Iy < T and hence 'y y :==T1 nU(F) <T'y be subgroups
of finite index. Then for any 'y -invariant holomorphic function f we have

ordr, ,(f) = ordr, (f) - [T : Tru].

In particular f is meromorphic, respectively holomorphic at infinity with respect to
Iy if and only if it is so with respect to I'1 ir.

PrROOF. The lattice associated to I'; is A} :== . (T ) ¢ A = .7} (T'yy), so
that [A’: A]] = [y : Ty ] = p? for an integer d > 0. For any w’ € Q"' we then also
have [A’w’ : Ajw'] = p?. Let B be a set of representatives for A’ \x A} modulo Af.
By Proposition (a) we then have

EA" W’ (Wl)
eA’w’(Wl) = eA’w’(Wl) . H (1_ 1)
! BeB eA’lw’(ﬂwl)
Taking reciprocals, we can therefore express the expansion parameter u.(wy) =
eprw(w1)™! with respect to A’ in terms of the expansion parameter uy . (w1) =
eAllw,(wl)’l with respect to A] by the formula

Ugr(wr) = uLw,(wl)pd. I enw (Bw’)

BeB eA’lw’(/Bwl)ul,w’(wl) - 14

The expansion from Proposition [5.4] thus yields

FUD)) = 2 falw) e (wi)™ = S (@) (w1)™" T

nez nez BeB

( enqw (Bw') )"
enyw (Bw)ur w(wr) =1

for all points (“:J}) in some neighbourhood of infinity. By Lemma m (b) with
I'1 v in place of T'y, for each f € B we have |6A3w/(ﬁw’)u1’wr(w1)| < 1 on some
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neighbourhood of infinity. On the intersection of these neighbourhoods, we can plug
the binomial series into the above expansion and rearrange terms. We conclude that
the expansion with respect to u,(w;) has the first non-zero term f, (w’) - uyr (w1 )™
if and only if the expansion with respect to ui . (w1) has the first non-zero term

fn(w') . ’U,Lw'(wl)npd . H (_eA’lw’(Bw,))n .

BeB

Then ordr, , (f) = np? = ordr, (f) - [['v : T'1,r], and the proposition follows. O

Next, we restate holomorphy at infinity (Definition in terms of bounded-
ness criteria in certain neighborhoods of infinity. This is a natural consideration
and, though not used elsewhere in this monograph, may be useful for future work.

We call a subset X c Q"' analytically Zariski-dense if any holomorphic f :
"1 - Co that vanishes on X also vanishes identically on Q" 1.

DEFINITION 5.15. Let X c Q™! be a subset.

We say that f is bounded on vertical lines supported on X if for every w’ € X
there exist constants N, R > 0 such that if d(w;, F/;'w’) > R, then |f((‘:}}))| <N.If
for every w’ € X and every N > 0, there exists an R > 0 with this property, we say
that f tends to 0 on vertical lines supported on X.

We say that f is bounded (resp. tends to 0) on wertical strips supported on
X if for every 2’ € X there exists an admissible neighbourhood U c X of 2’ and
constants N, R > 0 such that if d(w1, F,'w') > R and w’ € U, then |f((“2))| < N.
(resp. if for all N >0 there exists R >0 with this property).

PROPOSITION 5.16. Let f: Q" - Cy be a U'y-invariant holomorphic function.
The following conditions are equivalent:
(1) f is bounded on vertical strips supported on an analytically Zariski-dense
set X cQL;
(2) f is bounded on vertical lines supported on an analytically Zariski-dense
set X c QL
(3) f is holomorphic at infinity.
Moreover, ordr,, (f) > 1 if and only if [ tends to 0 on vertical lines (equivalently,
vertical strips) supported on an analytically Zariski-dense set X c Q"71.

PROOF. By Proposition [5.4] the function f is given by its u-expansion
(5.17) FU) = X few ) (w)”,
keZ

which converges uniformly on any affinoid subset of a suitable neighborhood of
infinity. By Theorem [4.16)b), this means that there exists a sequence (r,, € |CX|)ns1
such that (5.17]) converges to a holomorphic function on

Up ={(“}) € | (o (w1),w) € B(0,r) x 71},
for each n > 1.

It is trivial that = , so we proceed to prove that = .
Let X c Q™' R>0 and N >0 be the objects provided in the definition of ,

and let w' e X.
Choose n sufficiently large that w’ € Q7! and enlarge R, if necessary, so that
R>1/r,.
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Now let w; € CX be such that d(w;, F. *w’) > R. By Proposition (d)
|t (w1)] < 1/R, and so (“}) € U,. Furthermore |f(w)| < N for all w € U,,.

Now counsider the Newton polygon of the series ((5.17)), that is the lower convex
hull of the set of points (k, ~log, |fr(w')|) in the Euclidean plane.

Lemmaimplies that limg— oo || f H;Ll/k =0, and hence limy,_, o | fx(w")|7/* =
0. This means that the slopes of the Newton polygon tend to —co as k — —oo, so
either the series has a finite tail, or infinitely many points lie on the Newton polygon
for negative k.

Consider the line y = mx + ¢ with slope m = log, |u,,(w:)| and tangent to the
Newton polygon. By slightly perturbing w;, we may assume this line touches the
Newton polygon in only one point (k,-log,|fr(w’)]). The corresponding term in
then dominates the series, and the y-intercept of the line equals

¢ = =log, | fr(w')uw (wi)*| = ~log, | f(w)].

Now, if there exist points on the Newton polygon with k < 0, then by choosing
m = log, [u,(w1)| sufficiently small (i.e. d(wi,FL 'w’) sufficiently large), we find
that |f(w)| can be made larger than the bound N, i.e. f is not bounded on the
vertical line.

This contradiction shows that f(w’) =0 for all k¥ < 0. Since this holds for all
w’ in the analytically Zariski-dense set X, it follows that fj vanishes identically on
Q™! for every k <0, thus proving that f is holomorphic at infinity.

Furthermore, if there exists a point with k = 0, then the same argument shows
that |f(w)| 2 |fo(w)|, so f cannot vanish on the vertical line.

To prove that = , suppose that f is holomorphic at infinity. Then the
expansion has no polar terms. Let X = U = Q"!, consider any w’ € X and
let n > 1 be such that w’ € Q7. Let R =1/r,,.

Since the u-expansion converges to a holomorphic function on U,, it
follows from Lemma [5.1] that liminfj_ o | fr(w')['/* < R.

Now suppose that d(wi, F7'w’) > R. Then |uy(w;)| < 1/R by Proposi-
tion d) and we obtain liminfy_, e | fx(w")uw (w1)¥| < 1, and so f(w) is bounded
by some N > 0. Thus f is bounded on vertical strips.

Lastly, if fo =0, then we may write

(@) = fuwr (@D | 3 Frrr (@ uer (@i)*],
k>0
where the sum on the right is bounded as before, and |u,(w1)| = 0 as R — oo, so
f vanishes on vertical strips. 0

REMARK 5.18. Proposition [5.16] above gives three equivalent formulations of
being holomorphic at infinity. Gekeler [Ge22al (1.7) & Prop 1.8] also defines higher
rank modular forms and provides another definition of being holomorphic at infinity.
He defines a fundamental domain for 2" and defines f to be holomorphic at infinity
if f is bounded on this fundamental domain. It is an interesting question whether
Gekeler’s definition is also equivalent to the ones in Proposition [5.16

6. Modular forms

Now we impose holomorphy conditions at all boundary components, not just
the standard one. We achieve this by conjugating the standard boundary compo-
nent by arbitrary elements § € GL,.(F'). Recall from Proposition that for any
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weak modular form f of weight k and type m for ', and for any ¢ € GL,.(F'), the
function f|i ,0 is a weak modular form of weight k and type m for the arithmetic
subgroup 67 'T'6. Determining the behaviour of f at all boundary components is
equivalent to determining the behaviour of all conjugates f|,d at the standard
boundary component.

DEFINITION 6.1. Let f be a weak modular form of weight & and type m for I'.
(a) If ord(s-1rs)nu (7)) (flr,md) > 0 for all § € GL,.(F), we call f a modular

form.

(b) If ord(s-1rsynv (F) (flk,m0) > 1 for all § € GL,.(F'), we call f a cusp form.

In particular, a modular form is a weak modular form f such that fl|x,.,0 is holo-
morphic at infinity for all 6 € GL,(F'). The space of these functions is denoted by
M. (T). The space of cusp forms is denoted by Sk . (I'). As with weak modular
forms, we abbreviate My (I') := My, o(I") and Sp(T") = Sk,o(T).

It may seem extravagant to impose conditions for infinitely many §. However,
the next two facts show that for fixed I', we only need to check these conditions for
0 in a fixed finite set.

PROPOSITION 6.2. The numbers in Definition depend only on the double
coset TOP(F).

PROOF. Since f is a weak modular form of weight £ and type m for T, for
any 0’ =~'0y with 7" €I and y € P(F') we have f|im0" = (f|k,md)|k,m7 and hence
ord 511600 (7) (flk,md") = ord(s-116ynu (#) (flk,md) by Proposition O

PROPOSITION 6.3. The double coset space T\ GL,(F)/P(F) is finite. More
precisely, let C1(A) denote the class group of A. Then:
(a) GL.(A)\GL.(F)/P(F) is in bijection with C1(A).
(b) For any arithmetic subgroup T' < GL,.(F), the set T\GL,.(F)/P(F) has
cardinality at most |Cl(A)|-[GL,(A) : GL.(A)nT].
(¢) If ' < GL,(A) then the double cosets of T\ GL,.(F)/P(F) can be repre-
sented by elements of GL.(A) if and only if C1(A) = {1}.

PROOF. By the orbit-stabiliser theorem the set GL,.(F)/P(F) is in bijection
with the set of one-dimensional subspaces of F” and hence with P"~*(F). This
bijection is equivariant under the left action of GL,(F). To prove (a) it thus
suffices to find a bijection between GL,.(A)\P"!(F) and CI(A).

For this we associate to any column vector = = (x;); € F" ~ {0} the fractional
ideal I(x) := 3, Az; ¢ F. This ideal depends only on the GL,.(A)-orbit of z,
and its ideal class depends only on the corresponding point of P"~1(F). Together
we therefore obtain a well-defined map GL,(A)\P""}(F) - CI(A). This map is
surjective, because r > 2 and every ideal of a Dedekind domain can be generated
by 2 elements. We claim that it is also injective.

To see this we view A" as a space of row vectors, so that right multiplication
by x determines a surjective homomorphism of A-modules p, : A” - I(x). Since
I(x) is a projective A-module, the associated short exact sequence 0 — ker(p,) —
A" - I(z) — 0 splits. Moreover, since the isomorphism class of a finitely generated
projective A-module depends only on its rank and its highest exterior power, the
isomorphism class of ker(p,) is determined by that of I(x).
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Suppose now that two vectors z, y € F" \ {0} correspond to the same ideal
class. Then I(y) = u- I(x) for some u € F*, and by the preceding remarks there
exists an isomorphism of A-modules f : ker(p,) — ker(py). Combining these via
suitable splittings we find an isomorphism of A-modules g : A” - A" making the
following diagram commute:

Pz

0 —— ker(p,) A" I(x) 0
fl/l sz u-lz
0 —— ker(py) Ar I(y) 0.

Writing ¢ as right multiplication by a matrix v € GL,.(A), the commutativity on
the right hand side then means that ayy = azu for all « € A”. Thus vy = zu for
some v € GL,.(A) and u € F*, which is precisely the desired injectivity.

This finishes the proof of (a). Parts (b) and (c) are direct consequences of
(a). O

COROLLARY 6.4. Suppose that T' = GL,.(A) for a principal ideal domain A.
Then:

(a) The condition in Definition[6.1] is independent of 6.
(b) If m#0 mod (g -1), any modular form of weight k and type m for T is
a cusp form.

Proor. Part (a) follows from Propositions and (a). To prove (b) let f
be a modular form of weight k and type m for I'; and let f, be its coefficients in
the u-expansion from Proposition which are weak modular forms for the group
Tas = GL,_1(A). By assumption we then have f,, =0 for all n < 0. If f is not a cusp
form, then fj is not identically zero, so Corollary implies that k = (r - 1)m
modulo |T'ps N {scalars}| = ¢ — 1. But then f itself is also not identically zero, so
(1.11)) gives k = rm modulo |T'n {scalars}| = ¢— 1. Both congruences together imply
that m = 0 modulo (¢ - 1), contrary to the assumption. O

REMARK 6.5. By Theorem[5.9]the coefficient f,, of the u-expansion of a modular
form f is a weak modular form of weight k — n for a subgroup I'y; < GL,_1(F'). In
contrast to the case of modular forms in characteristic zero, the weight k —n here
goes to —oo for n — oco. In Theorem m (b) of Part 2 we will see that any modular
forms of weight < 0 for I'y; must be zero if r —1 > 2. Thus for r > 3 and n large
enough, the coefficient f,, will not be a modular form (only failing the holomorphic
at infinity condition). However, one expects that there will be some rank r -1
discriminant function A, and integer N for which Aév fn will be holomorphic at
infinity. It may be interesting to find bounds on N in terms of n.

PROPOSITION 6.6. For any 6 € GL,(F') we have f € My, (T') if and only if
flem0 € My 1 (671T9).

PRroOF. Direct consequence of Proposition and the formula (|1.6]). O

In particular, whenever I'y < I' is a normal subgroup of finite index, the map
f = flemy for all v € I' defines a right action of I' on My, ,,(I'1). As a direct
consequence of Definition [6.1] and Proposition the subspace of invariants is
then

(6.7) M (T1)F = My 0 (D).
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Moreover, (1.10)) and (1.11)) imply that
(6.8) M (T) = My (') whenever m =m' modulo |det(T")|, and

(6.9) M (T) = 0 unless k = rm modulo |F N {scalars}|.

As a direct consequence of the definitions we also have

(6.10) Mk7m(r) . /\/lk/mf(l“) c Mk+kr7m+mr(r)
for all k,k',m,m’. In particular we can form the graded ring of modular forms
(6.11) M, (D) == P My (D).

k=0



Part 2

Comparison with the Algebraic
Theory



Introduction

In this part, we identify the analytic modular forms from Part 1 with the
algebraic modular forms defined in [Pil3] and deduce qualitative consequences
such as the finite dimensionality of the space of modular forms of given level and
weight.

By definition, weak Drinfeld modular forms of weight k are holomorphic func-
tions on the rigid analytic Drinfeld period domain Q" that satisfy a certain twisted
transformation law under the action of an arithmetic congruence subgroup I' <
GL,(F). Drinfeld modular forms are weak Drinfeld modular forms that are holo-
morphic at infinity after transformation by all elements of GL,.(F’). By construction
these seem to be purely analytic objects, but in this part we identify them with
objects from algebraic geometry, as follows.

Roughly speaking, the quotient T\Q" is the set of Coo-valued points of a certain
moduli space of Drinfeld modules M, which is an algebraic variety over Co. The
transformation law means that weak modular forms of weight k£ can be interpreted
as holomorphic sections of £ for a certain invertible sheaf £ on M, at least if T
is sufficiently small. Here £ is the dual of the relative Lie algebra of the universal
Drinfeld module over M. Since M is affine of dimension r — 1, for r > 2 there is
an abundance of non-algebraic holomorphic sections of £*. (So the analogue of the
Kocher principle for Siegel modular forms does not hold.)

To algebraise Drinfeld modular forms, we translate the condition at infinity
into a condition on a compactification M of the moduli space M. For this we use
the Satake compactification that was constructed analytically by Kapranov [Ka87]
in the special case A = F,[t] and by Héberli [H&21] in general, and algebraically
by the third author in [Pil3]. By [Pil3] the sheaf £ extends naturally to an
invertible sheaf on M, again denoted £, which is constructed as the dual of the
relative Lie algebra of the unique generalised Drinfeld module over M that extends
the universal Drinfeld module over M.

The main result of Part 2, Theorem [[0.9] states that the analytic Drinfeld
modular forms of weight k correspond precisely to the sections of £L¥ over M. Since
M is a projective algebraic variety, it follows that the space of modular forms of
each weight k is finite dimensional, and that the graded ring of modular forms of
all weights for fixed I" is a normal integral domain that is finitely generated as a
Coo-algebra: see Theorem In the case r = 2 all this was done in Goss’s thesis
[Go80Db].

Establishing these results with adequate precision requires a fair amount of
technical details. For later use we also discuss the action of GL,.(F) as well as
Hecke operators.

Outline of Part 2. As a preparation for the modular interpretation of T'\Q2",
in Section [7] we construct the universal family of Drinfeld modules over Q" and its
level structures. We also study its behaviour at the standard boundary component.
In Proposition [7.16] we show that the universal family descends to a family over
I'y\Q" which extends naturally to a generalised Drinfeld module over the larger
domain U obtained by adjoining a copy of Q"1

In Section we construct the precise identification of T'\Q2" with a moduli space
of Drinfeld modules. This requires working with the ring of finite adeles A% of F
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and identifying T'\QQ" with a connected component of a double quotient of the form
GL,(F)\(Q" x GL,(A%L)/K)

for an open compact subgroup K < GLT(A). That in turn can be identified natu-
rally with the space of Coo-valued points M, x(Cs) on a certain algebraic moduli
space of Drinfeld modules M}, ;. This identification requires a precise description
of the universal family and its level structure. Working adelically also entails that
M, k is an algebraic variety over the given global field F itself, which eventually
shows that the space of modular forms for I' comes from a vector space over a
certain finite abelian extension of F' instead of C.

As explained in Remark there are different conventions about whether Q"
consists of row or column vectors and about how GL,(F.) acts on it. In this
monograph we have chosen to use column vectors and left multiplication. This
affects the way that the universal family of Drinfeld modules on GL,(F)\(Q" x
GL,(AL)/K) must be described. As our convention differs from that of [Pil3],
several formulas from there have to be transformed to be used here. For instance,
in the isomorphism a double coset [(w, g)] now corresponds to a point on the
moduli space that was represented by the double coset [(w”,(¢7)™!)] in [Pil3].
The change in convention also affects the functoriality in Proposition [8:16] in whose
proof the precise relationship is indicated. We wish to apologise for the resulting
inconvenience.

In Section [9] we review the relevant facts about the Satake compactification of
M;}K of M}, . The crucial properties in Proposition are that the composite
map I'p\Q" > T\Q" < M} 1(Cs) extends to an étale morphism U — Z\ZZ’K(CW)
for the larger domain ¢ from Section[7]and that, repeating this after transformation
by arbitrary elements of GL,(A), the images of these maps cover a Zariski open
subset MZ’}(((COO) of M "1.5(Co) whose closed complement has codimension > 2.
Using this map we can identify the pullback of the generalised Drinfeld module on
M, x with that constructed over U in Section

In Section [I0] we use these facts to show that an analytic modular form is holo-
morphic at infinity if and only if the corresponding section of £* over M} (Co)
extends holomorphically to a section over MQ’;{(CW). By rigid analytic analogues
of the Hartogs principle and of GAGA the latter condition is equivalent to being
the restriction of a section of £* over M 1.5 (Cs) in the algebro-geometric sense,
thereby establishing our first main result, Theorem [10.9]

This earns us our piece of cake in Section [[I} where we deduce that the space
of modular forms of each weight k is finite dimensional, and that the graded ring of
modular forms of all weights for fixed I' is a normal integral domain that is finitely
generated as a Co,-algebra.

The final Section [[2]explains how the comparison isomorphism between analytic
and algebraic modular forms behaves under Hecke operators on both sides.

7. Universal family of Drinfeld modules

As a preparation for the following sections, we construct the universal family of
Drinfeld modules on T'\Q" associated to an A-lattice L ¢ F" and study its behaviour
at the standard boundary component. We first review the necessary details about
Drinfeld modules and generalised Drinfeld modules.
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Consider any scheme S over F'. For any line bundle £ on S, let Endr, (E) de-
note the ring of Fy-linear endomorphisms of the group scheme underlying E. (These
endomorphisms need not commute with scalar multiplication by Og.) By [Dr74,
§5], any such endomorphism is a finite sum ¥, b;7" for sections b; € HO(S, E*~9"),
where 7: E - E?, x — 27 denotes the ¢g-power Frobenius morphism. Set deg(a) :=
dimg, (A/(a)) for any a € A\ {0} and deg(0) = —co.

Recall that a Drinfeld A-module of rank r over S is a pair (E,¢) consisting of
a line bundle F over S and a ring homomorphism

rdeg(a)

(7.1) ¢: A>Endg, (E), ar Qo= ). $a.T
=0

with ¢q; € HO(S,El‘qi) satisfying the two conditions:
(a) The derivative dy : a = @4 is the structure homomorphism A - F —
H°(S,05).
(b) For any a € A~ {0} the term @ ; deg(a) i @ nowhere vanishing section of
Et-a

If instead of (b) we require only:

rdeg(a)

(c) For any point s € S and any non-constant a € A there exists ¢ > 0 with
Pa,i % 07
we obtain the notion of a generalised Drinfeld A-module of rank < r over S from
[Pi13] Def. 3.1]. Over any point s € S, the map ¢ then defines a Drinfeld A-module
of some rank r satisfying 1 <rg <.

An isomorphism of (generalised or not) Drinfeld A-modules over S is an isomor-
phism of line bundles that is equivariant with respect to the action of A on both
sides. Furthermore, following [Pil3l Def.3.8], a generalised Drinfeld A-module
(E, ) over S is called weakly separating if, for any Drinfeld A-module (E’, ¢") over
any field F’ containing F', at most finitely many fibers of (E, ) over F’'-valued
points of S are isomorphic to (E’, ’).

The analogous notions are used over a rigid analytic base S.

For the following construction we fix a finitely generated projective A-submodule
L c F" of rank . Recall that elements of F" are viewed as row vectors and points in
Q" as column vectors. Any w € Q" thus determines an A-lattice Lw c C, of rank 7.
Let er,, be the associated exponential function from . For any a € A~ {0} we
have an inclusion of A-lattices Lw c a™! Lw of finite index, so er,,(a™! Lw) is a finite
F4-subspace of Co. Thus

(72) wsz =4 Cepy,(atLw)

is a polynomial in Endr, (Ga,c..) which by Proposition (a) and (b) satisfies the
functional equation %1 (er,(2)) = erw(az). Setting also ¥f* := 0, we obtain the
Drinfeld A-module (G, c..,%") over Co, that is uniformised by the lattice Lw. As
w varies over Q" the exponential function ey, (z) is holomorphic in (z,w) € CooxQ";

hence L* is holomorphic in w € Q" for each a € A. Together this therefore defines
a Drinfeld A-module

(7.3) (Gaor,¥")

of rank r over Q".
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Also, any element ¢ € F" determines a holomorphic section
(7.4) py s we er,(fw)

of G, qr which depends only on the residue class £ + L. For any non-zero ideal
N c A with N/ c L this section lies in the N-torsion subgroup ¥%Z“[N] of L.
Varying £ + L over N"'L/L this endows the Drinfeld A-module (G, q-, %) with a
full level structure of level N by mapping

(7.5) N'L/L — ¢*[N], €+Lw uk.

Next consider an arbitrary element v € GL,.(F). Then for any w € Q" we have

Lw = Ly 'yw = j(y,w) - Lyt - y(w) by (1.3). Multiplication by j(v,w)™ thus
induces an isomorphism of Drinfeld A-modules

(7.6) (Cacn, ™) 5 (Gagen, 9™ 7).

Here the target is the pullback of the Drinfeld A-module (Ga’QT,'l/JL’Y_l) via the
isomorphism 7 : Q" > Q" w ~ y(w), evaluated at w. Multiplication by the holo-
morphic function j(vy, )~ thus induces an isomorphism of Drinfeld A-modules

~ -1
(7.7) (Gagr ") — 7" (Gaar, ™)
over Q)". Also, for any £ € F", using Proposition (b) we can calculate
pEW) = eru(tw)
= €Ly toy(e) (1 (1, 0) - 771 (W)
= J(3w) - eyt (77 (W)
= §(1,w) - s (7).

(7.8)

Multiplication by j(7y,_)~' thus also sends the level N structure £+ L = pk of
-1 _
(Gaqr,¥") to the level N structure £y~ + Ly™! — W*MZY,I of v*(Gaqr, ™Y 1).

Now let ' < GL,(F) be an arithmetic subgroup whose right action on F”
normalises the lattice L. Recall from [Dr74, Prop.6.2] that T' < GL.(F) acts
discontinuously on Q7; hence the quotient T\Q" exists as a rigid analytic space by
[FvdP04, §6.4]. Let 7p : Q" - I'\Q" denote the projection morphism.

Assume that I" acts freely on Q". Then I' also acts freely on G, or = G, x 2"
through v(z,w) = (j(7,w) t2,v(w)), so the quotient Er :=T'\(G, x Q) exists and
is a line bundle on T'\Q2". By construction the space of its sections over any open
subset U c T\Q" is
(7.9)

Er(U) = {f: 75" (U) > C holomorphic |¥yeT: f(v(w)) = j(7,w) ™ f(w)}.
This line bundle comes with a natural isomorphism

(7.10) By — Gaor.
For any « € I' the equality 7r = 7 0 v induces a commutative diagram

(7.10)
~ Ga,QT

lz
(7.10))

* * *
vrpbp ————— Y'Ga0r = G, -,

7T1>:E]_"

(7.11)
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where the vertical map on the right is multiplication by j(v, _)~'. The isomorphism
(7.7) for all v € I' implies that there is a unique Drinfeld A-module of the form
(Er, ") over T\Q" such that (7.10) induces an isomorphism

(7.12) m(Er, ¥") = (Gaqr, v").

Moreover, since I' normalises L, it acts on N"'L/L for any non-zero ideal
N c A. For any residue class ¢ + L that is fixed by T, the formula implies
that the associated torsion point WL descends to a torsion point 17 of (Er,"). In
particular, if I' acts trivially on N"'L/L, the level N structure descends to a

unique level N structure of (Er, %)

(7.13) N'L/L — ¢*[N], £+ L~ ff.

Now set Ty :== TnU(F) as in (4.2) and let A’ == .7 (Ty) ¢ F™! be the
corresponding subgroup from (4.4)), which is commensurable with A"~!. Then by
Theorem there exist an admissible open subset U c Co x Q77! containing
{0} x Q"% and a holomorphic map
(714) 9 FU\QT — u, [(wl)] —> (e/\’w’(wl)il)

w’ w’

which induces an isomorphism of rigid analytic spaces I'y\Q" — U N (CZ, x Q" 1).
Also 7 factors through projection morphisms

T TI'FU
O T\ — = T\Q".

r

For all v € I'y, the definition (1.2) implies that j(vy,w) = 1 and hence er () = €Lw

and wﬁv(w = L@, For ease of notation we denote the function on G, x I'y/\Q"
induced by L again by %L“. Then the Drinfeld A-module (G, o-,9%) is the
pullback under 7r,, of a unique Drinfeld A-module of the form (Ga7FU\QT,¢L) over
Ly \Q". Moreover the isomorphism descends to a natural isomorphism

(7.15) (mV ) (Br, ") = (Garpar, ¥5).

PROPOSITION 7.16. There exists a unique generalised Drinfeld A-module of the
form (Gay, ") over U such that

(Garprar,¥") = 0" (Gau, 9.
Its restriction to {0} x Q"' cU is a Drinfeld A-module of constant rank r — 1.

PROOF. Since ¥ defines an isomorphism between I'y\Q" and its image U’ :=
U (CX x QL it is trivial to transfer the rank r Drinfeld module 1% from 'y \Q"
to U. The real content of the Proposition is that it extends to a generalised Drinfeld
module on U. The strategy of the proof is to start with the exponential function
Coo x (UN(CL *xQ)) — Cu, (2,9([w])) = erw(2) associated to the Drinfeld
A-module ¥” rather than the Drinfeld module " itself, because the Drinfeld mod-
ule can always be reconstructed from the exponential function. In the first part of
the proof, we translate the formula for the exponential function associated to 1%
to U’. More specifically, by writing w = (‘:}}) as before, we will express e, (z) as an
infinite product in the variables (z,u,w’) for u = uy(w1) = eprwr(w1) 7t
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For this we define subgroups L’ and L; by the commutative diagram with exact
rows

0 Frt FT F 0
U v'—(0,0") @] (v1,0")>v1 @]
0 L L Ly 0.

Since L is commensurable with A", the subgroups L’ and L; are commensurable
with A" and A, respectively. Next, for any (¢1,v") € L and any \ € A’ we have
((1) ’\1,) € 'y and hence (Kl,v')(é )i’) = ({1,£1\ +v") € L. In particular this implies
that /A’ c L'. As both A’ and L' are commensurable with A”~!, this is an inclusion
of finite index if ¢; # 0.

Next we fix a subgroup Ly ¢ L which maps isomorphically to L; under the
projection F'" - F'. Then for any w = (“’}) € Q" we have Lw = Lyw @ L'w'. Using
Proposition (a) and the definition of the exponential function, for any
z € Co we thus have

z
(7’]‘7) eLW(Z) = eeLr ’ w (eL’UJ’(Z)) = 2. 1 TN
w (Lw) éeill_\[{o}( eL,w,(gw))

with Z = ep(2). To transform the denominator write £ € L ~ {0} in the form
0= (f1,v") with £; € Ly ~ {0} and v' € F™"1. Then we have an inclusion of lattices
ANw' c ({'L'w', and by the F..-linear independence of the coefficients of w’ the
index is precisely [L’: ¢1A’] < co. By the additivity of the exponential function we
have

r7

enrw ((7HW) = epng(wy + 07 0'W) = u™ + epry (010w

with u = ez (w1) ™!, Using Proposition again we deduce that

€L (ZW) 61 . e£I1L,w, (éilg(U)

b-eqy, (61 Ly (errr (Zfléw))

Uiy, (651 L) (u™" + enrwr (L7 0'W)).

By the definition and the additivity of the exponential function this in turn yields

u + epr (U710'W")
e (L7HW")

eL/w/(&A}) = 61 . (U_l + eA’w’(EIIU,w,)) . H (1 -

e'eL!~eq N
modulo £ A’

Y /A VAN |
G- (ut +ean (610'W) - T e (Cov)w)

BTN eA’W’(zilglw,)

modulo £ A’
_ 0 1+ep (7MW - u e (0710 =0 )w') - u—1
- ulL 6] BN eA'w’(gflélw,)

modulo £1 A’
[T (1-eaw (@' -0 u)

B 2 #el’ mod £1A/
- wlL€1A] H eA’w'(éil le) )

0elL’~¢1 A’ mod £1 A’



30 COMPARISON WITH THE ALGEBRAIC THEORY

where the last transformation uses the fact that (-1)[2“1A1-1 = 1 because [L' :
¢1A'] is a power of ¢q. Plugging this into the formula we conclude that
(7.18)
GA/wr(gilglw,)

| WeL/\iA mod £ A
(1 H (1—eA/w/(Zzl(f'—v')w')-u)

0’eL’ mod £1A’ )
As (£1,0') runs through L; ~ {0}, the index [L’: £;A’] goes to infinity. Using the
geometric series we can therefore expand the right hand side of as a power
series in u whose coeflicients are functions of (Z,w1).

u[L':Zl A,]

erw(z) = - ] 1-%-

(41,0")eL1~{0}

In the second part of the proof, we will show that this expression converges
locally uniformly for all Z € Co, and all (u,w;) in a suitable tubular neighbourhood
of {0} x Q"~!. In particular, it will also converge for all z € Co, when u = 0 and
thus extends to an exponential function on a tubular neighbourhood containing
{0} x QL.

For this take any n > 0. By Proposition (c) there exists a constant ¢, > 0,
such that for any w’ € Q77! and any v € F,! we have |epr(v'w')| < ¢p. In
particular this inequality holds for ¢7'¢' and ¢7!(¢ - ') in place of v'. Thus if
[u| < 7 = (2¢,)7L, we have |epr, (€71 (¢ —v")w’) - u| < 271, so the geometric series

for
1

1-epw (7L v )w') - u
converges uniformly to a value of norm 1. Combining the inequalities yields the
bound

H eA/w/(leflw,)

U[L';[1A'] 2reL'~01 A" mod £4 A . T’LL,:EIA,]C'ELL/:ZIA/]_l B 2—[L’:Z1A/]
A [T (-enw (G -0 ) u)| A s

Ve’ mod £1 A’

As both 41| and [L": £;A’] go to infinity with ¢1, for any R > 0 this proves that the
right hand side of converges uniformly for all (Z,u,w") € B(0, R) x B(0,r,) x
Qr=1. Varying n and R it therefore converges locally uniformly on Co, x T for the
tubular neighbourhood 7 := U,,»; B(0,7,) x Q77! and the limit is a holomorphic
function of (Z,u,w’). Substituting Z = er.(z), which is already a holomorphic
function of (z,w’) € Coo x Q"71, thus yields a holomorphic function E(z,u,w’) on
Co x T such that

(7.19) erw(2) = E(zenw (W)™ o)
for all z € Co, and w = (¥1) € Q" with J([w]) € T.

In the third and final part of the proof, we show how this exponential function
on Ce xT gives rise to a generalised Drinfeld module and do all the necessary checks
to show that it is a generalised Drinfeld module whose restriction to {0} x 2"~! has
constant rank r — 1.

Recall that for any w € Q, the Drinfeld A-module ¢** is characterised by
the fact that for each a € A\ {0} the function ¥ is an F,-linear polynomial in
Co[2] satisfying the functional equation 1 (er,(2)) = erw(az). Writing this as
an identity of power series in z and observing that ey, (z) = z + (higher terms),
it follows that each coefficient of 1/},];“’ is a certain polynomial with coefficients in
A in finitely many coefficients of er,(z). By what we have just proved, these
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coefficients, as functions of (epr(wi)™t,w’), extend to holomorphic functions of
(u,w") € T. Thus the same is true for the coefficients of 9£“. In other words, there
is a unique holomorphic function zﬁf on Co x T, which is an Fy-linear polynomial
of degree < rdeg(a) in z, such that

(7.20) VE(2) = (2 ennw (wi) W)

for all z € Coo and w = (“) € Q" with 9([w]) € T. Setting { = 0, the fact
that a = ¢~ is an F,-algebra homomorphism by continuity implies that a 125
is also IF4-algebra homomorphism. Moreover, the fact that %1/)5 = a identically
implies that %z/;(f = ¢ identically as well. Furthermore, by continuity the functional

equation L (er,,(2)) = er,(az) extends to a functional equation
(7.21) if(E(zm,w'),u,w') = E(az,u,w")

for all z € Co, and (u,w’) € T. If we substitute w := 0, the right hand side of ([7.18)
becomes just Z = epr(2); hence E(z,0,w’) = epr(z). Thus (7.21)) reduces to the
equation

(7.22) ﬁg(eLrwI(z),O,w') = e (az).

For any w’ € Q77! the map a ~ 1[)5 (_,0,u") is therefore the Drinfeld A-module of
rank -1 associated to the lattice L’w’ c¢ Co. All this together proves that a 1ZJL
constitutes a generalised Drinfeld A-module of rank < 7 over ’T whose restriction
to the locus u = 0 is a Drinfeld A-module of constant rank r —

We have thus proved the desired statement over 7. Since @L is already given
over Un(CX xQ" 1), the existence and uniqueness also follows over U, as desired. [

8. Drinfeld moduli spaces

Let A = [1, Ap be the profinite completion of A and Al = A®4 F the ring
of finite adeles of F. For any open compact subgroup K < GL, (A) let M}, x be
the Drinfeld modular variety of level K, which is a normal integral affine algebralc
variety over F. The associated rigid analytic space over C., possesses a natural
isomorphism

(8.1) GL,(F)\ (92" x GL,(AR)/K) — M} (Cw),

whose precise characterisation we shall describe below. For any g € GL,. (A ) let
4 denote the composite morphism

(8.2) Q" ——— GL,(F)\ (" x GL, (AL )/K) — M}, ;(Cu),
[w] [(w, 9)]-

Consider the arithmetic subgroup

(8.3) I, = GL.(F)ngKg™!

Then 7, factors through an isomorphism I'j\Q" - M, 4(Cs) for a unique connected
component My of M} - Xspec F Spec Co. In other words we have a commutative
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diagram
O > M} 1o (Car)
(8.4) iw/ U
T\ ——> M,(Cs).

For any v € GL,.(F) and k € K we have [(w,g)] = [(y(w),vgk)] and hence
(8.5) Tg = Tygk © Y-
For any two elements g, ¢’ € GL,(AL) we have M, = M, if and only if g and ¢’

represent the same double coset in GL,.(F)\GL,(AL)/K. Thus for any choice of
representatives g1, ..., g, € GL.(A!) we have

n
(8.6) M} i *specF SpecCoq = HM
i=1

Since M, k is integral, these connected componen‘lcé over C,, are Galois conjugate
over F'. Let Fi denote the field of constants of M} , (which is a certain ray class
field of F' that can be characterised uniquely by abelian class field theory). Then
the different connected components M,, are just the varieties obtained by base
change M} ; Xspec i SpecCoo for all F-linear embeddings Fi < Co.

For later use we also record:

PROPOSITION 8.7. Elements gi,...,gn € GL.(AL) form representatives of the
double quotient GL,(F)\ GL,.(AL)/K if and only if their determinants det(gy),. ..,
det(gn) form representatives of F*\(AL)*/det(K).

PrOOF. Direct consequence of strong approximation [Ma91l, (6.8)], [Px77] for
the simply connected reductive group SL, to the effect that the closure of SL,.(F)
in GL,(AL) is SL,.(A%). O

Now assume that K is fine, which by [Pil3] Def. 1.4] means that the image of K
in GL,.(A/p) is unipotent for some maximal ideal p ¢ A. Then by [Pil3| Prop.1.5]
there is a natural universal family of Drinfeld A-modules (E,p) over M} k. using
which one can interpret M}, , as a fine moduli space of Drinfeld A-modules with
some generalised level structure. The pullback of (E,¢) under the morphism
can be described as follows. Viewing elements of F” and A” and (ALY as row
vectors, for any g € GL,.(AL) we set

(8.8) L, = A"g7'nF" c (AL)",

which is a finitely generated projective A-module of rank r. Since K < GL,(A), by
construction the right action of I'y on F" normalises Ly. Moreover, the assumption
that K is fine implies that all torsion elements of I'y are unipotent; hence I',
acts freely on Q". There is therefore a natural Drinfeld A-module (Er,, ") over
I'g\Q" such that 7} (Er,, Yro) = (Gaqr, ") by . For this there is a natural
isomorphism

(8.9) iy(B,9) — (Br,, ™).
Moreover, suppose that K is the principal congruence subgroup of level N

K(N) := {keGL,(A)|k=1d, mod N}
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for some non-zero ideal N ¢ A. Then M) K(N) represents the functor which to
any scheme S over F' associates the set of isomorphism classes of tuples (E,p, 1)
consisting of a Drinfeld A-module (E, ¢) of rank r over S and a full level N structure
p:NTTA"/A" > [ N]. For any g € GL,.(AL) we then have

Ty = {yeGL(F)|(¢+Ly)y=C+L,forall e N"'Ly}.

Thus the Drinfeld A-module (Epg,qﬂLg) on I')\QY" is endowed with a full level N
structure gts : N"'Ly/L, — L9[N] by (7.13). To any coset £+ A" ¢ N"1A"
associate the coset

(8.10) ly+Ly = L+ A")g ' nF" ¢ N7'L,.

This induces an isomorphism N~'A"/A" > N7'L,/L,. The isomorphism
sends the level N structure £+ A" > i7u(£+ A") to the level N structure £+ A”
lyg+ Ly~ ﬂf In fact this characterises the isomorphism uniquely. Moreover,
since M A,K(N) is a fine moduli space for Drinfeld A modules with a full level N
structure, this also characterises the isomorphism (8.1) uniquely in this case.

For an arbitrary open compact subgroup K, choose any N such that K(N) < K.
Then the finite group K/K(N) acts on MQK(N) by transforming the level N struc-
ture, and the quotient is naturally isomorphic to M} . The group K/K(N) also
acts by rlght multiplication on GL,(F)\(Q" x GL, (A )/K(N)), and the isomor-
phism (8.1)) in the case of K is obtained from that in the case of K(NN) by taking
quotients. In particular, the two instances of the map i, from (8.4) for K and
K(N) form a commutative diagram with the projection MII,K(N) > M} f.

Similarly, if K is fine, in [Pil3 Prop.1.5] the universal family on M} , was
constructed precisely so that its pullback is the given universal family over sz K(NY:
The isomorphism in the case of K is the unique one whose pullback yields the
isomorphism in the case of K(N).

It is useful to know that isomorphisms of Drinfeld modules can be characterised
uniquely by using just one torsion point. Since K is fine, by definition its image
in GL;(A/p) is unipotent for some maximal ideal p c A, and so it fixes some non-
zero coset £+ A ¢ p‘lA’ For each g € GL, (Af ) the subgroup I'y then fixes the
correspondmg coset Lg+Lgcp 1L defined by (8 . The assomated torsion point
He, L9 thus descends to a nowhere zero p-torsion pomt of (EFJ,wLQ) over I';\Q". On
the other hand, choosing N c p, the group K /K (N) fixes the coset £+ A”; hence the
associated p-torsion point coming from the level N structure descends to a nowhere
zero p-torsion point of the universal family (£, ¢) over M} .. By construction the
isomorphism identifies the respective p-torsion points. As any isomorphism
of Drinfeld modules is scalar and hence determined by the image of any non-zero
point, it follows that the isomorphism is uniquely characterised by this.

In the following we care mostly about the composite isomorphism

* * ok (8.9 * n (7.12)
(SA0ms (B, ) = it (Ey ) — B o e (B, ko) — 2o (G g, 10).

This changes with g as follows. Con51der any g € GL,(AL) and v € GL,(F) and
ke K. Since K < GL,(A), from we deduce that

L’ygk Ark 1 71,_)/ lﬁFr _ (Arg—lmFr),y—l _ Lg,y—l
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The isomorphisms from (8.11f) for g and for vgk thus fit into a diagram

. for g
Ty (Ea(P) ~ (Ga,ﬂrang)
(8.12) &) zl ()

for ygk .
~ Y (Ga,ﬂrawlhygk)7

where the vertical map on the right is multiplication by j(v, )~*. Using (7.8 one

verifies that the isomorphisms preserve some nowhere vanishing torsion point. Thus

the two composites must coincide; in other words the diagram (8.12) commutes.

V*W;gk(Eﬂ SD)

We end this section by looking at functoriality. Consider a second open compact
subgroup K’ < GL,(A) and an element h € GL,(A",) such that hK’h™* < K. Then
there is a well-defined map

(8.13)  Ji: GL(F)\(Q" x GL,(A%)/K') — GL,(F)\ (" x GL,(AL)/K),
[(w,gh)]t [(w,9)]-
If h has coefficients in A, we have A” ¢ A”h™! and hence
Ly, = A"g'nF" ¢ A"h7 g nF" = Ly,

for any g € GL,(A%). Thus for any w € Q" we have Ly-wc Ly, -w, and using
Proposition (a) we obtain an isogeny of Drinfeld modules

(8'14) ﬁh = eeLg.w(Lgh-w): (Ga,ﬂra'(/}Lg) - (Ga,ﬂﬁ'(/]Lgh)'

By contrast, if ™! has coefficients in A, we have A”h™! ¢ A" and hence Lgy c Ly,
which yields an isogeny of Drinfeld modules

(815) éh = eeLgth(Lg’w): (Ga,Q7~,¢L9h) N (Ga,ﬂ",’t/}Lg).

By construction the isogenies 7, and éh are mutually inverse isomorphisms if h €
GL,(A). In analogy with (8.2)) write

@ ——> GL,(F)\ (2 x GL,(Ak)/K") M 1 (Coo),s

[w] [(w,gh)].
PROPOSITION 8.16. (a) Via the map Jj, corresponds to a morphism

of varieties
Jh : MQ,K’ —_—> M;‘,K'
(b) For every g € GL,(AL) we have , = Jy, o o
Now assume that K and K' are fine, and let (E,¢) and (E',¢") denote the respec-
tive universal families on M} o and M} .. Then:

(¢) If h has coefficients in A, there is a natural isogeny np : Ji(E,p) —
(E',¢") which for every g € GL,.(AL) makes the following diagram com-

mute:
* (b) - T h .
Wg(E,QO) W;th(E,QD) %ﬂ-;h(E,ﬁpl)
2Lf0rg zlforgh

(Gagr,h50) " (Gagr,hom).
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(d) If h™' has coefficients in A, there is a natural isogeny &, = (E',¢') —
Jyr (E, @) which for every g € GL,(AL) makes the following diagram com-

mute:
* Trl*hgh * T* (b) *
W;h(E,,S@,) - W;th (E,¢) Ty (E,¢)
zlforgh Zlforg
3
(Ga0r,9"om) : (Gaj0r,90"9).

(e) For any a € A~ {0} such that both h and ah™ have coefficients in A, we
have Th © ga‘lh = ()0:1 and ga‘lh OTh = J}t@a-

(f) If h € GL,(AL) is a scalar matriv and K = K', then Jy, is the identity
morphism. If in addition h = a-1d, for a € A~ {0}, then np = vo. If
instead h = a™' -1d, for a € A~ {0}, then &, = 0q4.

PROOF. (Sketch) The formulas in (b), (e), and (f) follow by direct calculation
from the constructions in (8.13)) and (8.14]) and (8.15]), once the remaining assertions
are proved.

The constructions of J;, and &, in (a) and (d) are those of [Pil3] Props.2.6-
7]. (Except that due to the change of convention explained in Remark the
present morphism .J;, corresponds to the morphism Jij,ry-1 from [Pil3], Prop.2.6],
and the present isogeny ¢, to the isogeny {(,r)-1 from [Pil3} Prop.2.7].) Roughly
speaking, by taking invariants everything reduces to the case that K = K(N)
and K' = K(N'), where J, and &, can be described explicitly using the modular
interpretation.

The construction of 7y, in (¢) is dual to that of £, and follows the same principles.
For an alternative construction observe that the formulas in (e) characterise 7y,
uniquely in terms of £,-1,. Noting that the endomorphism ¢! of (E’,¢’) also
factors through the isogeny &,-15 : (E', ¢") = J; (E, ¢) constructed via the modular
interpretation, one can construct 7, by the formula 7, o ,-1;, = ¢!, and deduce its
properties from that. O

PROPOSITION 8.17. Consider open compact subgroups K, K', K" < GL,(A) and
elements h, h' € GL,(A%) such that hK'h™' < K and i/ K"h'~* < K'. Then we have:
(a) th/ = Jh ] Jh/. ~
(b) Mhw =nw o Ty if K, K', K" are fine and h,h' have coefficients in A.
(¢) &nnr = J5n o if K,K', K" are fine and h™', k'~ have coefficients in A.

PROOF. Direct calculation for the maps in (8.13]) and (8.14) and (8.15). O

9. Satake compactification

According to [Pil3l Def.4.1], any normal integral proper algebraic variety
72, r over F' which contains M), ;- as an open dense subvariety, such that the
universal family (E,¢) extends to a weakly separating generalised Drinfeld A-
module (E, @) over ]\7[1T4,K7 is called a Satake compactification of M} ;. By [Pil3]
Thm. 4.2], such a Satake compactification exists and is projective over F, and to-
gether with its “universal family” (E,@) it is uniquely determined up to unique
isomorphism. The proof, however, tells us very little about what the boundary of
this compactification looks like.
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A rigid analytic construction of the same Satake compactification was given by
Kapranov [Ka87] in the special case A = F,[¢] and by Haberli [HA21] in general.
They explicitly construct a rigid analytic space that is projective over C,, and has
a natural stratification by finitely many rigid analytic spaces of the form I \Q’"’ for
integers 1 < v’ < r and arithmetic subgroups IV < GL,(F'). Héaberli also proves that
the result is naturally isomorphic to M’ ;(Co). What we need from this is an
analytic description of M 4.k along all boundary strata of codimension 1, where
the fibers of the universal family (£, @) are Drinfeld modules of rank r — 1.

Since M 4.k 1s integral and contains M), - as an open dense subvariety, each
connected component My of M - Xspec FSpec Co is open and dense in a connected

component Mg of M;l,K Xgpec F Opec Coo, and the decomposition extends to
a decomposition

j— n j—
(9.1) M’y g XspecF SpecCo = [[ My, .
i=1

Also, the field of constants of M Wi 1s again F, and the connected components

M ,, are just the varieties obtained by base change M "4k XSpec Fyc Spec Coo for all
F-linear embeddings Fg < Ce.

Assume that K is fine. Consider any g € GL,.(AL), and set T'y 7 := T, nU(F)
and A := Ty p) € Fr1as in 1) and |D By Theorem there exist an
admissible open subset U, ¢ Coo x Q"' containing {0} x Q"' and a holomorphic
map

(9 9y T\, [(4)] o (),

w’ w’
which induces an isomorphism of rigid analytic spaces 'y ;\Q" — U,n(CL xQ™1).
PRrROPOSITION 9.3. (a) There exists a unique morphism of rigid analytic

spaces Ty : Uy, ~ M 4,(Coo) making the following diagram commute:

r Ty, r Yg
VT, )\ Y ——U,

Ty Lﬂg

M} 5 (Coo) € M) ¢ (Coo).

(b) This morphism is étale and its image is a Zariski open subset of My 1-(Cos).

(¢) Varying g € GLT(A%), the union of the images of the different maps Ty
is equal to My (Co) for a certain Zariski open subset My of MY
whose complement has codimension > 2.

PrOOF. This is due to Kapranov [Ka87] in the special case A =F,[¢], and to
Héberli [HA21] in the general case. O

REMARK 9.4. For our application of Proposition [9.3] in the proof of Lemma
10.7] it would suffice to have, for every g, an étale morphism on some arbitrarily
small open subset V, c U, that is not contained in CX x Q"!, such that every
connected component of codimension 1 of M’ z-(Coe) N M} ;(Coo) contains a point
in the image of V, for some g. It is probably possible to prove this without the
explicit description of M 1.5 (Cs) by Kapranov and Héberli, using only the fact
from [Pi13] Prop. 4.10] that the fiber of the universal family (E, @) over the generic
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point of any irreducible component of codimension 1 of My x- ~ M} ; is a Drinfeld
A-module of rank r — 1. But it would be a shame not to use the wonderful results
from [Ka87] and [Ha21] when they are available.

Next let (Ga,ug,iﬁLQ) be the generalised Drinfeld A-module over U, that is
furnished by Proposition [7.16}

PROPOSITION 9.5. There exists a unique isomorphism of generalised Drinfeld
modules over Uy

7_1-; (Ev 95) — (Gayuga "/—}Lg )7

whose pullback under 9g o mr, ,, : Q" = U, is the isomorphism

* *—% (T —= (a) % (8.11) . . 3
ﬂ-Fg,U’ﬂgﬂ-g (E7(,0) E—— 71'g (E7(P) = (Ga,QT?ng) - = ﬂ-Fg,Uﬁg(GmugawL‘q).
PRrROOF. Over U, n (C%, x Q1) the isomorphism is obtained from the con-

struction preceding . The extension to U, follows from analytic versions of
[Pi13l Props.3.7-8], which say that homomorphisms and isomorphisms of gener-
alised Drinfeld modules extend uniquely under open dense embeddings of normal
integral schemes, and whose proofs work equally well in the analytic setting. (I

PROPOSITION 9.6. In the situation of Proposition|8.16] we have:
(a) The morphism Jy, : M} . — M} i extends uniquely to a morphism Jp
My gr > My k-

Now assume that K and K' are fine, and let (E, @) and (E',@') denote the respec-
tive universal families on Z\ZTA’K and MTA’K,. Then:
(b) If h has coefficients in A, the isogeny ny, : Jr(E,@) — (E',¢") extends
uniquely to an isogeny iy, : J; (E,¢) — (E',@').
(¢) If h™" has coefficients in A, the isogeny &, : (E',¢') — Ji(E,p) extends
uniquely to an isogeny &, : (E',@') - J; (E, ).

PRrROOF. (Sketch) Assertions (a) and (c) are proved in [Pil3l Prop.4.11]. The
same kinds of arguments establish (b). O

Finally, the formulas in Proposition (e), (f) and in Proposition auto-
matically extend to the respective Satake compactification, because the extended
morphisms already exist and two morphisms on an integral scheme are equal if they
coincide on an open dense subscheme.

10. Analytic versus algebraic modular forms

We keep the notation from the preceding section, and first we also assume that
K is fine. Let Lie E denote the Lie algebra of E, which is an invertible coherent
sheaf of modules on M WK (It is naturally isomorphic to the sheaf of sections of £,
but in the present context it is safer to view it as the Lie algebra.) Consider the
dual invertible sheaf £ := (Lie £)¥. By [Pil3l Thm.5.3] this is ample. For any
integer k we abbreviate £¥ := £&*. Following [Pil3] Def.5.4] we have:

DEFINITION 10.1. An algebraic Drinfeld modular form of weight k and level K
is an element of the space

ME(M ) = HO(M g, L"),
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Since M vk is a projective algebraic variety with field of constants Fk, this
is a finite-dimensional vector space over Fi or, depending on one’s point of view,
over F. Our aim is to relate it with a space of analytic modular forms. Note that
the decomposition yields natural isomorphisms

(10.2) MEE(MY ;) ®rCoo = HO(M'y i spec #Spec Coo, LF) = @ H(M,,, LF).
=1

Also, any irreducible component M g of M 4.1 %Spec F Spec Coo has field of definition
F; hence pullback induces an isomorphism

(10.3) MM} ) ®py Coo = H(M,, LF).

Let £ denote the invertible sheaf on the rigid analytic space M A, 1 (Cs) ob-
tained from L. Its pullback 77 £ is an invertible sheaf on Q", which must be
trivial, because Q" is a Stein space ([SS91] Prop.4]). In fact, we have an explicit
trivialisation: The isomorphism of line bundles 7;E — G, o- underlying the iso-
morphism of Drinfeld modules induces an isomorphism for the dual of the
sheaf of sections

(10.4) T L — Ogr.

Via this trivialisation, the pullback of any section s € HO(M:LK(COO), (£2)*) be-
comes a holomorphic function ﬂ;s () - Co.

LEMMA 10.5. For any section s € HO(MQ’K((COQ), (£2)%) and any g € GL,.(AL)
and v € GL,.(F) and k € K we have

*

Ty = (T0k8) k-

PROOF. Since £ is the dual of the invertible sheaf of sections of E, the com-
mutative diagram (8.12)) yields a commutative diagram

(10.4) for g
71'; (£an)k - OQT'
(8-5) ZLmultiplication by j(v, )"
(10.4) for vgk
Vg (L) - 7 Or = Oqr.

For any w € Q7, evaluating s at the point my(w) = mygr(y(w)) therefore yields the
equality

J(rw)* - (mps)(w) = (whs) (7(w))-
In view of (1.5 this implies that

(mys) (W) = G(7,0) ™ (T ) (VW) = (Frges)lky) (W),
as desired. O

LEMMA 10.6. The map 7, induces an isomorphism

H(My(Coo), (L)) — Wi(Ty).
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Proor. By definition the pullback by m; yields an isomorphism from
HO(M,(Cw), (L£L*™)*) to the space of T'y-invariant sections in H®(Q", 7} (L)").
But for every v eI'y we have w4 =740 ~7l= mg by ; so by Lemma the ~-
invariance translates into the formula ;s = (7, 5)[x7y. By Definition [I.9| the image
of m; is therefore just the space of weak modular forms Wy (T').

LEMMA 10.7. The map 7T; induces an isomorphism
HO(My,LF) — M (T,).

PROOF. By rigid analytic GAGA due to Kopf [Ko674l Satz 4.7], analytifi-
cation yields an isomorphism H°(M,,£F) > HO(M,(Cs),(L£*)*). Next, set
M = MynM " (Co) for the Zariski open subset My of M, j from Proposition
(c). Since M, is normal integral and the complement M, \ M, , has codimen-
sion > 2, by Bartenwerfer [Ba76, Satz 10] the restriction map induces an isomor-
phism HO(My(Cao), (£7)*) 5 HO(M; (Co), (£2")¥). By Lemmall0.6/any section
s € H'(M,(Cs), (L*)*) corresponds to a weak modular form mys € Wi(Ty). It
remains to determine when s extends to a section in H°(M, (Cs), (L*™)").

We first analyse when it extends to the image of the map 7, from Proposition
(a). Recall that £ was defined as the dual of the invertible sheaf of sections
of E. Thus the isomorphism of generalised Drinfeld modules in Proposition
induces an isomorphism

(10.8) TELT = Oy, .

Let 9 : Q" — U, be the composite morphism in the top row of the diagram in
Proposition (a). Then by construction the pullback of the trivialisation
to Q" via ¥ is just the trivialisation in . Thus s extends to a section of (L")
over the image of 7, if and only if the function 7s: Q" - Cq is the pullback via
¥ of a holomorphic function Uy - Co. Here s is already a I'y-invariant function
and therefore possesses a u-expansion by Proposition Thus it is the pullback
of a holomorphic function on U, if and only if it is holomorphic at infinity in the
sense of Definition

Now recall that for any g, ¢’ € GL,.(AL) we have M, = M,/ if and only if ¢’ = ygk
for some v € GL,.(F) and k € K. By Proposition (c) the partial compactification
My is therefore the union of the images of the maps 7,4 for all such v and k. By
the above argument for ygk in place of g, it follows that s extends to a section in
H°(M}(Co), (£2)*) if and only if for all v and k the pullback 7,41 is holomorphic
at infinity. But by Lemma we have 77 ;s = (m5s)lky™!. Varying v we thus
conclude that 7 induces an isomorphism from H°(M; (Co,), (£2)*) to the space
of modular forms My(T'y). Combining everything yields the desired result. O

THEOREM 10.9. If K s fine, the maps m; and the isomorphisms W respec-
tively induce isomorphisms

MM ) @y Coo —> My(T),
MM} ) 88 Cos —> @D Mi(Ty,).-
i=1

PRrROOF. Direct consequence of Lemma [10.7] (]
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The above isomorphisms are functorial in the following sense. Consider a second
fine open compact subgroup K’ < GL,(A) and an element h e GL,.(AL) such
that hK'h~! < K. By Proposition . this data determines a morphism .J}, :
M, WK M, "5+ As before let (E',¢") denote the universal generalised Drinfeld
module on M7, "5+ Let L denote the dual of the invertible sheaf of sections of E'.

With A fixed, consider any sufficiently divisible scalar a € A \ {0}, so that the
element ha € GLT(A%) has coefficients in A. As a consequence of Propositions

8.16[ (f) and we then have Jy, = J5. The derivative of the isogeny 7, in
Proposition [9.6| (b) thus induces an isomorphism

(dina)Y s JrL=J5, L L.
LEMMA 10.10. The isomorphism
pn = a-(dijna)" + JpL— L'
is independent of the choice of a.

ProoF. Consider a second element b € A \ {0} such that hb has coefficients
in A. Then so does hab, and Propositions m ) and [3.16] - imply that npqp =
M © Nha = P} © Nha- Taking derivatives we deduce that Anhab = dp © dpg = b ding
and hence ab- (dnpap)" = ab-b™ - (dnpa)Y = a-(dnne)”. Interchanging a and b implies
that ab- (dnpaep)Y = b-(dnrp)" and hence a-(dnpe )Y = b-(dnny)Y . Finally, this equality
over the dense open subscheme M} ., automatically extends to an equality over
M 0

Using pullback and the isomorphism p;, we can now define a natural F-linear
pullback map on modular forms, again denoted J;, by the commutative diagram

Jis MM k) MM 1)
(10.11) Il Il
HO(M,, 7 L£F) _ HO (M, g, Ji L) P, HO (M o, L k).

To describe its behavior under the isomorphisms from Theorem [10.9] for any g €
GL,(A}) consider the arithmetic subgroup I}, := GL, (F) nghK'(gh)™, which by
construction is contained in the arithmetic subgroup I'y:=GL,.(F)ngK g‘1

PROPOSITION 10.12. For any g € GL,.(AL) the diagram

al r Jh al r
Mk g(MA,K) — Mk g(MA,K’)

Tr* ﬂ_/*
g gh

Mk(F )% Mk(F h)

commutes, where the horizontal map on the bottom is the inclusion map.

PROOF. Assume first that h has coefficients in A. As £ and £’ are the duals
of the invertible sheaves of sections of E and E’, Proposition (c) yields a
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commutative diagram

“’g*hph = 7";*1—& (dnh )v

>(- an __ /% an I* lan

GJL =m, L oL

|| @03 for g || @03 for gh
(diin)"

Oqr Oqr.

By the construction (8.14)) of 7, we have dfj, = 1. The desired commutativity thus
follows from the definition of 7 and .

In the general case take any a € A~ {O} such that ha € GL,(A%) has coefficients
in A. Repeating the above calculation twice with (g, h ) replaced by (g,ha) and
(gh,a), respectively, and noting that 7, , = 7, yields a commutative diagram

I% \ I% \
ot fan ﬂ—gha(dnha) I>(— Elan ﬂgha(dna) I% Llan
g gha
2(] (10.4)) for g (| (10.4)) for gha ([ (10.4)) for gh
id id
Ogr Ogr Ogr.

Here dn, = d¢!, = a by Proposition (f), hence the upper horizontal arrow on the
right is multiplication by a~*. Together we thus obtain the commutative diagram

I% I% \2
TghPh = @ Tgpq (dnha)

* an I* ran
L oL
(| (10.4) for g 2|| (10.4) for gh
id
Oqr - Oqr,

and again the desired commutativity follows from the definition of 7; and w;’;l. O

PROPOSITION 10.13. (a) f K=K and he K, then Jy=id.
(b) If K=K’ and h =a-1d, for a€ A~ {0} then J; =a”-id.
(¢) For any fine open compact subgroups K, K' K" < GL,(A) and elements
h,h' € GL,.(AL) such that hK'h™t < K and W'K"h'"' < K', we have
Jpp=dpody.

PROOF. Direct computation using Proposition 817 O

Now recall that the elements gi,...,9, appearing in Theorem [10.9] are the
representatives of the double quotlent GL,(F)\GL,(A%L)/K used in (8.6). Likewise

choose representatlves g1, of the double quotlent GL,(F)\GL,(A%) /K '. For
each 1 < 7 < n’ consider the arithmetic subgroup I'/ g = = GL.(F)ng;K'g;", and

choose 1 < ij <nand; € GL,(F) and k; € K such that Yigih” 'kj = gi,. Then direct
calculations show that vjl";("y;l < ngj and that the following diagram commutes:

;\m T GLL(F)\ (@7 % GLy (Ah)/K') — = M} e (Cu0)

(10.14) L L L

grgi\m ) GL(F)\ (9 x GL (A%)/K) — = M} (Ca),
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where the vertical map in the middle is [(w,g)] = [(w,gh™)] and the one on the
left sends a coset F’g,_w in the j-th subset to the coset ngj ~v;(w) in the i;-th subset.

PROPOSITION 10.15. If K and K' are fine, the map J;; from (10.11) and the
isomorphisms from Theorem for K' and K fit into a commutative diagram

a , Jr®id o ,
Mklg(MA,K) ®F (COO é Mklg(MA,K/) Rp (Coo
zjnzm zjm
D Mi(T,) D Mi(ry,)
1= j=
(fi)ica ! (fi, levi) s -

PROOF. For each 1< j<n' we have a commutative diagram

*

J
MEB(M 1) - MM er)

* * 1%
7 I p—=1 o
9i -h A
/ \9J K

S Flevs incl.
Mg (Ty,)) e M (D) P25 Mi(T),

which commutes on the left by the equation v;g5h~"k; = g;, and Lemma and

on the right by Proposition [10.12[ for g = g;-h‘l. Summing over all j yields the
desired formula. O

Finally consider an arbitrary open compact subgroup K < GLT(A%). Let K
be any open normal subgroup of K which is fine, for instance, the principal con-
gruence subgroup K(N) for a sufficiently divisible non-zero ideal N & A. Then by
Proposition the maps J; for all h € K induce a right action of K/f( on the
space of modular forms of level K. In [Pil3] Def.5.4] we defined:

DEeFINITION 10.16. The space of algebraic Drinfeld modular forms of weight k
and arbitrary level K is the space of K-invariants

1 1 K
M= ) = MIE( )F.

Once defined using one choice of K, the same equality then holds for arbitrary
open compact subgroups K < K < GL,.(AL). This makes leg(Mj"K) independent
of the choice of K. Moreover, for any g € GL, (A%) we define the pullback map 77 on
leg(M:LK) as the restriction of the map 7, on Milg(szk). Using Proposition
10.12|in the case h = Id, we find that this is again independent of the choice of K.
Likewise we can define a map J;' : leg(M:"K) - Milg(Mz’K,) for arbitrary h, K,
K’ as the restriction to K-, resp. K'-invariants from suitable smaller open compact

subgroups. With this we can now conclude:

PROPOSITION 10.17. Theorem[10.9 and Propositions[10.14 and[10.13 and[10.13]
hold for arbitrary open subgroups.

PROOF. (Sketch) For all h € K we have hK'h™! = K’  so using Proposi-
tion [10.15| with K replaced by K’ we can translate the right action of K/K' on
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leg(MfLK,)«@F(C to the space @, Mk(F ) This action interchanges the sum-
mands My(I'}, ) whenever g7 lies in the same coset GL,(F)g; K, and the stabiliser
J

of such a summand acts through the action of all v € 'y, by f ~ f|y. But the space
of invariants in My (T}, ) under this action is simply Mk(Fgl) Taking invariants

we thus deduce the second isomorphism in Theorem [10.9] for the group K. The
remaining statements follow in the same way by taking invariants in each case. [

11. Finiteness results

THEOREM 11.1. For any congruence subgroup I’ < GL,.(F') we have:
(a) dimg,, Mp,m(T) < oo for any integers k and m.
(b) Mg.m(T') =0 whenever k<0 and r > 2.
(¢) The graded ring M, (T) := @0 Mr(T') is a normal integral domain that
is finitely generated as a Co-algebra.

PROOF. First assume that I is the principal congruence subgroup I'( V) associ-
ated to some 1evel 0# N & A. Setting K := K(NN), for g = 1 the arithmetic subgroup
I'y from is then I'. By Theorem we thus have HO(M7, 1, L") @, Coo =
Mk(I‘) As space of sections of a coherent sheaf on a projective algebraic variety
it is therefore finite dimensional, proving (a). Moreover, since £ is ample by [Pil3]
Thm. 5.3], this space is zero if k < 0 and every irreducible component of the variety
has dimension > 1, proving (b). Also, the ring @50 H° (MA 1, LF) is a normal in-
tegral domain that is finitely generated as an F-algebra by [P113, Thm. 5.6], from
which (c) follows.

Next, for any two congruence subgroups IV < T, the respective space or graded
ring for T' is obtained from that for IV by taking invariants under a certain action
of the finite group I'/T. The statements for I thus follow from those for I'".

Finally, for an arbitrary congruence subgroup I" < GL,.(F') consider the finitely
generated A-submodule L :=T-A" c F", and choose an ideal 0 # I ¢ A such that
ILc A". Let TV be the subgroup of elements of ' that act trivially on L/IL. Then
I T and TV < GL,(A4). Also I is again a congruence subgroup, so it contains
I'(N) for some level 0# N ¢ A. AsT' < GL,(A), we then have I'(N) < I" < T, and
the statements for T' follow from those for I'(N) by applying the above reduction
step twice. [l

PROPOSITION 11.2. Let T < GL,.(A) be a congruence subgroup whose image in
GL,-(A/p) is unipotent for some mazimal ideal p ¢ A. Then for every k > 0 there
exists a non-zero cusp form of weight k for T'.

For an explicit construction of such cusp forms using Eisenstein series see Re-

mark [[6.171

PrROOF. Choose a level 0# N ¢ A such that I'(IV) < T, and set K := K(N)-T'<
GL,(A). Then K is fine, and for g = 1 we have ', = K nGL,(A) = . Let oo denote
the reduced divisor on MA7K with support MA’K N M} k. By Theorem and
the definition of cusp forms we then have

HO(My g, L5(~00)) ®p, Coo = Si(T).

As L is ample, the left hand side is non-zero for all k > 0, as desired. (]
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12. Hecke operators

Consider any element h € GLT(A%) and any open compact subgroups K, K "<
GLT(A) such that hK'h™! < K. Then by (10.11)) and Proposition 10.17} there is a
well-defined pullback map

(12.1) Ti: MRE(Mj ) — ME(M} )
satisfying Proposition [10.13]

We can also construct a natural map in the other direction. Since J; is an
isomorphism if hK’h™! = K, we restrict ourselves to the case that h = Id, and

K’ < K. Choose an open subgroup K < K' which is normal in K. Then by
Definition [[0.16] we have

al Tid, 1
ME(M) ) = ME(M )

Jia,.
(122) || |

ME(M ) e MBI )5 e MEE(M, ).

e

We define the dotted arrow by
(12.3) fr—trace(f) =), Jif,

where h' runs through a set of representatives of the quotient K'\K. The composite
of this trace map with the vertical isomorphisms in (12.2)) is the pushforward map

1 . al r
(12.4) Jid, o0 MEBE(MY o) — MGE(M k).

Now consider any element h € GLT(A%) and any open compact subgroup K <
GL,(A), bearing no particular relation with each other. Then we call the pair of
morphisms

Jhn Id,
T T T
(12.5) My <—— M} gonrxn — M i

the Hecke correspondence on M} - associated to h. The composite map

Jd,.,*

a r Jt a r a r
(12.6)  Th: MPE(M}y ) —= MEE(MY o) ——> MGE(M] )

is called the Hecke operator on leg(MfLK) associated to h. It depends only on
the double coset KhK.
The composites of Hecke operators are calculated as follows:

PROPOSITION 12.7. For any h, h' € GLT(A%) and any open compact subgroup
K < GL,(A) the Hecke operators on leg(M;"K) satisfy

TywoTy = Y [Knh"'Kh": Knh ' Kha k""" KRh"]- Ty
hll
where h' runs through a set of representatives of the double quotient
(hKh™ ' n K)\hKR'[(K n W' KR).

ProoF. This is [Pil3] Prop. 6.10] with the change of conventions taken into
account. g
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In the rest of this section we work out how the maps Jiq4, » and T}, translate
under the isomorphism from Theorem [10.9

PROPOSITION 12.8. Consider any open compact subgroups K' < K < GL, (fl)
and any representatives gl, .-+, gn of the double quotient GL,.(F)\ GL,(AL)/K and
representatives gi,...,gn of the double quotzent GL,(F)\GL,(AL )/K’ For each
1 < i < n consider the arithmetic subgroup T'y, := GL.(F) n giKg:! and for each
1<y é n' the arithmetic subgroup I", = GL, (F) ng;K'g} L. Then the map Jia, «

from and the isomorphisms from Theorem u 110.9 for K’ and K fit into a
commutatwe diagram

Jia,e®id
MM} ) 8 Coo —Z MM} 1) O Co
2[@ ztm
B M (ry) B Mir,.),
J= 1=
(fj)?;1 * (Z fj|k7)j=1,
i

where, for each index i, the sum extends over all pairs of indices 1 < j < n' and
elements v € GL,.(F)n g}Kg;l up to left multiplication by I, .
J

PROOF. Suppose first that K'<1 K. Then for any h € K and any 1< i< n there

is an index 1 < j;; < n’ and an element ~;;, € GL,.(F) such that gj € Vingih~ LK.
By Propositions [10.15| and m the map J; ®id thus corresponds to the map

Fy — (fim

k%‘h)?:l'

Next observe that j;; is unique and ~;;, is unique up to multiplication on the left
by I/, , and both depend only on i and the coset K'h. Summing over all cosets

]'Lh

K'h c K thus shows that Jig, « ® id corresponds to the map

KYih)ic1 = (Z i |k’7)j:1
it

FDE — S (fin

K'h

with the indicated summation over (j,v). This proves the assertion in the case
K'q4 K.

In the general case, one must take an open compact subgroup K < K’ which
is normal in K, choose representatives for GL,(F)\GL,(AL)/K, write down the
commutative diagrams from Proposition 5 for the maps Jp : Milg(M AK) ™
MM} ) and Jiy s MR (M} o) > MGE(MY ) and Jj: MM g) —
leg(MfL %) for all h e K, and eliminate everything concerning K from the result-
ing expression for Jiq, « ® id. We leave this direct and tedious calculation to the
reader. ]

PROPOSITION 12.9. Consider any element h € GLT(A%), any open compact
subgroup K < GL,.(A) and any representatives g,...,gn of the double quotient
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GL,(F)\GL,.(A%)/K. Then the Hecke operator Ty, from and the isomor-
phism from Theorem[10.9 fit into a commutative diagram

al r Tr®id a »
MM} ) ®F Coo ——> MGE(M} ) ®r Cos
zlm zlm
_6_91 Mk(rgi) @ Mk(rgq‘,)f

(fiis (X £e1e0) Ly

where, for each index i, the sum extends over all pairs of indices 1 < i’ < n and
elements 6 € GL,.(F) n g KhKg;' up to left multiplication by I'y.,. Moreover, the
index ' that actually occurs in the sum depends only i and h.

PROOF. Set K’ := K nh™' Kh and choose representatives g;,...,g., of the
double quotient GL,(F)\GL,(A%L)/K’. For each 1 < j < n’ select an index 1 <
ij <n and elements v; € GL,(F) and k; € K such that ~;gjh"k; = g;;. Then by
Propositions and we have a commutative diagram

J;®id Jia,. - ®id

ME(MY ) @ Co ME(MY o)) @F Coo ME(MY ) @F Co

2 Il.l!] ? Illl!l 2 jm

B M(r,.) & Mi(T) D Mu(Ty).
i= j= i=
(fi)izy | (Fi, I3 )y (Z fii kv Iw);,
Vel

where, for each index 4, the sum extends over all pairs of indices 1 < j < n’ and
elements v € GL,.(F) n g;Kgi_1 up to left multiplication by GL,.(F) n g;-K’g;-‘l.
Using the fact that f; ¢, [k = fi;[x 77 we can rewrite this as

(12.10) (fi)is — (Zé fij|k5)?:1,

where, for each index 4, the sum extends over all pairs of indices 1 < 7 < n’ and ele-
ments ¢ € GL,.(F) rwjg;Kg;l up to left multiplication by GL,.(F) m'ng;K’g;flq/;l.

To analyse this sum note first that by construction we have ’ng;- = gi; k;lh.
For each j the element ¢ therefore runs through GL,.(F') ng;, k;lhK g;* up to left
multiplication by GL,.(F') n g, k;lhK'h_lkjgi_jl.

For any j and ¢ that occur in the sum this shows that dg; € g, k‘;lhK . Taking
determinants and using the fact that k; € K we deduce that det(g;) and det(g;,h)
represent the same coset in F*\(A%L)*/det(K). The coset of det(g;,) therefore
depends only on ¢ and h, but not on j. By Proposition@it follows that 7; depends
only on i and h, but not on j. For the rest of the proof we therefore fix indices 7 and
i" such that det(g;) and det(gyh) represent the same coset in F*\(A%)*/det(K),
and we can restrict ourselves to indices j with ¢; =4’

Note that this already proves the last statement of the proposition. It also shows
that § lies in GL,.(F) n gy KhKg;'. Moreover, since hK'h™ < K and k; € K, we
have GL,(F)ngyk; ' hK'h 'k;g;' ¢ GL.(F)ngyKg;' =T,,. Thus any equivalence

J
class of pairs (j,9) in the sum (12.10) determines a unique coset I'y,,é.
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Suppose that two pairs (j,0) and (j',6") determine the same coset I'y ,6 = T'y, 6"
Write 6" = e with e e I'y,. Since § € gi/kjflthi_l and &’ € gifk;,lthi_l, it follows
that &' lies in both egik;'hKg;" and gyk;'hKg;'. Multiplying by g; from the
right we deduce that 5gi/k;1hk = girk;,lh for some k € K. By the definition of ',
we have g;,ls_lgi/ € K, and since kj, k;r € K, we find that &k = h_lkjgi_,le_lgi/k;;,lh €
Knh'Kh=K' The calculation Y595k = sgi/kjflhk = girk]’-,lh = ;19 now implies
that g; and gj, represent the same double coset in GL,(F)\GL,(A%)/K'. By
the choice of g1,...,g,, as representatives of these double cosets it follows that
j=j'. Thus both § and ¢’ lie in GL,.(F') mgirk'jflth;l, and hence ¢ = 6’67 lies in
GL,(F) mgi/kjflhKh‘lkjgi‘,l. Since also e € 'y, = GL,(F)ngyKg;* and k; € K and
hKh™'nK = hK'h™!, we then actually have ¢ € GL,.(F) ngi:kjflhK’h‘lkjgi‘,l. This
shows that the map sending an equivalence class of pairs (j,d) in the sum
to the coset I'y,d is injective.

Consider now an arbitrary element 6 € GL,.(F) n gy KhKg;'. Choose k € K
such that § € gik*hKg;'. By the choice of gi,...,g/, there exists an index j
with GL,(F)gsk *hK' = GL,(F)g;K'. Since v,g; = gi, k;lh, we deduce that
GL.(F)gik™'hK' = GL,(F)g;, k:;lhK'. By the same argument as above it follows
that i’ = i;, and we can find an element ¢ € GL,.(F) such that egyk™'h e girkJTlhK'.
Since hK'h™ < K and kj;, k € K, we then have ¢ € GL,(F) ngi/k:;lhK’h’lkg;,l <
GL,(F)ngsKgi' =Ty, Thus b € GL,(F)negyk™'hKg;' = GL,(F)ngik; ' hKg; ",
and so the coset I'y , 0 arises from the pair (j,£d) in the sum other words
the map sending an equivalence class of pairs (j,d) in the sum (12.10) to the coset
[y, 0 is surjective.

All this together shows that in we can equivalently sum over all § €
GL.(F) n gy KhKg;' up to left multiplication by T'y,. Also, since f;, = fy €
M (L'y,,), the function fy|xd depends only on the coset I'y,d. This finishes the
proof. ([l

Finally, we define Hecke operators on analytic Drinfeld modular forms as fol-
lows:

DEFINITION 12.11. For any arithmetic subgroups I', IV < GL,.(F') and any
element § € GL,(F') we define the associated Hecke operator by

Ts: Mp(T') — My(T), fr— 2 fli,
where 7 runs through a set of representatives of the quotient I"\I'VéT".

Using and Proposition one finds that this is well-defined, and by
construction it depends only on the double coset IV6T'. Also, since the action of
GL,(F) preserves cusp forms and My(T') n Si(I' n §7I'6) = Si(T'), the Hecke
operator induces a map

(12.12) Ts: Sp(T") — Sk(D).
We can now rewrite the formula in Proposition [12.9] as follows.

THEOREM 12.13. The map on the bottom in Proposition s equal to

n

(fi)i (%Té(fi’))i:l;
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where, for each index i, the sum extends over all pairs of indices 1 < i < n and
double cosets I'y,0T'y, ¢ GL,.(F) n g KhKg;'. Again the index i’ that actually
occurs depends only on i and h.

PROOF. By construction the set GL,.(F) n gy KhKg;! is invariant under left
multiplication by I'y, = GL,.(F)ng; K g;* and right multiplication by T'y, = GL, (F)n
giKg;', and it is a finite disjoint union of double cosets Iy, oly,. The formula re-
sults by direct computation from . [

REMARK 12.14. In Theorem it can happen that GL,.(F) n gy KhKg;*
decomposes into several double cosets. This is related to the fact that the algebraic
Hecke operator T}, is by construction defined over F, whereas the analytic Hecke
operator Ty is only defined over C,,. Thus if M:l,KnlrlKh((Cw) has more connected
components than M} i (Ce), their common field of definition Fgnp-1 i, IS & proper
extension of the field of definition Fx of the connected components of M} (C),
and the algebraic Hecke operator T} can be viewed as an analytic Hecke operator
T followed by a trace map with respect to Frnp-1xn/Fk-
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Examples



Introduction

In the present Part 3 we illustrate the general theory constructed in Parts 1
and 2 by constructing some important families of modular forms.

Let L be a finitely generated projective A-submodule of rank r of F", viewed
as a set, of row vectors. For any w € )" we thus obtain a strongly discrete A-lattice
Lw c Co of rank 7. Our convention on row vectors implies that GL,.(F) acts on
F" from the right. We denote the stabiliser of L by

I = {yeGL.(F)|Ly=L}.

For L = A" we simply have I'p, = GL,.(A). Note that for any non-zero ideal N c A,
an element of GL,.(F) stabilises the lattice L if and only if it stabilises the lattice
N7LL; thus T'y-1; = I'z. More generally, for any coset v+ L ¢ F” we consider the
congruence subgroup

Tysr = {yeGL.(F)|vy+Ly=v+L} < T'p.
Also, for any non-zero ideal N c A we consider the principal congruence group

IL(N) = () Tup = ker(Tp > Aut(N'L/L)).
veN-1L

All these groups are arithmetic subgroups of GL,.(F).

Outline of Part 3. In Section [[3] we construct the Eisenstein series of all
weights k£ > 1 associated to all cosets v + L and compute their u-expansions in
Proposition [I3:10] In Theorem [13.16] we show that they are modular forms of
weight k for the groups 'y, .

In Section [14] we determine the action of Hecke operators (defined in Section
on Eisenstein series, restricting ourselves to Hecke operators that are supported
away from the level of the Eisenstein series (see Assumption . In each case,
Theorem identifies the Hecke image of an Fisenstein series as a linear com-
bination of Eisenstein series. In particular, we deduce that Eisenstein series are
eigenforms under many Hecke operators.

Coefficient forms are defined in Section they are modular forms for I'p
which occur as coefficients of Drinfeld modules, isogenies or exponential functions
associated to the lattice Lw.

Section [16] deals with discriminant forms, which arise as highest coefficients
of Drinfeld modules or as roots thereof. These are always cusp forms. Certain
(g — 1)-st roots are examples of modular forms with non-zero type m.

Lastly, we discuss the special case of A =F,[t] and L = A" in Section Here
we exploit the explicit description of algebraic modular forms for I'(¢) from [PS14]
and [Pi13] together with our identification of analytic and algebraic modular forms
from Part 2. This allows us to prove in Theorem[17.1|that the graded ring M. (I'(t))
of modular forms of all weights for I'(¢) is generated over Co, by the weight one
Eisenstein series Fy .., for all v e t 'L\ L. Using invariants, we then deduce that
the rings M, (GL,.(A)) and M, (SL,.(A)) are generated by suitable algebraically
independent coeflicient forms. This generalises known results from the r = 2 case
due to Cornelissen, Goss and Gekeler, respectively. Lastly, we give some dimension
formulae in Theorem [I7.11}
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13. Eisenstein series

For any integer k£ > 1 and any vector v € F" we define the Fisenstein series of
weight k associated to the coset v+ L by

(13.1) Brop(w) = Y (aw)™
O#zev+Ll

PrOPOSITION 13.2. This series defines a holomorphic function Q" - C.

PROOF. By Proposition [3.4] it suffices to show that the series converges uni-
formly on the affinoid set €2 from (3.2) for every n. For this observe that any
x € F" ~ {0} determines a unimodular Fe-linear form % on FZ . For any w € Q] it

|
follows that
(3.1) (3.2) B3
el = Jel- 2] B Jal- 1) - lol B bl bl B -

As x runs through (v + L)~ {0}, the norm || goes to infinity; hence |zw|™ goes to
zero uniformly over (2], as desired. O

Some basic transformation properties of Eisenstein series are:

PROPOSITION 13.3. (a) For every~y e GL,(F) we have Ey yir|k7y = Ek vy+Lr-
(b) In particular Ey .1 is a weak modular form of weight k for the group

1_‘v+L~
(c) For any A-submodule of finite index L' ¢ L we have Ey yir, = Yo Ekvrsrss
where the sum extends over all L'-cosets v/ + L' c v + L.

PROOF. (a) results from the calculation

Erohn@) & i)™ 3 @aw)™

0#xev+L

= 2 (Ohw) -z yw)™

0#zev+L
(L.3) _
B S @)t
0#xzev+L
= Ek,'u'y+L’y (w)

(b) is a direct consequence of (a), and (c¢) is obvious from the definition (13.1). O
Our next goal is to determine the u-expansion of Ej, .., which requires some

preparation. For any strongly discrete F,-subspace H c C., consider the power
series expansion of the exponential function

(13.4) ea(z) =z [] (1—%) = Z@H,qizqi
he H~{0} i=0

with ep 4i € Coo and epr1 = 1 that is furnished by Proposition [2.2]

ProrosITION 13.5. (a) For any strongly discrete Fy-subspace H c Cq, we
have

en(z)™ = Y (z-h)"

heH
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(b) For every k > 1, there exists a unique so-called Goss polynomial G (X,Y7,Ya, ...

with coefficients in T, in the variables X and Y; for all integers 1 < i <
log, k, such that for every strongly discrete Fy-subspace H c Co we have

Gr(en(2)™", eng, emges --.) = Y. (z-h)7*.
heH

(¢) These polynomials further satisfy:
(i) Gy is monic of degree k in X and divisible by X.
(i) G1=X and Gi = X(Gr-1+ Ticictog, k YiGr-gi) for all k> 1.
(iii) G = G
(iV) Xga%Gk = k‘Gk+1.

PROOF. The existence of these polynomials was first obtained by Goss in
[Go80c, Prop. 6.6], but in this generality see Gekeler [Gel3| Thm. 2.6]. O

REMARK 13.6. We shall see in Proposition that the vanishing order at
infinity of the Eisenstein series E}, ..y, is controlled by the vanishing order of the
Goss polynomial G, at X = 0. By part (i) of Proposition [13.5] (c) this vanishing
order is > 1, and part (ii) implies that it is equal to &k for all k < ¢. In [Gel3],
Gekeler gives a formula for the order of the Goss polynomial at X = 0 in the case
A=TF,[t] and H = A, where p is prime and 7 is the Carlitz period. This determines
the vanishing order of the Eisenstein series in the rank 2 case for A =T, [t].

COROLLARY 13.7. For any v e F" N\ L we have
Ei (W) = erw(vw)™.

PROOF. Direct computation using the substitution x = v — £ and Proposition
13.5[ (a):

Eipr(w) = > (zw)™ = Y (vw-tw)™" = epn(vw) ™

Ofzev+Ll leL
(]

Now define A-submodules L’ and L; by the commutative diagram with exact
rOws

(13.8) 0 Frt Fr F 0
U z'~(0,2") U (z1,2")~>z1 U
0 L L Ly 0.

Since L is finitely generated projective of rank r, the A-modules L' and L; are
finitely generated projective of ranks r — 1 and 1, respectively. Also fix a subgroup
Ly ¢ L which maps isomorphically to L;, so that L = L; & ({0} x L'). Write
v=(v,v) e FT=Fx Fr1,

LEMMA 13.9. The subgroup A’ c Frt from that corresponds to I'y,p N
U(F) is the finitely generated A-submodule of rank r -1

N = {NeF | (v+L)NcL'}.

Moreover, for any z1 € (v1 + L1) ~ {0} the inclusion 1A’ c L' has finite index.
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PROOF. For any X' € F"™! and (x1,2') € F" = F x F""! we have (zl,x’)(é }i’) =
(1,21 A"+ 2'). By the definition of T',,, in the introduction it follows that A" € A" if
and only if for every (z1,2") € v+ L we have (0,x1\") € L, or equivalently x;\" € L'.
As (z1,2") runs through v + L, its first component x; runs through vy + Ly, so the
formula for A" follows.

Since L' and L; are finitely generated A-modules of ranks r — 1 and 1, respec-
tively, the formula implies that A’ is a finitely generated A-submodule of rank r —1.
For x1 € (v1 +L1) ~ {0} it follows that 1A’ ¢ L" is an inclusion of finitely generated
A-modules of the same rank and hence of finite index. O

As before we write w = (zl,) € )" c Coo x QL. Then the expansion parameter
from (4.14)) is the function u = uy(w1) = epryr (w1) L.

ProrosiTioN 13.10. We have

Fews((4)) = 5 { Eparin (W) if x1 =0,

-1 .
o= (107 € vt g Gk(ewa(:cw) s €L gy €L g2 ) if 140,
where Gy, is the k-th Goss polynomial from Proposition|13.5] and in the second case
[T erw(zi™dw)
Vel’~z1 A’ mod x1A’

no T (-enw(@ (@ =) u)
0'el’ mod z1 A’

u[L’:wlA’]

eL/w/(acw)_l =

Moreover, the right hand side converges locally uniformly for all (u,w") in a suitable
tubular neighbourhood of {0} x Q1.

PROOF. Using the fact that L = L; @ ({0} x L), we break up the series defining
Ey vi1 as

(1311) Ek,ML(w)

> (zw)7* = >

O0#zev+Ll meu+i1(0#y€$+({0}XL')

(yw)‘k).

Write # = (21,2") € F” = F'x F""!, and observe that for any y = (y1,9’) € F" =
F x F™! we have yw = yyw; +y'w'.

If 1 =0, the inner sum of (13.11) is just

> W) = Brann (W)
0#y’ex’+L’

Such a term occurs only if v lies in L + ({0} x F™™1), and then it occurs for a
unique z.
If 21 # 0, we write y = z - (0,¢"), so that yw = 2w - £'w’. By Proposition m
(b) the inner sum of (13.11]) then becomes
> (zw - W'k = Gk(eywl(gcu))_l7 €L gy ELw g2 )
veL

To transform e (zw) we proceed as in the proof of Proposition First, by
Lemma we have an inclusion of finite index A’w’ c #7'L'w’, and by the F-
linear independence of the coefficients of w the index is precisely [L':z1A’]. By
the additivity of the exponential function we have

enw (7' 2w) = en(wr + 27 2'w’) = u ™t + enn (27t 2'W)
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with u = ez (w1) L. Using Proposition [2.3| we deduce that

e (zw) = xl-ewilL,w,(xilxw)

-1
xTq - eeArwz(wilL'w')(eA’w’(l‘l LUCU))

= ~eeA,w,(w11L,w,)(u_l +ep (z7'2'w")).
By the definition and the additivity of the exponential function this in turn yields

1 u ™+ epr (o7t
e (z7H0W")

- - r 7
z1- (v + e (2t 2'w’)) - T
e/ Nz A
modulo @1 A’

-1 =17 7
= X1- (u + e Ty T W ) . | |
1 Iw’( 1 ) verioaia eA’w'(lefl 7/)

modulo z1 A’

errw (zw)

enw (27 (0 - 2" w') —ut

1+epw(27ta’W’) - u H e (70 =2 )W) u—1

:1’1

U[L/::EIAI] eleL/~\xq1 N eA’w’(:I"Ilg,w,)
modulo @1 A’
[T (1-enw(@i' (¢ -a")') u)
_ I ] l'el’ mod x1 A’
- wlL @i A] H CAer (l‘;lflw,) ’

C'eL’'~z1 A’ mod z1 A’

where the last transformation uses the fact that (=1)[Z#1A11 = 1 because [L' :
x21A] is a power of g. Combining everything we obtain the desired formula.

For the convergence take any n > 0. By Proposition (c) there exists a
constant ¢, > 0, such that for any w’ € Q7! and any 2’ € F7;! we have |epr. (2/w’)| <
¢, In particular this inequality holds for 27" and 27! (¢ - 2') in place of #’. Thus
if [u| <7 = (2¢,) 7, we have |epro (271 (0 —2")w') -u| < 271, so the geometric series

for
1

1-epw (a7t (0 —a")w') - u
converges uniformly to a value of norm 1. Combining the inequalities yields the
bound

AW (le le)

U[L':xlA'] . trelinay A mod @) Af g TLL,:ZIA’]CLL’:EIA’]71 ) 2—[L':K1A']
X1 [1 (1—6Azwf(xfl(£'—a:')w') u) h |21] lz1]cn

¢'el’ mod 1A’/

Also recall that Gy, is a polynomial of fixed degree in X which is divisible by X,
and the values err. ¢, €r77 g2, .. for the other variables are holomorphic functions
on Q! and hence bounded on 27!, As both |z;| and [L’ : 21A’] go to infinity
with 1, this proves that the right hand side of the formula for Ej ;1 (w’) con-
verges uniformly for all (u,w’) € B(0,7,) x Q"1 Varying n it therefore converges
locally uniformly on the tubular neighbourhood U, B(0,7,) x Q71 O

REMARK 13.12. In principle, the u-expansion of Ej, ., in terms of powers of
u can be computed from Proposition by multiplying out the geometric series
involved. As it stands, however, the sum is essentially a sum over a coset of L; c F,
which is a fractional ideal of A. In the rank 2 case, Petrov [Pel3] has shown that
there are many Drinfeld modular forms with such expansions and that they exhibit
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many desirable properties because of it. One may ask if there are other examples
in the higher rank case.

PROPOSITION 13.13. (a) The u-expansion of Ey, ,+1,(w) has constant term
Ey e (W) ifve L+(0,2") for some 2’ € F™™', and constant term 0 oth-
erwise.

(b) Ifv ¢ L+ ({0} x F™Y), the order at infinity of E y.r(w) with respect to
the group Ty nU(F) is at least

ordx (Gy) - min{[L' TNy | T1 €V + Ll}.

PROOF. Assertion (a) follows from Proposition[13.10]and the fact that the Goss
polynomial Gy, is divisible by X. In (b) let d := ord x (G ) denote the vanishing order
at X =0 of Gy as a polynomial in independent variables X,Y7,Ys,... and write
Gr = X4H(Y1,Ys,...) + (higher terms in X). Then each summand in Proposition
[[3.10 contributes

[T enw(azi'tw) !
[L':z1A'] ) 0el’~z1 A’ mod z1 A’

U -H(eL:w/,q, €Liw g2y - - .)+(higher terms in u)

1

to the u-expansion of Ej ,+r(w). Recall that v = (v1,v"), so that as = = (z1,2")
runs through v + Ly, its first component x; runs through v; + L1. Combining this
yields the desired lower bound. [

REMARK 13.14. For the purposes explained in Remark [I6.8] below, one should
hope that the inequality in Proposition is always an equality in the case k = 1.
By this would yield a formula for the order at infinity of every discriminant
form. For example we have:

PROPOSITION 13.15. If A = F,[t], for any v € t"*L \ L the order at infinity
of E1,u+1, with respect to the group Tyop nU(F) s 0 if ve L+ ({0} x F™1) and 1
otherwise.

PROOF. As above write v = (v1,v"). If v1 € Ly, the u-expansion of E ..z, has
constant term FEy .1 by Proposition (a), which is non-zero by Corollary
hence the order is 0 in this case.

Otherwise we have t7 1L = Fy-v1 + Ly and this A-module is generated by a
unique element z; € v; + L;. By Lemma we deduce that A’ = x7!L/. This
21 is then the unique element of the coset v1 + L; that satisfies [L' : 21A'] = 1.
Since, moreover, G1(X) = X by Proposition [13.5] (b), Proposition implies
that B 441 (w) = = + (higher terms in u). The order is therefore 1 in that case. [

THEOREM 13.16. The Eisenstein series Ej, 41, 15 a modular form of weight k
for the group Ty, 1.

ProOF. By Proposition m (b) it is already a weak modular form for Ty, .
Moreover, for every v € GL,.(F') we have Ey y+1|kY = Ek vy+1 by Proposition m
(a), and the latter is holomorphic at infinity by Proposition [13.10 O

14. Hecke action on Eisenstein series

For any coset v+ L the quotient (Av+L)/L is a finite A-module that is generated
by one element; hence it is isomorphic to A/N for a unique non-zero ideal N.



56 EXAMPLES

Equivalently N is the largest ideal of A such that I',,; contains the principal
congruence subgroup 'y, (V). We can therefore view N as a kind of level of the
Eisenstein series Fj, 7. In this section we compute the effect on Ej, .1, of a Hecke
operator that is supported away from N.

For any finitely generated A-submodule L c F” of rank r and any prime pc A
let Ly, denote the closure of L in Fy, which is a finitely generated Ay-submodule
of rank r. Note that L can be recovered from the submodules L, for all p as the
intersection F" nJ], Ly within (A%)T. Consider finitely generated projective A-
submodules L, L' ¢ F" of rank r, vectors v, v’ € F", and an element § € GL,.(F),

which together satisfy:

AssuMPTION 14.1. For every prime p c A we have:
(a) vd+Lyd cv'+ Ly,
(b) v0+ Lyd =v"+ L, whenever v ¢ Ly, and
(¢) Lyd ¢ pLy.

Here (a) is equivalent to vd + Ld c v" + L', which includes the fact that L c L'.
Given (a), condition (b) means that Ej .1, and Ej .1+ are Eisenstein series of the
same level N and that Ty is supported only at primes not dividing N. Property
(c) is equivalent to Lé ¢ pL’ for any prime p, which serves as normalisation. If
L =L"= A", then (a) means that § has coefficients in A and maps v into v’ + A".
Then, in addition, condition (b) means that the determinant of § is relatively prime
to N, and (c) means that § is not congruent to the zero matrix modulo any prime
of A. Assumption will remain in force until Theorem below.

To begin with we abbreviate
I = Tyupr,
I' = ' TprdnTyir = Dysersnyip < TV
For any prime p c A we consider the open compact subgroups
Ky = {keGL(Fy) | vk+Ljk=v'+L; },
Ky = {keGLp(Fy) | v'k+Lyk=v"+Lj, and v5k + Lok =v6 + Lpd } < K}.

Since L'/L¢ is finite, for any prime p not dividing its annihilator we have L,d = Lj,
and hence v+ Ly = v+ Ly,. Thus for almost all p we have K, = K. By Assumption
14.1f (b) this is so in particular if v ¢ L,. Also, the equalities L' = F" n [T, L), and
L =F"n[l, Ly imply that T = GL,.(F) n[1, K}, and I" = GL,.(F') n T, K.

LEMMA 14.2. For every p we have det(K,) = det(kK).

PROOF. If v ¢ Ly, this follows from the fact that Kj = K,. Otherwise by
assumption we have L,0 = vd + L0 c v’ + L; = LI'J and both are free Ay-modules
of rank r within F}. To prove the desired statement we can conjugate everything
by an arbitrary element of GL,(F'). By the elementary divisor theorem we may
thus without loss of generality assume that L; = A and that Lyd = Agh for some
diagonal matrix h € GL.(F}). For any a € A] the diagonal matrix diag(1,...,1,a)
then lies in K, with determinant a; hence A} < det(Kj). As A is the unique largest
compact subgroup of Fy, it follows that det(K)) = det(K}) = A}, as desired. O
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LEMMA 14.3. There is a natural bijection
M\ ——— I, K,\ K,
Iy b———— (Kp7)p-

Proor. If two cosets I'y; and I'y, have the same image, we have K,v1 = K2
and hence 717;3" € K, for all p. Thus 175" € GL.(F)n[], K, =T, and so I'y; =
I'v9. The map is therefore injective. For the surjectivity consider any collection of
cosets Kpky c K{J. By Lemma we may without loss of generality assume that
ky € SL,.(Fy) n K. By strong approximation in the group SL, there then exists an
element 7 € SL,.(F') NI, Kykp. This element lies in GL,.(F) n [T, K} = I'"; hence
the map is surjective. (|

Next observe that for any « € IV the subset vy + Ly c F" depends only on the
coset I'y. For any x € F" we let C'(«) denote the number of such cosets for which
x € véy + Lo~y. Similarly, for any k € Kl'J the subset vok + L0k c Fy depends only
on the coset Kyk. For any x € Fy we let Cy(z) denote the number of such cosets
for which z € vdk + L,6k. For any fixed = € F" the module (Az + Av' + L')/L§ is
finite, so for any prime p not dividing its annihilator we have x € v’ + L;J =v0+ Lo
and K}, = K, and hence Cy(x) = 1.

LEMMA 14.4. For any x € F" we have C(x) = [1, Cy(x).

PROOF. Since v € F" and L = F" n[], Ly, for any v € I’ we have the equality
vy + Loy = F" n (véy + 1, Lydy) within (AL)". Since x € F", it follows that
x € voy+ Loy if and only if x € véy+Lydv for all p. But the latter condition depends
only on the coset K7, so the product formula follows from Lemma [T4.3] O

Now let g, denote the order of the residue field k(p) := A/p. In principle one can
give an explicit formula for Cy,(z) as a polynomial in ¢, with coefficients in Z. But
we are only interested in Cp(2) modulo (p), so we restrict ourselves to determining
this residue class. Let charx denote the characteristic function of a subset X c FpT .

LEMMA 14.5. For any prime p consider the unique integers fip1 > ... 2 fipr 20
such that Ly,[Ly,0 = @7_y Afp"»7. Then for any x € F}] we have

char, ., (x) if pp1 €1
Cp(z) = { charppr (2)  f 2<ppa <ppr1+1 ¢ mod (gp).
0 if bp1 2 php, -1 + 2

PRrROOF. By Assumption (a) we have vd + Lyd c v’ + Ly, so for any k € K,
we also have vék + Lydk c v + Ly,. Thus Cy(x) = 0 if 2 ¢ "+ L. So till the end
of the proof we assume that = € v' + Lj,. If in addition vé + Lyé = v’ + Lj,, we have
K, = K, and vék + L6k = v+ L), and hence Cy(z) = 1. Till the end of the proof we
therefore assume that vé + Lyd # v’ + Lj,. By Assumption (b) this implies that
v € Ly and hence Lyd = vd + Lpd G v' + Ly, = Ly,. For ease of notation we abbreviate
the chosen exponents to f; = ptp ;. Then pi > 1, and Assumption m (c) requires
that p, =0.

Both L6 c L;, are free Ay-modules of rank r within Fy. To prove the desired
statement we can conjugate everything by an arbitrary element of GL,(F'). By
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the elementary divisor theorem we may thus without loss of generality assume that
Ly, = A} and Ly6 = @7, p"iA,. Then K}, = GL,(4,) and
Ky = B GL(Ap)hn GL,(Ap) = { (aij)ij € GLr(Ap) | Vi > ji ay; e pHi7iA, }.
Next observe that p#' Ly, ¢ L,6 ¢ Lj,. Consider the factor module L' := Ly, /p*' Ly, =
(A/p#*)" and its submodule L:= Lyd/p"' Ly, = @]y p"7 Ay [p"*Ap. Then K surjects
to K’ = GL,(A/p"), and the image K < K’ of K, < K is the stabiliser of L. In
particular we have [K’ : K] = [K] : K,]. To compute this number note that the
image of K, in GL,(k(p)) is the parabolic subgroup
P(k(p)) = { (aij)ij € GLy(k(p)) | Yi> j: pj>pi = ai;=0},
and a straightforward calculation shows that [GL,(k(p)) : P(k(p))] = 1 modulo
(¢p). From this we deduce that
(14.6) (K} K] e [Tap 1 (14 ¢,2).
i>j

Also, let z € L' denote the image of x € v’ + Ly, = L;,. Then
KkeK'|zeLk}| {keK'|zk™ e L}|

K] | K| '
If Z = 0, we deduce that Cy(z) = [K), : Kp]. Otherwise Z lies in the subset S, =

p?L’ ~ p**1 L’ for a unique exponent 0 < v < ju;. Since S, is an orbit under K’, the
last fraction is equal to the proportional size of L n.S, versus S,; hence

ILnS,|
|5, |

Cp(x) =

(K K] |

(14.7) Cp(z) = [K; (K-
To compute these cardinalities observe that
Lop’L’ = @ (p"A, np“Ay) /A, = @ pmax{w,v}Ap/pujAp
j=1 j=1

and hence
-
Lnp L] = [ g et
j=1
The same calculation with v + 1 in place of v shows that
T
|E A p”+1i’| _ H qgrmax{#j,wrl}.
j=1
Together this implies that

ILnS,| = qugr'ﬂ(#rmax{#jWD B q2;=1(urmax{#j’1’+1}).

p
Since p1 > p, = 0, we certainly have py — max{y,, v} > g1 — max{u,,v + 1}, so the
first exponent is greater than the second. Therefore

(14.8) ILnS,| € qujr'“(“l_max{”j’wl}) (-1+qpZ).
A similar, but simpler, computation shows that
(14.9) 15, € gpt" T (14 gp2).

Combining the formulas (14.6]) through (14.9) we deduce that
Co(@) € ;- (1+gp7Z)
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for
e(v) = Ymax{0,; - i~ 1} + Y (- max{pag, v +13) - (s - v-1).
i>j j=1
By (|14.6)), the same formula is true in the case T = 0 if we set v = p;.
It remains to find out when this exponent is greater than 0. Combining the

terms for ¢ = r with the rest of the formula and using the fact that u, =0 yields

C(V) = Zr>i>j maX{Oa My — Hi — 1} + Z;:l(max{oa Hj = 1} - maX{O, Hj —V— 1})

= Zrsizgmax{0, 1 — p; — 1} + ¥y max{0, min{p; - 1,v}}.
Here all summands are > 0. Since p1 > ... > y,, the first sum contains a positive
term if and only if g1 — -1 —1 2 1, and the second sum contains a positive term
if and only if min{u; - 1,7} > 1. Thus
c(v)>0 if g 2 ppo1+2o0r (ug 22 and v21),
c(v)=0 if puy <pipoq +1 and (ug <1 orv=0).

Combining all the cases we conclude that

Cp(z)=0 if ¢ o'+ Ly,

Cp(z)=1 if xev'+ Ly =vd+ Ly,

Cp(r)=0 mod (gqp) ifwev + L, #vé+ Lyd and (p1 > pr—1 +2 0r (1 >2 and z € pLy)),

Cp(r)=1 mod (gq) ifwev + L, #vd+ Ly and pg < pipq +1 and (uy <1or x¢ply),
Since v + Ly, = v6 + Lyd if and only if Lj = Lyd if and only if y1; = 0, the desired
formula follows. O

Now recall from Definition [12.11] that the Hecke operator associated to the
double coset Iy, 1,61y 1+ is defined by

(14.10) Ts: My(Tosr) — Mp(Losrr), fr— 30 fle,
where « runs through a set of representatives of the quotient Iy L \Ty+ 10T 41

THEOREM 14.11. Under Assumption|14.1| consider the integers , ; from Lemma
[74.3 If pp,1 > pip.r—1 +2 for some p, we have

T5Ey ver, = 0.

Otherwise let S be the finite set of primes p for which 2 < pp1 < pipr—1 + 1. For
any subset I ¢ S set L} = Tlyerp-L'. Then v' + L' = 0" + L" for some element
v" e (v + L") nNypes pLy, and
TéEk,v-f—L = Z (_1)|” : Ek,?)”+L§~
IcS

PrOOF. By the construction of I' and I'" we have Tsf = ¥, Fy v+ L[x 07y, where
~ runs through a set of representatives R of T\I”. Using the transformation rule
from Proposition [13.3] (a) and the definition (I3.I)) of Eisenstein series we deduce
that
(TsEroer) (@) = 3. Erwsqersy(w) = 3 > (@)= Y C)(aw) ™

YeER Ye€R 0#xevdy+Loy O#xeFT

Here C(x) is determined by Lemmas and If pp1 2 pip r—1 + 2 for some p,
we have C'(x) =0 for all x € F". Otherwise, for any prime p in the indicated set S,
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we have v € L, and hence v’ € Lj by Assumption m (b). Thus p does not divide
the annihilator N of the coset v’ + L’/L’. By the Chinese remainder theorem there
therefore exists an element a € Nyesp with @ =1 modulo N, and then v := av’ lies

in (v'+ L") nNypes pLy,. For any subset I c .S we then have

o+ Ll ifpdT L, ifpfl
T p y o I P ) _ ’
F”H{ pL, ifpe[,}‘” +(F”H{pL; ifper, [| =V FLr

all p all p
Lemmas [T4.4) and [I45] then imply that
Cz) = ] char,, r; () - I1 charp; pr; () modulo (q)
pés peS
= H charvu,L; (x) - H [charpr (x) - chaurpL/p (x)]
pes peS
= [lchary.z (x)- > (-1 [T charg, (2) - [ char,r, ()
p¢s IcS peS\I pel
= Z (—1)|1| TI chary,z; (z)-T] chary; (z)
IcS pel pel
= Y (-1 charyn, (2).
IcS

The desired formula now follows from the definition (13.1]) of Eisenstein series. O

COROLLARY 14.12. Consider any 6 € GL,.(F) such that for every prime p c A
we have:
(a) vo+ Lpdcv' + Ly,
(b) vé+ Lyd =v"+ Ly, whenever v ¢ Ly, and
(c) pLy & Lyd.
Then the Hecke operator Ty associated to the double coset Ty, 01y s satisfies

TsExwir = Eroar.

PRroor. In that case Assumption holds with g1 <1 for all p; hence we
are in the second case of Theorem [14.11] with S = @. O

PROPOSITION 14.13. Consider any arithmetic subgroups T', TV < GL,.(F), any
element § € GL,.(F), and any scalar a € F*. Then the Hecke operators Ts and Ty-15
associated to the double cosets T'6T' and Ta 16T satisfy

Ta—15 = al~C . Tg.

PROOF. As v runs through a set of representatives of I'\['dT”, the element
a7 runs through a set of representatives of I'\['a™*6T". Since fli(a™'v) = flx(a™t-
Id) |y = a® - flxy by and , the formula follows from the definition of
Hecke operators [12.11 O

REMARK 14.14. Using Proposition [14.13] one can express any Hecke operator
in terms of another Hecke operator that is associated to a matrix with coefficients
in A. If one prefers, one can also require that the inverse matrix has coefficients
in A.

REMARK 14.15. Combining Proposition [14.13|with Theorem [14.11|or Corollary
[T4.12] one obtains an explicit formula for Ty-15F} v as well. In the special case
v+ L' = v+ L one obtains many Hecke operators for which E,, is an eigenform

with eigenvalue 1 or a*.
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REMARK 14.16. In the case r = 2 Theorem [14.11|was proved by Gekeler [Ge86],
VIIL1]. For instance, for L = L' = A%, the Hecke operator in [Ge86] associated to a

prime element 7 € A is Tj for the matrix § = (é 72_1) and satisfies T5 Ey, 1, = mk “Eip

15. Coefficient forms

As before we fix a finitely generated projective A-submodule L c¢ F" of rank r.
We will show that the coefficients of the exponential function ey, and of the as-
sociated Drinfeld A-module are modular forms for the group I'p; these are the
coefficient forms in the title. We will also exhibit them as polynomials in Eisen-
stein series. The coefficients of ey, have been studied in a special case, for instance
in [Ge86 11.2] and [Gell].

For every k > 0 we write ey (w) = er, 4¢, 0 that er,(2) = Xilo ek,L(w)zqk
with eg 1, = 1. Then by [BR0O9 (9)] we have

k-1 ;
(15.1) enr = Egoip+ ) €L Eoei
j=1

By direct calculation [Bal4l Lemma 3.4.13] this is equivalent to the more suggestive

fact that z— 3,51 Egi_q, (w)z9 is the compositional inverse of ey, in other words,
that for all w e Q" and z € C we have

(15.2) eLw(z = Eqi_l,L(w)qu) - 2
i>1
By induction on k the recursion formula (15.1) implies that ey is a universal
polynomial with coefficients in F,, in the Eisenstein series Egi_; r, for all 1 <i < k.
PROPOSITION 15.3. For all k > 0 we have:

(a) 6k,L|q’€—17 = €k, Ly fOT‘ all 7€ GL’I‘(F)

(b) ex.r, is a modular form of weight ¢* -1 for the group T'y,.

(c) The u-expansion of ey 1, has constant term ey with L' as in . In

particular ey 1, is not a cusp form.

ProoF. For any v € GL,(F') the exponential function associated to the lattice
Ly(w) c Cy satisfies

23 . -1 .
CLy(w) = ej(“/,w)‘lew(Z) = j(v,w) eL"/w(](’Yaw)Z)'
Comparing coefficients of 27" in the respective power series expansions yields

erg (@) = G(rw)” epy g (w),
proving (a). Part (b) follows from Theorem and the formula by induc-
tion on k. To prove (c), write w = (}) as before. For any fixed w’ € Q"1 if w; goes
to infinity, the defining formula shows that ey, goes to ey, coefficientwise.
Thus ey, 1, goes to ey, 1/, and since the latter is non-zero, it follows that ey ; is not
a cusp form. O

Next let (G, qor,%%) be the Drinfeld A-module of rank r over " that was
associated to L in (7.3). Following (7.2) and (2.1) and Corollary for any

a € AN {0} and any w € Q" we then have
(15.4) Pr(X) = a- X ] (1-Eresrn(w)-X).

vea 'L\L
modulo L
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This is an F-linear polynomial of degree [a™*L: L] =¢" deg(a) in X. We expand it
as
(15.5) UE(X) = Ygri(w)- X

>0
with holomorphic functions gf, ;, on Q" which are non-zero for ¢ =0 and ¢ = r deg(a)
but zero whenever i > rdeg(a). The formula implies that each gf’ L is a
homogeneous symmetric polynomial of degree ¢* — 1 in the functions Eqvir-

For an alternative description recall that ¢)£ can be characterised as the unique
F,-linear polynomial such that ¥ (er,(2)) = erw(az). Plugging the expansions
for wgw and er,, into this functional equation and using the fact that e ; =1, we
deduce that for all k£ > 0 we have

k-1 .
(15.6) gik + > 95,1‘ . eZiuL = epr- a?

i=0
By induction on k this recursion relation implies that gf, % 1S a universal polynomial
with coeflicients in A in the functions e; 1, for all 1 < j < k, or again in the Eisenstein
series Egi_y p for all 1 <i<k.

More generally, consider any non-zero ideal N ¢ A. Then some positive power
of N is a principal ideal, say N™ = (a) for a € A~ {0}, and we choose an element
N* € Cq such that (N*)™ = a. This element is well-defined up to multiplication by
a root of unity, and for any principal ideal (a) the value (a)* is equal to a times a
root of unity. We also set deg(V) := dimp, (4/N), so that [N"'L: L] = g"dee(V),
In analogy with the definition of E* we define

(15.7) 1%/“’ = N*- Cerw(N"1Lw)-
Note that for any principal ideal we have g(La), ;= gf}i times a root of unity; hence

everything that follows about 91%/,2‘ applies equally to g(fl

For general N, by (2.1) and Corollary we have

(15.8) (X) = N*-X- [] (1-E1pr(w)-X).
veN'INL
modulo L

As in 1’ we define holomorphic functions gﬁu on " by expanding

(15.9) PE(X) = Ygki(w) X7,

i>0
which are non-zero for i =0 and i = r deg(N) but zero whenever i > r deg(N). The
formula implies that each gf,,k is a homogeneous symmetric polynomial of
degree qk -1 in the functions F 4.1

For an alternative description observe that by the definition of 1/11%‘” and Propo-

sition (a) we have

(15.10) N (erw(2)) = N™-en-120(2)-

Plugging the respective expansions into this functional equation and using the fact
that ey, ; = 1, we deduce that for all £ > 0 we have

k-1

(15.11) INE+ 2 9N €l = N epn-iL.
1=0
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By induction on k this recursion relation implies that gJL\,’k is a polynomial with
coefficients in F,,[ N*] in the functions e; ; and e; y-1y, for all 1 < j <k, or again in
the Eisenstein series Eyi_y , and Egi_y y-1p, for all 1<é<k.

PRrROPOSITION 15.12. For any non-zero ideal N ¢ A and any k > 0 we have:
() g klgr-17 = g]LV:Yk for all v € GL,.(F).
(b) gﬁ’k is a modular form of weight ¢* — 1 for the group T'f,.
(¢) The u-expansion of g]L\,Jc has constant term gJL\,”k with L' as in . In

particular gk,yk is a cusp form whenever k > (r —1)deg(N), but not for
k=(r-1)deg(N).

ProOF. By construction gﬁ,yi is a homogeneous symmetric polynomial of de-
gree ¢' — 1 in the functions E1 y+r. Thus the transformation formula in Propo-

sition [13.3] (a) directly implies (a). Part (b) follows from Theorem [13.16] and

the formula (|15.11) by induction on k. To prove (c), write w = (‘:}) as before.

For any fixed w’ € Q"7 if w; goes to infinity, the defining formula shows
that er, and en-17,, g0 to ers and en-17+,r, respectively. The functional equa-
tion Y&~ (erw(2)) = N* - en-11,(2) and its counterpart for L'w’ in place of Lw
thus imply that ¥5* goes to 1/}1](;“’,. Taking coefficients this shows that the u-
expansion of each g% , has constant term gﬁ,’,k. Finally, that constant term is zero
for k> (r — 1) deg(N) and non-zero for k = (r — 1) deg(V). O

16. Discriminant forms

DEFINITION 16.1. For any non-zero proper ideal N ¢ A we call A% := gJL\,’T deg(N)

the discriminant form associated to N. Likewise we set AL := gfrdeg(a).

Since [N7'L : L] is a power of ¢, we have (_1)[N‘1L:L]_1

(15.8) and (|15.9) the above definition means that

=1 in Fg; hence by

(16.2) AR W) = N*- ] EBivsr(w).
ve N"'INL
modulo L
PROPOSITION 16.3. (a) AL (w)#0 for allweQr.

(b) AL is a cusp form of weight ¢"9™N) —1 for the group T'y,.

deg(N)
(c) A%F =a'" """ AL for any ae F.

PrOOF. (a) follows from (16.2) and Corollary and (b) is a special case

of Proposition [15.12] Assertion (c) results from applying Proposition [15.12] (a) to
v =a-1d,. O

Next recall that for any a € A~ {0} the degree deg(a) is a multiple of the degree

deg(oo) of the residue field at oo over F,. Therefore ¢" deg(@) _ 1 is a multiple of
rdeg(oo) _ 1
q .

PROPOSITION 16.4. There exists a non-zero cusp form A (cf. [Ge86l VI.(5.14)
& 5.15]) of weight q"9°8(%*) 1 for the group T, such that for every a € A~ {0} we

have
g7 des(a)

AL = (AT == (some root of unily).

Moreover this A" is unique up to multiplication by some root of unity.
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PROOF. Since ¥ is a Drinfeld module, for all a,be A~ {0} we have 9% (X) =
YE (L (X)). Substituting the expansions from for L and L and ¢ and
taking highest coefficients implies that AL = AL. (AbL)queg(a). As the ring A is
commutative, interchanging a and b yields the same value; hence

AbL-(Aé’)qrdeg(b) _ Ag.(Alg)qrdeg(a).
By Proposition we may divide by AZAL obtaining the equality
(16.5) (Ag)qrdeg(b)_l _ (AbL)queg(a)_l.

To exploit this fact, recall that by the Riemann-Roch theorem, every sufficiently
large multiple of deg(oo) arises as deg(a) for some element a € AN{0}. In particular
we can find non-constant elements b, ¢ € A such that deg(b) = deg(c)+deg(oo). Then

by Proposition [I6.3] the quotient
(16.6) Al = AP (AL

rdeg(oo)

is a well-defined holomorphic function on Q7. The fact that A} and AL are modular
forms of respective weights ¢"4°8(®) — 1 and ¢"9°8(¢) —1 for I';, implies that A’ is a
weak modular form of weight

(qrdeg(b) _ 1) _ (qrdeg(c) _ 1) . qrdeg(oo) _ qrdeg(oo) -1
for T'y. Also, by direct calculation the formula (16.5]) in the case a = ¢ implies that
(Af)y? = (A)"
Combining this with the formula (16.5)) for arbitrary a we deduce that

(AaL)(qrdeg(ec)il)(qrdeg(b)il) _ (AL)(qrdeg(a)il)(qrdeg(b)il).

7~deg(b)71 7-deg(<>o)71

rdeg(a)_;

Thus AL/(AL) TP g g holomorphic function on Q" whose (g"98(°*) —1) (" de&(®)
1)-th power is identically 1. As the rigid analytic space Q" is connected, this func-
tion is therefore constant and a root of unity. The last formula also shows that a
positive power of A is holomorphic at every boundary component; hence the same
holds for AT. Thus A’ has all the desired properties. Finally, the uniqueness is
clear from the stated condition. (]

PROPOSITION 16.7. For every non-zero proper ideal N ¢ A we have

rdeg(ee) _q _ (AL)queg(N)_l . (Some constanﬁ)-

PROOF. The formulas (15.7) and (15.10)) imply that ¢%* = N* - k% where b
is an isogeny of Drinfeld modules (G, o-,%’) — (G%Qr,dJNilL). For any a € A we
then have 2 L h% = h% oapl. Taking highest coefficients implies that

AN - (AR)"

rdeg(a) rdeg(N)

AflVilL (A% = AL - (AL - (some constant).
Dividing by A% and substituting the formulas for ALY 'L and AL from Proposition
[16.4 we obtain

B rdeg(a)_; rdes(N) g des(@)_
(AN 1L):'"deg(°°>fl ~(A§)qrdeg(a)_1 = (AL)q I o - (some constant).

Varying a or extracting roots as in Proposition yields the desired formula. [
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REMARK 16.8. If the class group Cl(A) of A is trivial, the above relations show
that A’ is the unique fundamental discriminant form for IT'y.

In general, for any non-zero proper ideal M ¢ A we have I'p;-1p, = I'r. The
discriminant forms AM “'Land AM 'L and AM 'L are therefore cusp forms for the
same group I'y. Let H denote the multiplicative group generated by all of them,
modulo constants, which thus consists of nowhere vanishing holomorphic functions
on Q. Then the formulas in Propositions (c) and and imply that as
N runs through a set of representatives of the ideal class group CI(A), the functions
ANTL generate a subgroup of finite index, say H'.

On the other hand each discriminant form corresponds to a section of a certain
invertible sheaf on the Satake compactification of T'f\Q. As such, its divisor is
a formal Z-linear combination of the irreducible components of codimension 1 of
the boundary of the Satake compactification. These irreducible components are in
bijection with C1(A), so the group D of divisors supported on the boundary of the
compactification is a free abelian group of rank Cl(A). Taking divisors maps the
above group H injectively into D.

One can expect that the image of H has finite index in D. In fact, precisely
such a statement is proved for an arbitrary congruence subgroup in the case r = 2
by Gekeler [Ge86l, VII Thm. 5.11] and [Ge97, Thm. 4.1], and by Kapranov [Ka87,
top of page 546] for arbitrary r in the case A =TF,[¢].

Note that, since H' is generated by | C1(A)| elements and has finite index in H,
the expectation is equivalent to saying that H is a free abelian group of rank
| C1(A)|. This in turn means that, up to taking roots, the formulas in Propositions
16.3|(c) andand generate all multiplicative relations up to constant factors
between the discriminant forms.

EXAMPLE 16.9. Suppose that Spec A is a rational curve and oo is a point of
degree 2 over F,. Let P c A be the prime ideal associated to a point of degree
1 over F,. Then the ideal class group of A has order 2 and is generated by the
class of P. Write P? = (a) for an element a € A of degree 2. Then by Proposition
16.4) we have AL ~ AL where “~” denotes equality up to a constant. Also, in
the notation of the proof of Proposition we have a - hglL o hl = L. Taking
highest coefficients implies that AIP;lL ~(AE) ~ AL ~ AL Together with the
same relation for P~'L in place of L and with the fact that Ag% = Aﬁ‘;lL ~ AL
by Proposition (c), we conclude that

ABTL(ABY ~ AL and
Ak (ALEYT L AP

In this case we can therefore view AL and AIITIL as the two fundamental discrimi-
nant forms for I" p, and by Remark they should be multiplicatively independent.

REMARK 16.10. In the case A = F,[t] one can take A” = Al in Proposition
In [Bal6] this function is shown to satisfy a product formula which generalises
the Jacobi product formula in the rank 2 case of Gekeler [Ge85]. Another product
formula, involving r — 1 separate parameters with constant coefficients, rather than
u-expansions treated in the present monograph, was obtained by Hamahata [Ha02].

REMARK 16.11. For any v € F" \ L, the Eisenstein series E; .. is a non-zero
modular form of weight 1 for the group I',, 1, by Corollary and Theorem [13.16
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Using Proposition it follows that for any integer k > 0, the product A*-EY
is a non-zero cusp form of weight qrdeg("") -1+ k for I'yyp. In this way we can
explicitly produce non-zero cusp forms for I'y,,; of any sufficiently large weight,
giving more substance to the abstract result of Proposition [11.2

To finish this section we construct Drinfeld modular forms of non-zero type by
extracting roots from discriminant forms. This rests on the observation that for
every a € F, applying Proposition m (a) to v = «-Id, implies that

(1.7) —
(16.12) Eraver = Eiper o 1d, o By

Plugging this into , we can write each discriminant form as a (q—1)-st power
of another holomorphic function on 2".

Specifically, choose a set of representatives R% of N™'L \ L modulo addition
by L and multiplication by F}. Choose an element Ay € Co satisfying )\;1\[—1 =-N"*.
Consider the function

(16.13) Sx W) = An- [] Eiwrr(w).
’UER%
PROPOSITION 16.14. (a) We have (%) = AL, In particular, another
choice of representatives or of Ay changes 51%, only by a factor in 7.

(b) The function 6% is a cusp form of weight %ﬁ(i’)_l and type deg(N) for
the group I'g.

r(leg(N)_l

PROOF. Abbreviate k := |[RL| = ¢ 17— and note that ([Taer: a)k = (-1)k =
—1. Using this, the definitions of 5LN and Ag and ((16.12) imply that
(o) = -N*TT B = N T[] @' Breer

L L eFx
vERT vER Y aely

N*'H H El,av+L = Ak(w),

L X
VERY aqu

proving (a). The proof of (b) rests on properties of the Moore determinant, as-
sembled in [Go96l Chapter 1.3]: For any elements z1,...,x, of an F -algebra the
Moore determinant is defined as

1 Tn

xd x4

(16.15) M(z1,22,...,2,) = ! En
xln—l an,1

Its most important property is [Go96l Cor. 1.3.7]
(16.16) M(zq1,29,...,2,) = H (Zaixi),
(0417---;0577,) =1

where the product extends over all tuples in Fy ~ {(0,...,0)} whose first non-zero
_____ n With coefficients in F, we have
ﬁfj = fBi;; hence the multiplicativity of the determinant implies that

(1617) M(i Bilxiv ceey iﬁznml) = det(B) . M(.’El,.’lfg, ven ,J?n).
i=1 i=1



16. DISCRIMINANT FORMS 67

To apply this, choose elements vy, . ..,v, € N"'L\ L whose residue classes form
a basis of the F,-vector space N"'L/L. Then the set R% of all elements of the form
Yic1 aqvg, for tuples (ag,...,an) € Fy ~ {(0,...,0)} whose first non-zero entry is 1,

is a set of representatives of N™'L \ L modulo addition by L and multiplication
by Fy. The formula (16.16)) and the additivity of the exponential function then
imply that

M(eLw(vlw),...,eLw(vnw)) = J] (Z aieLw(viw)) = J] erw(ow).

(a1y.e0up) =1 UG’R@
Take an arbitrary element « € I'. Then the same calculation with the basis
V1Y, .- -, Up7Yy yields
M(eLw(vww),...,eLw(vnww)) = H erw(vyw).
’UGR%

For each j choose $3;; € F, such that v;y = P Bijv; modulo L. Then by the Fg-
linearity of the exponential function we have e, (v;yw) = X1ty Bijer. (viyw); hence
with B := (6ij)i,j:1,...,n the formula 1617 implies that

M(eLw(wa)7 . ,eLw(vnvw)) = det(B)- M(eLw(vlw)7 . ,eLw(vnw)).
Combining these computations we deduce that

H erw(vyw) = det(B)- H erw(vw).
vER% veRk
Using Proposition [13.3] (a) and Corollary we find that
(65 167) (w) A [T (Brocch)(w) = An - [] Broyer(w)
veRk veRL

Av-det(B) ™ J] Erosr(w) = det(B)™"- 0k (w).

L
veR Y

To determine det(B) note that since L is a projective module of rank r over A, the
module N™'L/L is a free module of rank 7 over A/N. Without loss of generality we
may therefore assume that the Fy-basis vy, ..., v, is formed by multiplying an A/N-
basis of N™'L/L with an F,-basis of A/N. For a suitable order of this basis, the
matrix A is then simply a block diagonal matrix with m := dimp, (A/N) = deg(N)
copies of v on the diagonal. Therefore det(B) = det(y)™. In view of the above
calculation thus implies that

% lkmy = det(y)™-0xley = Ox-

In other words 0% is a weak modular form of weight k and type m for the group I'z,.
But by Theorem [13.16| and construction it is already a modular form for the con-
gruence subgroup I'r,(N). It is therefore a modular form for I'z. Finally, since A%
is a cusp form, assertion (a) implies that d% is a cusp form as well. This finishes
the proof of (b). O

REMARK 16.18. In the case A = F,[t] and L = A", the cusp form JF was first
constructed by Gekeler in the 1980’s, and is called h(w) in the literature. The r =2
case appears in [Ge88al while the r > 2 case was unpublished until [Gel7]. In
the meantime, it made an appearance as a weak modular form in [Ge89] and was
shown to be holomorphic at infinity by Perkins [Peld]. In [BB17, Thm.5.3] it is
shown to satisfy a product formula derived from the product formula of AF.
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17. The special case A =TF[t]

Throughout this section we set A := Fy[t] and L := A”. Then I'y, = GL,(A),
and I'(¢) :==T((¢)) is the subgroup of matrices in GL,(A) which are congruent to
the identity matrix modulo (¢). Recall from that the graded ring of modular
forms of all weights for an arithmetic group I is defined as

M (T) = D Mi().
k>0
For T" = T'(t) this ring can be described very explicitly, and for a subgroup containing
I'(t) a description can be deduced by taking invariants. In the case r = 2 the ring
was determined by Cornelissen [Co96] for I'(t), by Goss [Go80a| for GL3(A), and
by Gekeler [Ge88al for SLy(A).

THEOREM 17.1. The ring M.(I'(t)) is generated over Coo by the Eisenstein
series B .1, of weight 1 for all v e t 'L~ L, and all polynomial equations between
them are induced by the relations

Eiaveir = @ Eyaer forallvet ™ LNL and a € Fy,

El,'quL . El,v’+L = El,v+v’+L . (El,v+L + El,yurL) for all v, v et 'L\ L with v+

PROOF. Let K(t) < GL,.(A) denote the subgroup of matrices that are con-
gruent to the identity matrix modulo (¢). By construction it is open compact
and fine in the sense of [Pil3l Def.1.4]. Let M} ,,y be the associated fine mod-
uli space of Drinfeld A-modules of rank r with a full level (¢) structure. Then
GL,(AL) = GL,.(F) - K(t), and so with g = 1 provides an isomorphism
7 T()\Q" — M g()(Co). The Satake compactification Z\Z&K(t) was de-
scribed explicitly in [PS14] and [Pil3], as follows.

Abbreviate V := t71L/L, and let Ay denote the graded polynomial ring over
F, in independent variables Y5 of degree 1 for all v € V \ {0}. Let ay c Ay be the
homogeneous ideal that is generated by the elements of the form

Yoo —a Vs for all o€ V'~ {0} and a € [y, and
YEY@I - Yﬁ+f;l . (Y{) + Y»[)I) for all 'l_)7 'l_), € ‘7 A {0} with v + '17, ?é 0.

Let Ry := Ay /ay denote the graded factor ring. Then by [Pil3l Thm. 7.4] there
is a natural isomorphism

(17.2) My ey = Proj(Ry &g, F),

which also identifies the invertible sheaf £ from Section with the ample sheaf
O(1) on Proj(Ry ®p, F'). Combined with Theorem we thus obtain an isomor-
phism of graded C.,-algebras

(17.3) M, (I'(t)) =2 Ry &, Co.

By the proof of [Pil3l Thm. 7.4], the isomorphism also realises the universal
generalised Drinfeld A-module over M s, K(1) 38 the pair (E,®) consisting of the
line bundle whose sheaf of sections is the invertible sheaf dual to O(1) and the
generalised Drinfeld A-module with

gr(X) = t-X- [[ (1-Y5-X),
eV {0}

and

v ¢ L.
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where Yy € Ry denotes the residue class of Y3. On the other hand from we
have a natural isomorphism

W;(Easz) = (G&Qv',?,[}l/),
and by equation ((15.4]) we have
YX) =t X [] (1-EBrpsr(w)-X).

vet 'I\L
modulo L

Furthermore, the respective level structures send a non-zero residue class v =v + L
to the element Y, ! in one case and to the function Eyvir (w)™ = erw(vw) in the
other. Under the isomorphism the element Y; therefore corresponds precisely
to the Eisenstein series E ... By the construction of Ry these Eisenstein series
therefore generate M, (I'(¥)) and satisfy precisely the stated algebraic relations. O

COROLLARY 17.4. The quotient field of M, (T'(t)) is a rational function field
over Co that is generated by the algebraically independent elements Eq 4,41, as v;+L
runs through any Fq-basis of t'L/L.

Proor. By [PS14] the ring Ry is an integral domain and its quotient field is
a rational function field over F, that is generated by the algebraically independent

elements Yy, for any basis o1,...,9, of V. The corollary thus follows from the
isomorphism (17.3]). O
THEOREM 17.5. (a) The ring M.(GL,.(A)) is generated over Co, by the

coefficient forms g,fi of weight ¢' =1 for all 1 <i < r, which are algebraically
independent over Co,. The same statement holds with the coefficient forms
ei,1, or the Fisenstein series FEgi_y 1, in place of gtLl

(b) The ring M, (SL,.(A)) is generated over Co, by the coefficient forms gtLﬂ-
of weight ¢' — 1 for all 1 <i <71 and the determinant form 6& of weight
qqr%ll, which are algebraically independent over Co. The same statement
holds with the coefficient forms e; 1, or the Eisenstein series Egi_q 1, in
place of gk,.

(c) LetT'1(t) denote the subgroup of matrices in GL,(A) which are congruent
modulo (t) to an upper triangular matriz with diagonal entries 1. The
ring M. (T1(t)) is generated over Co, by the modular forms

Z El,t71(0,..4,0,1,(1“.1,...,()47‘)+L

Qijt1,eems0r€lg

of weight 1 for all 1 < i <r, which are algebraically independent over Co.

PRrOOF. For any subgroup I' < GL,.(A) containing I'(t), the formula shows
that M. (T") is the subring of I'-invariants in M, (I'(¢)) for the natural action by
f = fley on each My (T'(t)). By Proposition [13.3] (a) the action is given on the
generators of M, (I'(t)) by Ei v+r|17 = E1,vy+r. This action factors through the
factor group I'/T'(¢), which is GL,(F,) in the case (a), respectively SL,(F,) in
the case (b), respectively the subgroup of upper triangular matrices with diagonal
entries 1 in the case (¢). Using a theorem of Dickson, the respective ring of invariants
was shown in [PS14] Theorem 3.1] to have the set of generators that is first named
in each case. The recursion relations and imply that by induction on 1,
each generator 95,1‘ can be replaced by e; 1, or again by Egi_; 1.
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Since we are taking invariants under a finite group, the ring M. (T'(¢)) is an
integral extension of M, (T'(¢))F. The respective quotient fields therefore have the
same transcendence degree over C,,. For the former this transcendence degree is r
by Corollary In each case the r given generators of the subring M, (I'(¢))"
must therefore be algebraically independent over C.,. [l

THEOREM 17.6. For any integer k we have
Mk(SLT(A)) = @ Mk,m(GLT(A))

0sm<qg-1
In addition, for any integer 0 < m < q—1 we have

M (GL(A)) = (6/)™ - M,_, a1 (GL(4)).

_mai=l
'fn.q_1

In particular, every modular form for GL,.(A) of type #0 modulo (¢—1) is a cusp
form.

PROOF. The determinant induces an isomorphism GL,(F,)/SL,(F,) — Fy;
hence the action f — f|iy of GL,(F,) on My(SL,(A)) factors through an action
of F7. As any linear action of F on an Fg-vector space is diagonalisable, it follows
that My, (SL,(A)) is a direct sum of eigenspaces. By Definition [[.9]and these
eigenspaces are just the spaces My, ,,(GL,(A)), proving the first equality.

The descriptions from Theorem m (a) and (b) imply that M. (SL,(A)) is
a free module with basis 1,6%,...,(6;)972 over the subring M,(GL,(A4)). Since

a-

(65)™ is a modular form of weight m?f, this results in the second assertion. The

last one now follows from the fact that 67 is a cusp form. O

REMARK 17.7. The last statement of Theorem [I7.6] was already established
independently in Corollary (b) using the u-expansion. Combined with Propo-

sition below and the fact that 6 is a modular form of weight qqr%ll and type 1
it directly implies the second statement of Theorem by induction on m.

PROPOSITION 17.8. The Satake compactification MTA GL..(A) has only one bound-

ary component of codimension 1, and the cusp form 6L has vanishing order 1 thereﬂ

PROOF. The first statement can be deduced from the fact from Proposition
(a) that GL,(AL) = GL,(A) - P(F) with the parabolic subgroup P < GL, from
5.0).

For the second statement note first that under the isomorphism ¢ of the
subgroups I'(t) nU(F) < GL,(A) nU(F) correspond to the subgroups (At)"! c
A1 of F1 which have index ¢"~! in each other. Now consider any element v €

IThus AL = (6F)¢ ! has vanishing order g — 1 here! This is at odds with the intuition that
AtL should have algebraic order of vanishing 1 at the cusp.

We point out that the identification of analytic modular forms with sections of a line bundle
(Theorem l is only established when the moduli scheme is fine, which M:&,GLT(A) is not.
Indeed, since GL,(A)NU(F') = SL,.(A)nNU(F), the u-parameter does not even distinguish between
GL,(A)\Q" and SL,(A)\Q".

‘We can rescue our intuition as follows. By Corollary , the coefficient forms gtL’k (and thus,
by Theorem all modular forms for GL,(A)) have u-expansions in which the only non-zero
terms have exponent divisible by g — 1. Therefore, these forms have expansions in the parameter
uw' =191, and with respect to this parameter, Af has order of vanishing 1 at the cusp, as expected.

We thank Mihran Papikian for raising this issue.
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t~1L\ L. By the proof of Proposition [13.15|the subgroup I',, 1, n U(F) corresponds
to the subgroup (At)" ! if v ¢ L+ ({0} x F""!). By Proposition [13.15{ we thus have

0 ifvelL+({0}xFr1),

ordrynu(ry(E1v+z) = ordr,,, nury (Brwsin) = { 1 otherwise.

Taking the product over a set of representatives as in (16.13]), where the second
q7‘7q'r‘—1

case occurs “—“— = ¢" ! times, we deduce that

ordpnu ) (80) = 4"
Since [GL, (A)nU(F) : T(t)nU(F)] = ¢"*, it follows that ordgr,.(ayv(r)(67) =1,
as desired. ]

COROLLARY 17.9. The cusp forms of all weights and type 0 for GL,.(A) form
the principal ideal of M, (GL.(A)) that is generated by AL. In other words, for
every integer k we have

Se(CLA(A)) = A} Myyria (CL(A)).

PROOF. The cusp form 6L is non-zero everywhere by Propositions m (a)
and (a). Thus for every cusp form f € S o(T), the quotient f/5 is again
a weak modular form, and by Proposition [17.8| it is holomorphic at infinity; hence
[0k € Mk_L—llv_l(GLr(A)). By Theorem% with m = ¢ — 2 this in turn implies

that f € (67)7 " Mp—gr+1,0(GL,(A)), as desired. O

COROLLARY 17.10. The space of cusp forms S,(GL.(A)) is zero for k<q" -1
and one-dimensional with basis AL for k= q"~1. In particular AF is an eigenform
for the Hecke operator associated to any double coset GL,.(A)d GL,.(A) c GL,.(F).

PrROOF. By Theorem (a) we have My(GL,.(A)) =0 for k <0 and = C
for k = 1. By Corollary [I7.9] this implies the first statement, which in turn implies

the second. (]
THEOREM 17.11. We have the following dimension formulas for all k >0 and
m:
: v k
(@) dime, MeT(®) = 3 g% ).
i1, yir—1€{0,1} Xy
(b) Denote by Ps(k) the number of partitions of k with parts in S = {q—1,¢* -
1,...,q4" = 1}. Then
dime_, Mg (GL,.(A)) = Ps(k) = 1 k=t

Mio(gi-1) (r—1)! +O(k"™?) if (g - Dk
-1 . r_q
(c) dimc,, Mk,m(GLT(A)):{ OPS(k—mq_) if k>mit,

otherwise.

(d) dime My(T1(t)) = (57771,

r—1
PROOF. Assertion (a) follows from Theorem together with [PS14] Thm. 1.10].
The first equality in (b) results from Theorem (a). Clearly Pg(k) is the number

of partitions of q% with parts in {%, q:%ll, cee %}, which by [Na00, Thm. 15.2]

has the asymptotic behaviour given in (b). Assertion (c) is a direct consequence
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of Theorem [17.6] Finally, by Theorem [17.5] (¢) the dimension in (d) is just the
dimension of the space of homogeneous polynomials of degree k in the polynomial

ring Coo[ X1, ..., X, ], which is well-known to be (k:zl) |

REMARK 17.12. Taking invariants one may obtain similar dimension formulas
for arbitrary arithmetic subgroups I' containing I'(¢). In particular [Pil3l Thm. 8.4]
gives an explicit formula when T'(¢) < T' < T';(¢). It seems an interesting problem to
find a dimension formula in general.

REMARK 17.13. Combining Theorem and [PS14, Thm. 1.7] shows that
M. (T'(t)) is a Cohen-Macaulay normal integral domain. By taking invariants, the
argument in [PS14) §2] shows the same for M, (I") whenever I'(¢) <T' < T';(¢). For
I' = GL,.(A) and SL,.(A) the same follows from the explicit description in Theorem
One may ask: Is this only a rare event for small level, or is it a general
phenomenon?

REMARK 17.14. In the case of classical modular forms and also in the case of
rank 2 Drinfeld modular forms, there are two approaches to dimension formulas.
The one is algebro-geometric, similar to the approach in [I7.11} The other uses
valence formulas and vector space homomorphisms from My (T') — C, mapping a
modular form f to the constant coefficient fj in its u-expansion. One may wonder
whether Gekeler’s recent valence formula [Gel8] could be used in the same way.
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