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Abstract

This monograph provides a foundation for the theory of Drinfeld modular
forms of arbitrary rank r and is subdivided into three parts. In the first part, we
develop the analytic theory. Most of the work goes into defining and studying the
u-expansion of a weak Drinfeld modular form, whose coefficients are weak Drinfeld
modular forms of rank r − 1. Based on that we give a precise definition of when a
weak Drinfeld modular form is holomorphic at infinity and thus a Drinfeld modular
form in the proper sense.

In the second part, we compare the analytic theory with the algebraic one that
was begun in a paper of the third author. For any arithmetic congruence subgroup
and any integral weight we establish an isomorphism between the space of analytic
modular forms with the space of algebraic modular forms defined in terms of the
Satake compactification. From this we deduce the important result that this space
is finite dimensional.

In the third part, we construct and study some examples of Drinfeld modular
forms. In particular, we define Eisenstein series, as well as the action of Hecke
operators upon them, coefficient forms and discriminant forms. In the special case
A = Fq[t] we show that all modular forms for GLr(Γ(t)) are generated by certain
weight one Eisenstein series, and all modular forms for GLr(A) and SLr(A) are
generated by certain coefficient forms and discriminant forms. We also compute
the dimensions of the spaces of such modular forms.
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INTRODUCTION 1

Introduction

In [Dr74], Drinfeld introduced elliptic modules, now called Drinfeld modules, in
order to prove a special case of the Langlands conjectures for GL2 over function
fields. These objects share many properties with elliptic curves, though their rank
can be an arbitrary integer r ⩾ 1. In particular, Drinfeld constructed a moduli space
of Drinfeld modules of rank r with a suitable level structure, both as an algebraic
variety and with an analytic uniformisation as a quotient of an r − 1 dimensional
symmetric space Ωr. This Ωr is a rigid analytic space over a field C∞ of positive
characteristic and plays the role of the complex upper half plane. In the case r = 2
Drinfeld [Dr77] used automorphic forms on Ωr with values in Qℓ to prove a case of
the Langlands conjectures for the associated automorphic representations on GL2.

But there is also a natural definition of Drinfeld modular forms on Ωr with
values in the field C∞ of positive characteristic. Goss [Go80b] was the first to
explicitly refer to these, defining them both algebraically, in the way Katz did in
[Ka73], and analytically as (rigid analytic) holomorphic functions on Ωr. In the
case r = 2, where these are functions of one variable, it was relatively straightforward
to write down the necessary condition of holomorphy at infinity. This led to the
development of a theory of Drinfeld modular forms of rank 2, for instance by Gekeler
[Ge86]; see [Ge99b] for a survey.

For r ⩾ 3 the situation concerning holomorphy at infinity is more subtle. In the
related case of Siegel modular forms of genus ⩾ 2 the problem disappears, because
the necessary condition at infinity holds automatically by the Köcher principle.
One explanation for this is the fact that in the Satake compactification of the Siegel
moduli space of abelian varieties the boundary has codimension ⩾ 2. By contrast,
the moduli space of Drinfeld modules is always affine, so in any compactification as
an algebraic variety the boundary has codimension 1; hence a condition at infinity
is always required.

That condition is important for several reasons. On the one hand many relevant
modular forms that one can construct naturally, such as Eisenstein series, satisfy
it automatically. On the other hand a condition at infinity is necessary for one of
the main structural results, the fact that the space of modular forms of given level
and weight is finite dimensional.

The condition at infinity can be expressed in two quite different ways. The
analytic way says that the u-expansion (which is a kind of Fourier expansion) of a
modular form consists only of terms with non-negative index. For the algebraic way
one identifies the analytic modular forms with sections of an invertible sheaf on a
moduli space. Then one requires a compactification of this moduli space as a pro-
jective algebraic variety over C∞ together with an extension of the invertible sheaf.
The crucial step is to prove that a modular form satisfies the analytic condition
at infinity if and only if the corresponding section on the moduli space extends to
a section on that compactification. The finite dimensionality is then a direct con-
sequence of the fact that the space of sections of a coherent sheaf on a projective
algebraic variety is always finite dimensional. Using the Satake compactification of
a Drinfeld moduli space, the third author [Pi13] has already established much of
the necessary algebro-geometric theory for this.



2 INTRODUCTION

The present monograph aims to provide the rest of the theory and thereby a
foundation for the theory of Drinfeld modular forms of arbitrary rank. It is sub-
divided into three parts, corresponding to three preprints released in 2018. Part
1 develops the basic analytic theory, including u-expansions and holomorphy at
infinity. Part 2 identifies the analytic modular forms discussed here with the alge-
braic modular forms defined in [Pi13] and deduces qualitative consequences such
as the finite dimensionality of the space of modular forms of given level and weight.
Part 3 illustrates the general theory by constructing and studying some important
families of modular forms.

For a discussion on the history of Drinfeld modular forms of higher rank, see
[BB17, §7].

We briefly mention here some recent developments. In a series of papers [Ge19,
Ge17, Ge22a, Ge18, Ge22b, Ge21] Gekeler constructs the building map from
Ωr to the Bruhat-Tits building of GLr and uses this to study the growth and
vanishing behaviours of important families of modular forms for GLr(Fq[t]). This
is a valuable complement to the theory presented in this monograph.

In [Su18], Sugiyama studies integrality of Drinfeld modular forms for GLr(Fq[t]).
In a recent preprint [HY20], Hartl and Yu develop an arithmetic Satake com-

pactification of Drinfeld moduli schemes and study arithmetic Drinfeld modular
forms of arbitrary rank.

An approach to higher rank Drinfeld modular forms via lattices is treated in
the Ph.D. thesis of Baker [Ba20].

In another direction [CG21], Chen and Gezmiş define and study the weight
2 “false Eisenstein series”, a first example of a Drinfeld quasi-modular form in
arbitrary rank.

Acknowledgements. We would like to thank Gebhard Böckle and Federico
Pellarin for pointing out a gap in a previous proof of Proposition 4.10, and Si-
mon Häberli for closing the gap with a suitable reference. We are grateful to the
anonymous referees for their helpful suggestions.



Part 1

Analytic Theory



Outline of Part 1

In Section 1 we introduce our notation and define the Drinfeld period domain
Ωr with its action by GLr(F ) for a global function field F . Weak modular forms
for an arithmetic subgroup Γ < GLr(F ) are defined as holomorphic functions from
Ωr to C∞ satisfying the functional equation (1.5) linking f(γ(ω)) to f(ω) for every
γ ∈ Γ.

Further preparations are made in the next two sections. In Section 2 we collect
basic properties of exponential functions associated to strongly discrete subgroups
of C∞, and we outline the rigid analytic structure of Ωr in Section 3.

Based on our choice of coordinates on Ωr, we identify a standard boundary
component , whose translates by GLr(F ) form all boundary components of codi-
mension 1. Thus a weak modular form is holomorphic at all boundary components
if and only if all its translates by GLr(F ) are holomorphic at the standard bound-
ary component. The holomorphy at the standard boundary component is tested
using the expansion with respect to a certain parameter u.

This parameter is defined in Section 4: We decompose elements ω ∈ Ωr as
ω = (ω1

ω′
), where ω1 ∈ C∞ is the first coordinate of ω and ω′ ∈ Ωr−1 consists of the

remaining coordinates. Next, we assign to Γ a subgroup Λ′ ⊂ F r−1 isomorphic to
the subgroup ΓU < Γ of translations which fix ω′. Then Λ′ω′ ⊂ C∞ is a strongly
discrete subgroup and we can form the associated exponential function eΛ′ω′ . Now
eΛ′ω′(ω1) is invariant under the translations ΓU and we define our parameter as its
reciprocal u ∶= uω′(ω1) = eΛ′ω′(ω1)

−1 in (4.14).
In Definition 4.12 we define neighbourhoods of infinity in Ωr, then Theorem 4.16

states that the map (ω1

ω′
) ↦ ( u

ω′
) induces rigid analytic isomorphisms from quotients

of neighbourhoods of infinity by ΓU to so-called pierced tubular neighbourhoods in
C×∞ ×Ωr−1.

This allows us to show in Section 5 that every weak modular form f admits a
u-expansion

f(ω) = ∑
n∈Z

fn(ω
′)uω′(ω1)

n

converging on a neighbourhood of infinity (Proposition 5.4), whose coefficients fn
are themselves weak modular forms on Ωr−1 (Theorem 5.9). These are the main
results of Part 1.

Finally, we define modular forms in Section 6 as weak modular forms all of
whose translates by elements of GLr(F ) admit u-expansions with terms of non-
negative index. It follows from Propositions 6.2 and 6.3 that this condition only
needs to be tested for finitely many elements of GLr(F ). It will be shown in Part
2 of this monograph that this definition agrees with the algebraic definition of
modular forms in [Pi13].

1. Weak modular forms

Throughout this monograph we fix a global function field F of characteristic
p > 0, with exact field of constants Fq of cardinality q. We fix a place ∞ of F and
let A denote the ring of elements of F which are regular away from ∞. This is a
Dedekind domain with finite class group and group of units A× = F×q . Let π ∈ F be

a uniformising parameter at ∞, so that ∣π∣ = q−deg∞. Let F∞ ≅ Fqdeg∞((π)) denote
the completion of F at ∞, and C∞ the completion of an algebraic closure of F∞.
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We fix an unspecified non-zero constant ξ ∈ C×∞, whose value can be set for
normalisation purposes. For example, if F = Fq(t) and A = Fq[t], there are certain
advantages in letting ξ be a period of the Carlitz module. For more general function
fields F , a natural choice of ξ is a period of a certain sign-normalised rank-one
Drinfeld module, see [Ge86, Chapter IV (2.14) and (5.1)]. However, we will not
explicitly need the normalisation in this monograph, so the reader loses nothing by
assuming that ξ = 1.

The Drinfeld period domain of rank r ⩾ 1 over F∞ is usually defined as the set of
points (ω1 ∶ . . . ∶ ωr) ∈ Pr−1(C∞) for which ω1, . . . , ωr are F∞-linearly independent.
Any such point possesses a unique representative with ωr = ξ. We shall only work
with these representatives, so we identify Ωr with the following subset of Cr

∞:

(1.1) Ωr ∶= {(ω1, . . . , ωr)
T ∈ Cr

∞ ∣ ω1, . . . , ωr F∞-linearly independent and ωr = ξ}.

We write the elements of Ωr as r × 1 matrices, i.e. column vectors.
For any point ω ∈ Ωr and any matrix γ ∈ GLr(F∞), the matrix product γω is

again a column vector with F∞-linearly independent entries. In particular its last
entry is non-zero. Defining

(1.2) j(γ,ω) ∶= ξ−1 ⋅ (last entry of γω) ∈ C×∞,

we thus find that

(1.3) γ(ω) ∶= j(γ,ω)−1γω

again lies in Ωr. This defines a left action of GLr(F∞) on Ωr. Also, for any γ,
δ ∈ GLr(F∞) a direct calculation shows that

(1.4) j(γδ,ω) = j(γ, δ(ω))j(δ, ω).

For any function f ∶ Ωr → C∞ and any integers k and m we define the function
f ∣k,mγ ∶ Ω

r → C∞by

(1.5) (f ∣k,mγ)(ω) ∶= det(γ)
mj(γ,ω)−kf(γ(ω)).

By direct calculation we deduce from (1.4) that

(1.6) (f ∣k,mγδ)(ω) = ((f ∣k,mγ)∣k,mδ)(ω).

Thus (1.5) defines a right action of GLr(F∞) on the space of all functions f ∶ Ωr →
C∞.

For later use note also that, if γ = a ⋅ Idr for the identity matrix Idr ∈ GLr(F ),
then j(γ,ω) = a and γ(ω) = ω and det(γ) = ar; and hence

(1.7) f ∣k,m(a ⋅ Idr) = a
rm−kf.

Remark 1.8. There are different conventions about whether Ωr consists of row
or column vectors and about how GLr(F∞) acts on it. For instance, the first and
third authors [Ba14], [Pi13] like Drinfeld [Dr74] use row vectors and the action
(γ,ω) ↦ ωγ−1, whereas Kapranov [Ka87] uses column vectors and the action by
left multiplication (γ,ω) ↦ γω. These conventions differ not only by transposition,
but also by the outer automorphism γ ↦ (γT )−1 of GLr. The present monograph
uses column vectors and left multiplication in order to make things compatible with
the existing literature on rank 2 Drinfeld modular forms.
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The set Ωr can be endowed with the structure of a rigid analytic space. Experts
may be content with the fact that Ωr is an admissible open subset of Pr−1(C∞)
and inherits its rigid analytic structure, while others may consult Section 3 for
more details. A holomorphic function on Ωr is a global section of the structure
sheaf of Ωr, but a more useful characterisation is that a function f ∶ Ωr → C∞ is
holomorphic if and only if it is a uniform limit of rational functions on Pr−1(C∞)
whose poles all lie outside Ωr.

Definition 1.9. Consider integers k and m and an arithmetic subgroup Γ <
GLr(F ). A weak modular form of weight k and type m for Γ is a holomorphic
function f ∶ Ωr → C∞ which for all γ ∈ Γ satisfies

f ∣k,mγ = f.

The space of these functions is denoted by Wk,m(Γ).

Since Γ is an arithmetic subgroup of GLr(F ), its determinant det(Γ) is a finite
subgroup of F × and therefore contained in the multiplicative group of the field of
constants F×q . Thus its order is a divisor of q − 1, and the definition depends only
on m modulo this divisor; in other words we have

(1.10) Wk,m(Γ) = Wk,m′(Γ) whenever m ≡m
′ modulo ∣det(Γ)∣.

On the other hand, for any α ∈ F×q we have f ∣k,m(α ⋅ Idr) = α
rm−kf by (1.7). Thus

(1.11) Wk,m(Γ) = 0 unless k ≡ rm modulo ∣Γ ∩ {scalars}∣.

In the case m = 0 we will suppress all mention of m and abbreviate f ∣kγ ∶=
f ∣k,mγ andWk(Γ) ∶= Wk,m(Γ). By (1.10) we may always do this when Γ < SLr(F ).

For later use we note the following direct consequence of (1.6):

Proposition 1.12. For any δ ∈ GLr(F ) we have f ∈ Wk,m(Γ) if and only if
f ∣k,mδ ∈ Wk,m(δ

−1Γδ).

In general the space Wk,m(Γ) is infinite dimensional. A finite dimensional
subspace of ‘non-weak’ modular forms will be characterised by conditions at infinity.
The formulation of these conditions requires some preparation in the next two
sections.

2. Exponential functions

A subgroup H ⊂ C∞ is called strongly discrete if its intersection with every ball
of finite radius is finite. For any such subgroup, any z ∈ C∞, and any ε > 0, there
are at most finitely many elements h ∈H∖{0} with ∣ z

h
∣ ⩾ ε. In this case the product

(2.1) eH(z) ∶= z ⋅ ∏
h∈H∖{0}

(1 −
z

h
)

converges in C∞, defining the exponential function eH ∶ C∞ → C∞ associated to H.

Proposition 2.2. For any strongly discrete subgroup H ⊂ C∞, the function
eH ∶ C∞ → C∞ is holomorphic, surjective, and has simple zeros at the points in H
and no other zeros. It induces an isomorphism of additive groups and rigid analytic
spaces

C∞/H
∼
Ð→ C∞.
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The function eH possesses an everywhere convergent power series expansion

eH(z) =
∞
∑
i=0
eH,pizp

i

with eH,pi ∈ C∞ and eH,1 = 1. If H is an Fq-subspace, the expansion has the form

eH(z) =
∞
∑
j=0

eH,qjz
qj .

If H is finite, then eH(z) is a polynomial of degree ∣H ∣ in z.

Proof. When H ⊂ C∞ is an A-lattice (see below), this is proved in [Go96,
§4.2] and [Go80b, Prop. 1.27]. The case where H ⊂ C∞ is merely a strongly
discrete subgroup follows in exactly the same way. □

Proposition 2.3. (a) For any two strongly discrete subgroups H ′ ⊂ H ⊂
C∞, the subgroup eH′(H) ⊂ C∞ is strongly discrete and isomorphic to
H/H ′, and we have

eH = eeH′(H) ○ eH′ .

(b) For any strongly discrete subgroup H ⊂ C∞ and any a ∈ C×∞, the subgroup
aH ⊂ C∞ is strongly discrete, and we have

eaH(az) = aeH(z).

Proof. For (a) see [Ge88b, (1.12)], and (b) follows immediately from the
definition. □

An A-lattice of rank r in C∞ is a strongly discrete projective A-submodule
Λ ⊂ C∞ of rank r.

Proposition 2.4. Let H ⊂ C∞ be an A-lattice of rank r. Then for any a ∈ A
there exists a unique Fq-linear polynomial φH

a (z) of degree ∣a∣
r satisfying

φH
a (eH(z)) = eH(az)

for all z ∈ C∞. The map φH ∶ a↦ φH
a is a Drinfeld A-module of rank r.

Proof. [Go96, Thm. 4.3.1] □

3. The rigid analytic structure of Ωr

Throughout the following we denote by B(0, ρ) ∶= {z ∈ C∞ ∶ ∣z∣ ⩽ ρ} the closed
disk of radius ρ > 0 centred at 0, and by B(0, ρ)′ = B(0, ρ) ∖ {0} the associated
punctured disk. We will also consider the annulusD(0, σ, ρ) ∶= {z ∈ C∞ ∣ σ ⩽ ∣z∣ ⩽ ρ}.
Note that B(0, ρ) and D(0, σ, ρ) are affinoid whenever σ, ρ ∈ ∣C×∞∣.

We will describe the rigid analytic structure of Ωr by covering it by suitable
affinoid subspaces. Two such coverings already appear in [Dr74], and one of them
is described in more detail in [SS91]. We follow the approach in [SS91], but adapt
it to our convention that ωr = ξ.

We say that a linear form F r
∞ → F∞ is unimodular if its largest coefficient

has absolute value 1. For any F∞-rational hyperplane H ⊂ Pr−1(C∞), we choose a
unimodular linear form ℓH that defines it. Then ∣ℓH(ω)∣ is well-defined and non-zero
for any ω ∈ Ωr. Using the standard norm ∣ω∣ ∶=max1⩽i⩽r ∣ωi∣ on Cr

∞, we set

(3.1) h(ω) ∶= 1
∣ω∣ ⋅ inf{∣ℓH(ω)∣ ∶H an F∞ hyperplane},
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which measures the distance from ω ∈ Ωr to all boundary components combined.
For any n ∈ Z>0 we also define

(3.2) Ωr
n ∶= {ω ∈ Ω

r ∶ h(ω) ⩾ ∣π∣n}.

Since ∣π∣ < 1, these subsets satisfy Ωr
1 ⊂ Ω

r
2 ⊂ . . . and their union is Ωr.

Lemma 3.3. Every ω ∈ Ωr
n satisfies ∣ξ∣ ⩽ ∣ω∣ ⩽ ∣ξ∣∣π∣−n.

Proof. The first inequality follows from ωr = ξ. Next, since ω ↦ ωr is a
unimodular F∞-linear form, (3.1) implies that ∣ω∣h(ω) ⩽ ∣ξ∣, from which the second
inequality follows. □

Proposition 3.4. For each n ∈ Z>0, the set Ωr
n is an affinoid subdomain of

Pr−1(C∞). Together they form an admissible covering of Ωr, endowing it with the
structure of an admissible open subset of Pr−1(C∞).

Proof. See version (C) of the proof of [SS91, Prop. 1]. □

Using the second (finer) covering in [Dr74, §6.2B], Drinfeld showed that, for
any arithmetic subgroup Γ < GLr(F ), the quotient Γ/Ωr exists as a rigid analytic
space.

For the following recall that a function f ∶ U → C∞ on an admissible open
subset U ⊂ Ωr is called holomorphic if it is a section of the sheaf of functions on
this space, or equivalently, if it is a uniform limit f = limn→∞ fn of rational functions
fn ∶ Pr−1(C∞) ⇢ C∞ with no poles in U .

In the next section we shall need bounds on the values of certain exponential
functions when we restrict to ω ∈ Ωr

n. For this we require the following estimates:

Lemma 3.5. For any γ ∈ GLr(F∞) there exist positive constants c1, c2 and c3
such that for every ω ∈ Ωr we have

(a) h(ω) ⩽ c1∣j(γ,ω)∣∣ω∣
−1 ⩽ 1;

(b) ∣γ(ω)∣ ⩽ c2h(ω)
−1; and

(c) h(γ(ω)) ⩾ c3h(ω).

Proof. Let x be an entry of the last row of γ of maximal absolute value, and
set c1 ∶= ∣x

−1ξ∣ > 0. Then by the definition (1.2) of j(γ,ω), the value x−1ξj(γ,ω) is
a unimodular F∞-linear combination of the ωi’s, so we obtain

h(ω) ⩽
∣x−1ξj(γ,ω)∣

∣ω∣
⩽ 1.

This proves (a).
Next, let c′2 be the largest absolute value of an entry of γ. Then the matrix

product satisfies ∣γω∣ ⩽ c′2∣ω∣ and so ∣γ(ω)∣ = ∣j(γ,ω)−1∣∣γω∣ ⩽ ∣j(γ,ω)−1∣c′2∣ω∣ ⩽
c1c
′
2h(ω)

−1, where the last inequality follows from (a). This proves (b) with c2 =
c1c
′
2.
For (c) let c′3 denote the largest absolute value of an entry of γ−1. Let ℓ be

an arbitrary unimodular F∞-linear form, which we write as a row vector, so that
ℓ(ω) = ℓω. Choose mℓ ∈ C×∞ such that ℓγ ∶=mℓℓγ is a unimodular linear form. Then
the entries of mℓℓ =mℓℓγ ⋅γ

−1 have absolute value at most c′3; hence ∣mℓ∣ ⩽ c
′
3. Since

γ(ω) = j(γ,ω)−1γω, using the linearity of ℓ and the definition of h(ω) we find that

∣ℓ(γ(ω))∣

∣γ(ω)∣
=
∣ℓγω∣

∣γω∣
=
∣mℓ∣

−1∣ℓγω∣

∣γω∣
⩾
c′−13 ∣ℓγω∣

c′2∣ω∣
⩾
h(ω)

c′2c
′
3

.
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Varying ℓ, the definition of h(γ(ω)) now implies (c) with c3 ∶= (c
′
2c
′
3)
−1. □

4. Neighbourhoods of infinity

From now on we assume that r ⩾ 2. Let U denote the algebraic subgroup of
GLr,F of matrices of the form

(4.1)

⎛
⎜
⎜
⎝

1 ∗ . . . ∗
0
⋮
0

Idr−1

⎞
⎟
⎟
⎠

where Idr−1 denotes the identity matrix of size (r − 1) × (r − 1). Fix an arithmetic
subgroup Γ < GLr(F ) and set

(4.2) ΓU ∶= Γ ∩U(F ).

Then for all γ ∈ ΓU and ω ∈ Ωr we have det(γ) = j(γ,ω) = 1; hence every weak
modular form for Γ is a ΓU -invariant function on Ωr.

Viewing elements of F r−1 as 1 × (r − 1)-matrices (row vectors), consider the
isomorphism

(4.3) ι ∶ F r−1 ∼
Ð→ U(F ), v′ ↦ (

1 v′

0 Idr−1
) .

Since Γ is commensurable with GLr(A), the subgroup

(4.4) Λ′ ∶= ι−1(ΓU) ⊂ F
r−1

is commensurable with Ar−1. On the other hand, recall that Ωr is the set of column
vectors ω = (ω1, . . . , ωr)

T ∈ Cr
∞ with F∞-linearly independent entries and ωr = ξ.

For any such ω we have ω′ ∶= (ω2, . . . , ωr)
T ∈ Ωr−1, hence

Ωr ⊂ C∞ ×Ωr−1

inside Cr
∞ = C∞ × Cr−1

∞ . Accordingly we write ω = (ω1

ω′
). The definition (3.1) then

directly implies that h(ω) ⩽ h(ω′) and hence Ωr
n ⊂ C∞ ×Ωr−1

n .
For any element λ′ ∈ Λ′ we can form the matrix product λ′ω′ ∈ C∞. The

definition (1.3) of the action on Ωr then implies that

(4.5) ι(λ′)((ω1

ω′
)) = (ω1+λ′ω′

ω′
),

which extends the action to C∞ × Ωr−1 by the same formula. For any ω′ ∈ Ωr−1

observe that Λ′ω′ ∶= {λ′ω′ ∣ λ′ ∈ Λ′} is a strongly discrete subgroup of C∞, because
Λ′ is commensurable with Ar−1 and the entries of ω′ are F∞-linearly independent.
Thus the function

(4.6) C∞ ×Ωr−1 → C∞, [(ω1

ω′
)] ↦ eω′Λ′(ω1)

is well-defined and ΓU -invariant.
As usual in a metric space, for any point z ∈ C∞ and any subset X ⊂ C∞ we

write d(z,X) ∶= inf{∣z − x∣ ∶ x ∈X}. Then we have:

Proposition 4.7. (a) The function (4.6) is holomorphic.
(b) For any n ∈ Z>0 and c > 0 there exists a constant cn > 0, such that for any

ω′ ∈ Ωr−1
n and any ω1 ∈ C∞ with ∣ω1∣ < c we have ∣eΛ′ω′(ω1)∣ < cn.

(c) For any n ∈ Z>0 and Rn > 0 there exists a constant cn > 0, such that
for any ω′ ∈ Ωr−1

n and any ω1 ∈ C∞ with d(ω1, F
r−1
∞ ω′) < Rn we have

∣eΛ′ω′(ω1)∣ < cn.
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(d) For any ω′ ∈ Ωr−1 and ω1 ∈ C∞ we have ∣eΛ′ω′(ω1)∣ ⩾ d(ω1, F
r−1
∞ ω′).

Proof. The function is defined by the product eω′Λ′(ω1) = ω1 ⋅ ∏0/=λ′∈Λ′(1 −
ω1

λ′ω′
), whose factors we examine in turn. First, as Λ′ ⊂ F r−1 is commensurable with

Ar−1, there exists a constant a ∈ A ∖ {0} with Λ′ ⊂ a−1Ar−1. Let 0 ≠ λ′ ∈ Λ′. Recall
that λ′ determines an F∞ linear map Cr−1

∞ → C∞ by matrix multiplication v ↦ λ′v,
and denote by ℓλ′ the associated unimodular F∞-linear map. For any ω′ ∈ Ωr−1

n it
follows that

(4.8) ∣λ′ω′∣ = ∣λ′∣ ⋅ ∣ℓλ′(ω
′)∣

(3.1)

⩾ ∣λ′∣ ⋅ h(ω′) ⋅ ∣ω′∣
(3.2)

⩾ ∣λ′∣ ⋅ ∣πn∣ ⋅ ∣ω′∣
3.3
⩾ ∣λ′∣ ⋅ ∣πn∣ ⋅ ∣ξ∣.

As λ′ runs through Λ′ ∖ {0}, the value ∣λ′ω′∣ thus goes to ∞ uniformly over Ωr−1
n .

Varying n this implies that the function is holomorphic, proving (a).
To prove (b) observe next that all factors 1− ω1

λ′ω′
with ∣λ′ω′∣ ⩾ ∣ω1∣ have absolute

value less than or equal to 1. Since now ∣ω1∣ < c, we deduce that

(4.9) ∣eω′Λ′(ω1)∣ < c ⋅ ∏
0<∣λ′ω′∣<c

c

∣λ′ω′∣
.

Since Λ′ ⊂ a−1Ar−1, for any λ′ ∈ Λ′ ∖ {0} we have ∣λ′∣ ⩾ 1
∣a∣ . From (4.8) we thus

deduce that ∣λ′ω′∣ ⩾ ∣π
nξ∣
∣a∣ . In particular each factor in the product (4.9) satisfies

c
∣λ′ω′∣ ⩽

c∣a∣
∣πnξ∣ ; hence it is bounded by a constant that is independent of ω′. On the

other hand, if ∣λ′ω′∣ < c, the inequality (4.8) implies that ∣λ′∣ < c
∣πnξ∣ . Thus each

coefficient of aλ′ ∈ Ar−1 has absolute value < c∣a∣
∣πnξ∣ , the number of possibilities for

which is bounded independently of ω′. The number of factors in (4.9) is thus also
bounded independently of ω′, and so is therefore the total value of the product,
proving (b).

To prove (c) write ω1 = xω
′ + y, where x ∈ F r−1

∞ and y ∈ C∞ with ∣y∣ < Rn.
Since Λ′ ⊂ F r−1 is commensurable with Ar−1, the factor group F r−1

∞ /Λ′ is compact.
Thus there exists a constant α > 0 depending only on A and Λ′, such that every
x ∈ F r−1

∞ can be written in the form x = λ′ + x0 for some λ′ ∈ Λ′ and x0 ∈ C∞ with
∣x0∣ < α. Together we then have ω1 = λ

′ω′ + (x0ω
′ + y) with ∣x0ω

′∣ < α∣ω′∣ ⩽ α∣ξπ−n∣
by Lemma 3.3 and hence ∣x0ω

′ + y∣ < max{α∣ξπ−n∣,Rn}. By part (b) this implies
that ∣eΛ′ω′(ω1)∣ = ∣eΛ′ω′(x0ω

′ +y)∣ < cn for some constant cn > 0 that is independent
of ω1 and ω′, proving (c).

To prove (d) write ω1 = λ
′
0ω
′ + y with λ′0 ∈ Λ

′ and y ∈ C∞ such that ∣y∣ is
minimal. Then for all λ′ ∈ Λ′ we have ∣y − λ′ω′∣ ⩾ ∣y∣. If ∣y∣ ⩾ ∣λ′ω′∣, this implies
that ∣y −λ′ω′∣ ⩾ ∣λ′ω′∣ and hence ∣1− y

λ′ω′
∣ ⩾ 1. If ∣y∣ < ∣λ′ω′∣, we directly deduce that

∣1 − y
λ′ω′
∣ = 1. Writing eω′Λ′(ω1) = eω′Λ′(y) = y∏0/=λ′∈Λ′(1 −

y
λ′ω′
), we conclude that

all factors in the product satisfy ∣1− y
λ′ω′
∣ ⩾ 1. Thus it follows that ∣eω′Λ′(ω1)∣ ⩾ ∣y∣ ⩾

d(ω1, F
r−1
∞ ω′), proving (d). □

Proposition 4.10. The quotient ΓU /(C∞ × Ωr−1) exists as a rigid analytic
space. Moreover we have an isomorphism of rigid analytic spaces

E ∶ ΓU /(C∞ ×Ωr−1) Ð→ C∞ ×Ωr−1, [(ω1

ω′
)] ↦ (eΛ′ω′(ω1)

ω′
).

Proof. The existence of ΓU /(C∞ ×Ωr−1) as a rigid analytic space is shown in
Simon Häberli’s thesis, [Hä21].
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By Proposition 2.2 we obtain a well-defined bijective and holomorphic map E .
As the derivative of eΛ′ω′(X) with respect to X is identically 1, the morphism is
also étale. By Proposition 4.11 below it is therefore an isomorphism. □

Proposition 4.11. Let f ∶ X → Y be a morphism of rigid analytic spaces
defined over an algebraically closed field K which is étale and bijective. Then f is
an isomorphism.

Proof. (The proof is based on the analogous argument for schemes at [Stacks,
Tag 02LC].) First we show that f is universally injective, i.e., for any morphism
g ∶ Y ′ → Y the morphism f ′ ∶X ′ ∶=X×Y Y

′ → Y ′ is injective. So consider any points
x′, x′′ ∈ X ′ mapping to the same point y′ ∈ Y ′. Then they also map to the same
point y ∈ Y , and by the bijectivity of f they therefore also map to the same point
x ∈ X. Thus x′ and x′′ lie in the fiber product x ×y y

′ which, since all these points
have the same residue field K, is Sp(K ⊗K K) ≅ Sp(K) and therefore consists of a
single point. This proves that x′ = x′′, as desired.

In particular, taking Y ′ =X, the projection fX ∶X ×Y X →X is injective, and
hence the diagonal morphism ∆ ∶ X → X ×Y X is surjective (since fX ○∆ is the
identity on X). On the other hand ∆ is an open immersion, because f is étale.
It follows that ∆ and hence fX are isomorphisms. On the other hand f is flat
by étaleness and even faithfully flat by surjectivity. Since being an isomorphism
is local for the étale topology, and fX is an isomorphism, it follows that f is an
isomorphism, as desired. □

Now we look at the situation near the standard boundary component.

Definition 4.12. For any n ∈ Z>0 and Rn > 0 consider the ΓU -invariant subset

I(n,Rn) ∶= {ω = (
ω1

ω′
) ∈ Ωr ∣ ω′ ∈ Ωr−1

n , d(ω1, F
r−1
∞ ω′) ⩾ Rn}.

An arbitrary ΓU -invariant admissible open subset N ⊂ Ωr, such that for each n > 0
there exists an Rn > 0 with I(n,Rn) ⊂ N , will be called a neighbourhood of infinity.

Note that every subset of the form I(n,Rn) is contained in Ωr by construction;
hence neighbourhoods of infinity exist and Ωr is itself one.

Definition 4.13. Any subset of C∞ ×Ωr−1 of the form

T = ⋃
n⩾1

B(0, rn) ×Ω
r−1
n

for numbers rn ∈ ∣C×∞∣ will be called a tubular neighbourhood of {0} × Ωr−1, or
just a tubular neighbourhood for the sake of brevity. The intersection of a tubular
neighbourhood with C×∞ ×Ωr−1 will be called a pierced tubular neighbourhood.

Any tubular neighbourhood is an admissible subset, because it is the union
of affinoid sets of the form B(0, ρ) × Ωr−1

n for ρ ∈ ∣C×∞∣ and the intersection of
any two such affinoid sets is again of this form. The same holds for pierced tubular
neighbourhoods, but in this case we must use affinoids of the form D(0, σ, ρ)×Ωr−1

n .

Next recall that eΛ′ω′(ω1) /= 0 whenever ω1 /∈ Λ
′ω′. In particular this holds for

any ω = (ω1

ω′
) ∈ Ωr, and so

(4.14) uω′(ω1) ∶=
1

eΛ′ω′(ω1)
∈ C×∞

is well-defined for all ω = (ω1

ω′
) ∈ Ωr.
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Example 4.15. Suppose that A = Fq[t], r = 2, Λ = A
2 and ξ = π̄ is a period of

the Carlitz module. Then for ω = (ω1

ξ
) ∈ Ω2 we have

uω′(ω1) =
1

eξA(ω1)
=

1

π̄eA(z)
,

where z = ω1/ξ ∈ C∞ ∖F∞ is the usual parameter at infinity in the rank 2 literature
(see, e.g., [Ge88a]).

Theorem 4.16. (a) The morphism

ϑ ∶ ΓU /Ω
r Ð→ C×∞ ×Ωr−1, [(ω1

ω′
)] z→ (uω′(ω1)

ω′
)

induces an isomorphism of rigid analytic spaces from ΓU /Ω
r to an admis-

sible open subset of C×∞ ×Ωr−1.
(b) For any neighbourhood of infinity N ⊂ Ωr, the image ϑ(ΓU /N) contains

a pierced tubular neighbourhood.
(c) For any pierced tubular neighbourhood T ′ ⊂ C×∞ × Ωr−1 contained in

the image of ϑ, there is a neighbourhood of infinity N ⊂ Ωr such that
ϑ(ΓU /N) = T

′, and ϑ induces an isomorphism

ΓU /N
∼
Ð→ T ′.

Proof. Part (a) is a direct consequence of Proposition 4.10. To prove (b) we
must show that for any n > 0 and Rn > 0 there exists rn > 0 such that

B(0, rn)
′ ×Ωr−1

n ⊂ ϑ(ΓU /I(n,Rn)).

For this let cn be the constant from Proposition 4.7 (c) and set rn ∶= c
−1
n . Consider

any point ( z
ω′
) ∈ B(0, rn)

′ ×Ωr−1
n . As the map eΛ′ω′ ∶ C∞ ∖Λ′ω′ → C×∞ is surjective

by Proposition 2.2, and uω′ = e
−1
Λ′ω′ by definition, there exists a point ω1 ∈ C∞∖Λ′ω′

with uω′(ω1) = z. Since z ∈ B(0, rn)
′, we then have ∣eΛ′ω′(ω1)∣ ⩾ cn. By Proposition

4.7 (c) we thus have d(ω1, F
r−1
∞ ω′) ⩾ Rn, and so (ω1

ω′
) ∈ I(n,Rn). Therefore ( z

ω′
) =

ϑ([(ω1

ω′
)]) ∈ ϑ(ΓU /I(n,Rn)), proving (b).

To prove (c), let N ⊂ Ωr denote the preimage of T ′, this is an admissible subset
of Ωr since T ′ is an admissible subset of C×∞ ×Ωr−1. It remains to show that N is a
neighborhood of infinity. We must show that for any n > 0 and rn > 0 there exists
Rn > 0 such that

ϑ(ΓU /I(n,Rn)) ⊂ B(0, rn)
′ ×Ωr−1

n .

For this set Rn ∶= r
−1
n and consider any point (ω1

ω′
) ∈ I(n,Rn). Then by Proposition

4.7 (d) we have ∣eΛ′ω′(ω1)∣ ⩾ d(ω1, F
r−1
∞ ω′) ⩾ Rn and hence ∣uω′(ω1)∣ ⩽ rn. Therefore

ϑ([(ω1

ω′
)]) ∈ B(0, rn)

′ ×Ωr−1
n , as desired. The isomorphy ΓU /N

∼
Ð→ T ′ then follows

from (a). □

5. Expansion at infinity

In this section we show that every ΓU -invariant holomorphic function admits
a Laurent series expansion in uω′(ω1) which converges near infinity. As usual, we
measure the size of a holomorphic function g ∶ Ωr−1

n → C∞ by the supremum norm

∥g∥n ∶= sup{∣g(ω
′)∣ ∶ ω′ ∈ Ωr−1

n }.

Note that any rational function is bounded outside of a neighbourhood of its poles.
In particular, a rational function with no poles on Ωr is bounded on Ωr

n. Since g
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is a uniform limit of rational functions on Ωr
n, the supremum defined above will

always be finite.

Lemma 5.1. Let n ∈ Z>0 and ρ ∈ ∣C∞∣. Any holomorphic function f ∶ B(0, ρ)′ ×
Ωr−1

n → C∞ has a unique Laurent series expansion

(5.2) f(z,ω′) = ∑
k∈Z

fk(ω
′)zk,

which converges uniformly on every affinoid subset, where the functions fk ∶ Ω
r−1
n →

C∞ are holomorphic and satisfy the conditions

lim sup
k→∞

k
√
∥fk∥n ⩽ ρ−1 and lim

k→−∞
−k
√
∥fk∥n = 0.

Proof. Write ρ = qa with a ∈ Q. Then the punctured disk B(0, ρ)′ is the union
of the affinoid annuli

D(0, σ, ρ) = {z ∈ C∞ ∣ σ ⩽ ∣z∣ ⩽ ρ} = Spm C∞⟨ Xπa ,
πb

X
⟩

for all σ = qb < ρ with b ∈ Q. Since Ωr−1
n is also affinoid, say Ωr−1

n = Spm Ar−1
n , the

product is affinoid and more precisely

D(0, σ, ρ) ×Ωr−1
n = Spm Ar−1

n ⟨
X
πa ,

πb

X
⟩.

Thus the restriction of f to D(0, σ, ρ)×Ωr−1
n has a uniformly convergent expansion

of the form (5.2) with unique holomorphic functions fk ∶ Ω
r−1
n → C∞ that satisfy

lim sup
k→∞

k
√
∥fk∥n ⩽ ρ−1 and lim sup

k→−∞

−k
√
∥fk∥n ⩽ σ.

By uniqueness, the functions fk are independent of σ, so the proposition follows by
letting σ go to 0. □

Lemma 5.3. For any pierced tubular neighbourhood T ′ ⊂ C×∞ ×Ωr−1, any holo-
morphic function f ∶ T ′ → C∞ has a unique Laurent series expansion

f(z,ω′) = ∑
k∈Z

fk(ω
′)zk

with holomorphic functions fk ∶ Ω
r−1 → C∞, which converges uniformly on every

affinoid subset of T ′.

Proof. Suppose that T ′ = ⋃n⩾1B(0, rn)
′×Ωr−1

n with rn ∈ ∣C×∞∣. By Lemma 5.1,
for any n ⩾ 1 the restriction of f to B(0, rn)

′ × Ωr−1
n admits a unique Laurent

series expansion ∑k∈Z f
(n)
k zk with holomorphic functions f

(n)
k ∶ Ωr−1

n → C∞ which
converges uniformly on every affinoid subset. For any n > m ⩾ 1, the uniqueness
in Lemma 5.1 for the restriction of f to B(0,min{rm, rn})

′ × Ωr−1
m implies that

f
(n)
k ∣Ωr−1

m = f
(m)
k . By the sheaf property for admissible coverings, there are therefore

unique holomorphic functions fk ∶ Ω
r−1 → C∞ with fk ∣Ω

r−1
n = f

(n)
k for all n, and

they satisfy the desired conditions. □

Proposition 5.4. For any ΓU -invariant holomorphic function f ∶ Ωr → C∞
there exist unique holomorphic functions fn ∶ Ω

r−1 → C∞, such that the series

∑
n∈Z

fn(ω
′) ⋅ uω′(ω1)

n

converges to f((ω1

ω′
)) on some neighbourhood of infinity, and uniformly on every

affinoid subset thereof.
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Proof. Being ΓU -invariant f corresponds to a function f̄ ∶ ΓU /Ω
r → C∞. By

Theorem 4.16 (c) the function f̄ ○ ϑ−1 then induces a holomorphic function on a
pierced tubular neighbourhood T ′ ⊂ C×∞ ×Ωr−1, where T ′ = ϑ(ΓU /N) ⊂ C×∞ ×Ωr−1

for a neighbourhood of infinity N ⊂ Ωr. By Lemma 5.3 that function has a unique
expansion of the form

f̄ ○ ϑ−1(( z
ω′
)) = ∑

n∈Z
fn(ω

′)zn.

By the definition of ϑ this yields a unique expansion

f((ω1

ω′
)) = ∑

n∈Z
fn(ω

′) ⋅ uω′(ω1)
n

on N , which again converges uniformly on every affinoid subset, as desired. □

Remark 5.5. The series in Proposition 5.4 does not necessarily converge on all
of Ωr. For example, in [Ge99, Corollary 2.2], Gekeler shows that the u-expansion

of the rank 2 Drinfeld discriminant function has the radius of convergence q−1/(q−1)

only. This is in contrast with the classical case, where the q-expansion of a modular
form converges on the entire upper half plane.

Any weak modular form for the group Γ is a ΓU -invariant function; hence it
possesses a u-expansion as in Proposition 5.4. Our next aim is to study its behaviour
under conjugation by the “stabiliser of the standard boundary component”. For
this consider the algebraic subgroups

(5.6) P ∶=

⎛
⎜
⎜
⎝

∗ ∗ . . . ∗
0
⋮
0

∗ . . . ∗
⋮ ⋮
∗ . . . ∗

⎞
⎟
⎟
⎠
,

and M ∶=

⎛
⎜
⎜
⎝

∗ 0 . . . 0
0
⋮
0

∗ . . . ∗
⋮ ⋮
∗ . . . ∗

⎞
⎟
⎟
⎠
.

of GLr,F , so that P = U ⋊M is parabolic with unipotent radical U and Levi sub-
group M .

Lemma 5.7. Consider any element of the form γ = (α 0
0 γ′
) ∈M(F ) with α ∈ F ×

and γ ∈ GLr−1(F ) and any point ω = (ω1

ω′
) ∈ Ωr. Then:

(a) η ∶= j(γ,ω) = j(γ′, ω′) and γ(ω) = (η
−1αω1

γ′(ω′) ).

(b) Λ′γ ∶= ι
−1(γ−1ΓUγ) = α

−1Λ′γ′.

(c) uγ,ω′(ω1) ∶= eΛ′γω′(ω1)
−1 = η−1α ⋅ uγ′(ω′)(η

−1αω1).

(d) There exist constants k ⩾ 0 and c4 > 0 such that for all n > 0 and R > 0
we have

γ (I(n,R)) ⊂ I(n + k, c4R).

(e) For any neighbourhood of infinity N ⊂ Ωr the subset γ−1(N) is also a
neighbourhood of infinity.

(f) For any ΓU -invariant holomorphic function f ∶ Ωr → C∞ with the ex-
pansion in Proposition 5.4 on N and any integers k and m we have the
following expansion on γ−1(N):

(f ∣k,mγ)((
ω1

ω′
)) = ∑

n∈Z
αm−n(fn∣k−n,mγ

′)(ω′) ⋅ uγ,ω′(ω1)
n.

Proof. Assertion (a) follows directly from the definitions (1.2) and (1.3), with
γ′(ω′) = η−1γ′ω′. Assertion (b) follows by direct calculation from the definition (4.3)
of ι. Using (b) and Proposition 2.3 (b) we deduce that

eΛ′γω′(ω1) = eα−1Λ′γ′ω′(ω1) = eα−1ηΛ′⋅γ′(ω′)(ω1) = α−1η ⋅ eΛ′⋅γ′(ω′)(η
−1αω1)
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Taking reciprocals thus shows (c).
To prove (d) consider any n > 0 and ω′ ∈ Ωr−1

n . Then by definition (3.2) and
Lemma 3.5 (c), both with r − 1 in place of r, we have h(ω′) ⩾ ∣π∣n and h(γ′(ω′)) ⩾
c3h(ω

′) for some constant c3 depending only on γ′. Together we deduce that
h(γ′(ω′)) ⩾ ∣π∣n+k for some k ⩾ 0 depending only on γ′. By the definition (3.2)
again this means that γ′(ω′) ∈ Ωr−1

n+k. Next, by Lemmas 3.5 (a) and 3.3, again with
r−1 in place of r, we have ∣η∣ = ∣j(γ′, ω′)∣ ⩽ ∣ω′∣c−11 ⩽ ∣ξ∣∣π∣

−nc−11 for another constant
c1 depending only on γ′. Note also that, since γ′(ω′) = η−1γ′ω′, the associated
F∞-vector space is F r−1

∞ γ′(ω′) = η−1F r−1
∞ ω′. For any ω1 ∈ C∞ we therefore have

d(η−1αω1, F
r−1
∞ γ′(ω′)) = d(η−1αω1, η

−1αF r−1
∞ ω′)

= ∣η−1α∣ ⋅ d(ω1, F
r−1
∞ ω′) ⩾ ∣απnξ−1∣c1 ⋅ d(ω1, F

r−1
∞ ω′).

In view of Definition 4.12 this implies (d) with c4 ∶= ∣απ
nξ−1∣c1.

To deduce (e) choose Rn > 0 such that ⋃n>0 I(n,Rn) ⊂ N . Then (d) implies
that

γ(⋃n>0 I(n, c
−1
4 Rn+k)) ⊂ ⋃n>0 I(n + k,Rn+k) ⊂ N ,

and hence ⋃n>0 I(n, c
−1
4 Rn+k) ⊂ γ

−1(N). Thus γ−1(N) is a neighbourhood of in-
finity, proving (e).

Finally, using the definition (1.5), for any (ω1

ω′
) ∈ γ−1(N) we can now calculate

(f ∣k,mγ)((
ω1

ω′
))

(a)
= η−k(detγ)mf((η

−1αω1

γ′(ω′) ))

5.4
= η−k(detγ)m ⋅ ∑

n∈Z
fn(γ

′(ω′)) ⋅ uγ′(ω′)(η
−1αω1)

n

(c)
= η−k(αdetγ′)m ⋅ ∑

n∈Z
fn(γ

′(ω′)) ⋅ (α−1ηuγ,ω′(ω1))
n

= ∑
n∈Z

αm−n ⋅ ηn−k(detγ′)mfn(γ
′(ω′)) ⋅ uγ,ω′(ω1)

n

= ∑
n∈Z

αm−n ⋅ (fn∣k−n,mγ
′)(ω′) ⋅ uγ,ω′(ω1)

n,

proving (f). □

For a first application consider the subgroup

(5.8) ΓM ∶= {γ′ ∈ GLr−1(F ) ∣ (
1 0
0 γ′
) ∈ Γ ∩M(F )}.

Theorem 5.9. Let f be a weak modular form of weight k and type m for the
group Γ, and let fn be its coefficients in the u-expansion from Proposition 5.4.
Then, for each n ∈ Z, the function fn is a weak modular form of weight k − n and
type m for the group ΓM < GLr−1(F ).

Proof. Consider any γ′ ∈ ΓM and set γ ∶= (1 0
0 γ′
), so that α = 1 in the notation

of Lemma 5.7. Since the subgroup ΓU is normalised by γ, Lemma 5.7 (b) implies
that Λ′γ = Λ

′ and hence uγ,ω′(ω1) = uω′(ω1). Let N be a neighbourhood of infinity
on which the expansion from Proposition 5.4 converges. Then by Lemma 5.7 (e)
the intersection N ∩ γ−1(N) is another neighbourhood of infinity. For any ω =
(ω1

ω′
) ∈ N ∩ γ−1(N) we can compare the expansions of f(ω) = (f ∣k,mγ)(ω) from

Proposition 5.4 and 5.7 (f). Since α = 1, by the uniqueness part of Proposition 5.4
we conclude that fn = fn∣k−n,mγ

′ for all n ∈ Z, proving the theorem. □
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Corollary 5.10. Let f be a weak modular form of weight k and type m for the
group Γ. Then for any n ∈ Z, the coefficient fn in the u-expansion from Proposition
5.4 is identically zero unless

n ≡ k − (r − 1)m modulo ∣ΓM ∩ {scalars}∣.

Proof. Combine Theorem 5.9 with (1.11) for r − 1 in place of r. □

Lemma 5.11. Consider any element of the form γ = (1 β
0 Idr−1

) ∈ U(F ) for some

row vector β ∈ F r−1 and any point ω = (ω1

ω′
) ∈ Ωr. Then:

(a) j(γ,ω) = det(γ) = 1 and γ(ω) = (ω1+βω′
ω′
).

(b) For any neighbourhood of infinity N ⊂ Ωr the subset

N ′ ∶= {(ω1

ω′
) ∈ γ−1(N) ∣ ∣eΛ′ω′(βω

′) ⋅ uω′(ω1)∣ < 1}

is also a neighbourhood of infinity.
(c) For any ΓU -invariant holomorphic function f ∶ Ωr → C∞ with the ex-

pansion in Proposition 5.4 on N and any integers k and m we have the
following expansion on N ′:

(f ∣k,mγ)((
ω1

ω′
)) = ∑

n∈Z
( ∑

k⩾0
(k−n

k
) ⋅ fn−k(ω

′) ⋅ eΛ′ω′(βω
′)k) ⋅ uω′(ω1)

n.

Proof. Assertion (a) follows directly from the definitions (1.2) and (1.3).
To prove (b) choose Rn > 0 such that ⋃n>0 I(n,Rn) ⊂ N . Since βω′ ∈ F r−1

∞ ω′,
we have d(ω1+βω

′, F r−1
∞ ω′) = d(ω1, F

r−1
∞ ω′) and therefore γ−1(I(n,Rn)) = I(n,Rn)

by Definition 4.12. On the other hand we have d(βω′, F r−1
∞ ω′) = 0; applying Propo-

sition 4.7 (c) thus yields constants cn > 0, such that ∣eΛ′ω′(βω
′)∣ < cn for any

ω′ ∈ Ωr−1
n . By Proposition 4.7 (d) and Definition 4.12, for any (ω1

ω′
) ∈ I(n, cn) we

therefore have

∣eΛ′ω′(ω1)∣ ⩾ d(ω1, F
r−1
∞ ω′) ⩾ cn > ∣eΛ′ω′(βω

′)∣.

By the definition of uω′(ω1) this implies that ∣eΛ′ω′(βω
′) ⋅ uω′(ω1)∣ < 1. Together

this shows that I(n,max{Rn, cn}) ⊂ N
′. Varying n we conclude that N ′ is a

neighbourhood of infinity, proving (b).
Next, by (a) and the definition (1.5), the expansion from Proposition 5.4 yields

(f ∣k,mγ)((
ω1

ω′
)) = f((ω1+βω′

ω′
)) = ∑

n∈Z
fn(ω

′) ⋅ uω′(ω1 + βω
′)n

Using the additivity of the exponential function we can rewrite

uω′(ω1 + βω
′)n = eΛ′ω′(ω1 + βω

′)−n

= (eΛ′ω′(ω1) + eΛ′ω′(βω
′))
−n

= (1 + eΛ′ω′(βω
′)uω′(ω1))

−n
⋅ uω′(ω1)

n.

For (ω1

ω′
) ∈ N ′ we have ∣eΛ′ω′(βω

′) ⋅ uω′(ω1)∣ < 1, so we can plug the binomial series
into the above expansion and rearrange terms, yielding

(f ∣k,mγ)((
ω1

ω′
)) = ∑

n∈Z
fn(ω

′) ⋅ (∑
k⩾0
(−n

k
) ⋅ eΛ′ω′(βω

′)k ⋅ uω′(ω1)
n+k)

= ∑
n∈Z
∑
k⩾0
(−n

k
) ⋅ fn(ω

′) ⋅ eΛ′ω′(βω
′)k ⋅ uω′(ω1)

n+k

= ∑
n′∈Z
( ∑

k⩾0
(k−n

′

k
) ⋅ fn′−k(ω

′) ⋅ eΛ′ω′(βω
′)k) ⋅ uω′(ω1)

n′
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with the substitution n + k = n′. Thus the stated expansion holds on N ′, proving
(c). □

Definition 5.12. Let f ∶ Ωr → C∞ be a ΓU -invariant holomorphic function
and let fn be its coefficients in the u-expansion from Proposition 5.4. Then the
order at infinity of f is

ordΓU
(f) ∶= inf{n ∈ Z ∣ fn(ω′) ≠ 0 for some ω′ ∈ Ωr−1} ∈ Z ∪ {±∞}.

The function f is called meromorphic at infinity if ordΓU
(f) > −∞, that is, if fn is

identically zero for all n ≪ 0. It is called holomorphic at infinity if ordΓU
(f) ⩾ 0,

that is, if fn is identically zero for all n < 0.

Proposition 5.13. Consider a ΓU -invariant holomorphic function f ∶Ωr → C∞
and an element γ ∈ P (F ). Then f ∣k,mγ is invariant under Γγ,U ∶= (γ

−1Γγ)∩U(F ),
and we have

ordΓU
(f) = ordΓγ,U

(f ∣k,mγ).

In particular f is meromorphic, respectively holomorphic at infinity if and only if
f ∣k,mγ has the corresponding property.

Proof. Since P = U ⋊M , it suffices to prove this separately for elements of
M(F ) and U(F ). In both cases the Γγ,U -invariance follows by direct calculation
from the formula (1.6). The rest follows from the expansion in Lemma 5.7 for
γ ∈ M(F ), respectively by close inspection of the expansion in Lemma 5.11 for
γ ∈ U(F ). □

Proposition 5.14. Let Γ1 < Γ and hence Γ1,U ∶= Γ1 ∩U(F ) < ΓU be subgroups
of finite index. Then for any ΓU -invariant holomorphic function f we have

ordΓ1,U
(f) = ordΓU

(f) ⋅ [ΓU ∶ Γ1,U ].

In particular f is meromorphic, respectively holomorphic at infinity with respect to
ΓU if and only if it is so with respect to Γ1,U .

Proof. The lattice associated to Γ1,U is Λ′1 ∶= ι
−1(Γ1,U) ⊂ Λ′ = ι−1(ΓU), so

that [Λ′ ∶ Λ′1] = [ΓU ∶ Γ1,U ] = p
d for an integer d ⩾ 0. For any ω′ ∈ Ωr−1 we then also

have [Λ′ω′ ∶ Λ′1ω
′] = pd. Let B be a set of representatives for Λ′ ∖ Λ′1 modulo Λ′1.

By Proposition 2.3 (a) we then have

eΛ′ω′(ω1) = eΛ′1ω′(ω1) ⋅ ∏
β∈B
(1 −

eΛ′1ω′(ω1)

eΛ′1ω′(βω
′)
)
.

Taking reciprocals, we can therefore express the expansion parameter uω′(ω1) ∶=
eΛ′ω′(ω1)

−1 with respect to Λ′ in terms of the expansion parameter u1,ω′(ω1) ∶=
eΛ′1ω′(ω1)

−1 with respect to Λ′1 by the formula

uω′(ω1) = u1,ω′(ω1)
pd

⋅ ∏
β∈B

eΛ′1ω′(βω
′)

eΛ′1ω′(βω
′)u1,ω′(ω1) − 1 .

The expansion from Proposition 5.4 thus yields

f((ω1

ω′
)) = ∑

n∈Z
fn(ω

′)⋅uω′(ω1)
n = ∑

n∈Z
fn(ω

′)⋅u1,ω′(ω1)
npd

⋅∏
β∈B
(

eΛ′1ω′(βω
′)

eΛ′1ω′(βω
′)u1,ω′(ω1) − 1

)

n

for all points (ω1

ω′
) in some neighbourhood of infinity. By Lemma 5.11 (b) with

Γ1,U in place of ΓU , for each β ∈ B we have ∣eΛ′1ω′(βω
′)u1,ω′(ω1)∣ < 1 on some
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neighbourhood of infinity. On the intersection of these neighbourhoods, we can plug
the binomial series into the above expansion and rearrange terms. We conclude that
the expansion with respect to uω′(ω1) has the first non-zero term fn(ω

′) ⋅uω′(ω1)
n

if and only if the expansion with respect to u1,ω′(ω1) has the first non-zero term

fn(ω
′) ⋅ u1,ω′(ω1)

npd

⋅ ∏
β∈B
(−eΛ′1ω′(βω

′))
n
.

Then ordΓ1,U
(f) = npd = ordΓU

(f) ⋅ [ΓU ∶ Γ1,U ], and the proposition follows. □

Next, we restate holomorphy at infinity (Definition 5.12) in terms of bounded-
ness criteria in certain neighborhoods of infinity. This is a natural consideration
and, though not used elsewhere in this monograph, may be useful for future work.

We call a subset X ⊂ Ωr−1 analytically Zariski-dense if any holomorphic f ∶
Ωr−1 → C∞ that vanishes on X also vanishes identically on Ωr−1.

Definition 5.15. Let X ⊂ Ωr−1 be a subset.
We say that f is bounded on vertical lines supported on X if for every ω′ ∈ X

there exist constants N,R > 0 such that if d(ω1, F
r−1
∞ ω′) > R, then ∣f((ω1

ω′
))∣ < N . If

for every ω′ ∈ X and every N > 0, there exists an R > 0 with this property, we say
that f tends to 0 on vertical lines supported on X.

We say that f is bounded (resp. tends to 0 ) on vertical strips supported on
X if for every z′ ∈ X there exists an admissible neighbourhood U ⊂ X of z′ and
constants N,R > 0 such that if d(ω1, F

r−1
∞ ω′) > R and ω′ ∈ U , then ∣f((ω1

ω′
))∣ < N .

(resp. if for all N > 0 there exists R > 0 with this property).

Proposition 5.16. Let f ∶ Ωr → C∞ be a ΓU -invariant holomorphic function.
The following conditions are equivalent:

(1) f is bounded on vertical strips supported on an analytically Zariski-dense
set X ⊂ Ωr−1;

(2) f is bounded on vertical lines supported on an analytically Zariski-dense
set X ⊂ Ωr−1;

(3) f is holomorphic at infinity.

Moreover, ordΓU
(f) ⩾ 1 if and only if f tends to 0 on vertical lines (equivalently,

vertical strips) supported on an analytically Zariski-dense set X ⊂ Ωr−1.

Proof. By Proposition 5.4, the function f is given by its u-expansion

(5.17) f((ω1

ω′
)) = ∑

k∈Z
fk(ω

′)uω′(ω1)
k,

which converges uniformly on any affinoid subset of a suitable neighborhood of
infinity. By Theorem 4.16(b), this means that there exists a sequence (rn ∈ ∣C×∞∣)n⩾1
such that (5.17) converges to a holomorphic function on

Un ∶= {(
ω1

ω′
) ∈ Ω ∣ (uω′(ω1), ω

′) ∈ B(0, rn) ×Ω
r−1
n },

for each n ⩾ 1.

It is trivial that (1) ⇒ (2), so we proceed to prove that (2) ⇒ (3).
Let X ⊂ Ωr−1, R > 0 and N > 0 be the objects provided in the definition of (2),

and let ω′ ∈X.
Choose n sufficiently large that ω′ ∈ Ωr−1

n and enlarge R, if necessary, so that
R ⩾ 1/rn.
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Now let ω1 ∈ C×∞ be such that d(ω1, F
r−1
∞ ω′) > R. By Proposition 4.7(d)

∣uω′(ω1)∣ < 1/R, and so (ω1

ω′
) ∈ Un. Furthermore ∣f(ω)∣ < N for all ω ∈ Un.

Now consider the Newton polygon of the series (5.17), that is the lower convex
hull of the set of points (k,− logq ∣fk(ω

′)∣) in the Euclidean plane.

Lemma 5.1 implies that limk→−∞ ∥fk∥
−1/k
n = 0, and hence limk→−∞ ∣fk(ω

′)∣−1/k =
0. This means that the slopes of the Newton polygon tend to −∞ as k → −∞, so
either the series has a finite tail, or infinitely many points lie on the Newton polygon
for negative k.

Consider the line y = mx + c with slope m = logq ∣uω(ω1)∣ and tangent to the
Newton polygon. By slightly perturbing ω1, we may assume this line touches the
Newton polygon in only one point (k,− logq ∣fk(ω

′)∣). The corresponding term in
(5.17) then dominates the series, and the y-intercept of the line equals

c = − logq ∣fk(ω
′)uω′(ω1)

k ∣ = − logq ∣f(ω)∣.

Now, if there exist points on the Newton polygon with k < 0, then by choosing
m = logq ∣uω(ω1)∣ sufficiently small (i.e. d(ω1, F

r−1
∞ ω′) sufficiently large), we find

that ∣f(ω)∣ can be made larger than the bound N , i.e. f is not bounded on the
vertical line.

This contradiction shows that fk(ω
′) = 0 for all k < 0. Since this holds for all

ω′ in the analytically Zariski-dense set X, it follows that fk vanishes identically on
Ωr−1 for every k < 0, thus proving that f is holomorphic at infinity.

Furthermore, if there exists a point with k = 0, then the same argument shows
that ∣f(ω)∣ ⩾ ∣f0(ω

′)∣, so f cannot vanish on the vertical line.

To prove that (3) ⇒ (1), suppose that f is holomorphic at infinity. Then the
expansion (5.17) has no polar terms. Let X = U = Ωr−1, consider any ω′ ∈ X and
let n ⩾ 1 be such that ω′ ∈ Ωr−1

n . Let R = 1/rn.
Since the u-expansion (5.17) converges to a holomorphic function on Un, it

follows from Lemma 5.1 that lim infk→∞ ∣fk(ω
′)∣1/k < R.

Now suppose that d(ω1, F
r−1
∞ ω′) > R. Then ∣uω′(ω1)∣ < 1/R by Proposi-

tion 4.7(d) and we obtain lim infk→∞ ∣fk(ω
′)uω′(ω1)

k ∣ < 1, and so f(ω) is bounded
by some N > 0. Thus f is bounded on vertical strips.

Lastly, if f0 = 0, then we may write

∣f(ω)∣ = ∣uω′(ω1)∣ ⋅ ∣ ∑
k⩾0

fk+1(ω
′)uω′(ω1)

k ∣,

where the sum on the right is bounded as before, and ∣uω′(ω1)∣ → 0 as R → ∞, so
f vanishes on vertical strips. □

Remark 5.18. Proposition 5.16 above gives three equivalent formulations of
being holomorphic at infinity. Gekeler [Ge22a, (1.7) & Prop 1.8] also defines higher
rank modular forms and provides another definition of being holomorphic at infinity.
He defines a fundamental domain for Ωr and defines f to be holomorphic at infinity
if f is bounded on this fundamental domain. It is an interesting question whether
Gekeler’s definition is also equivalent to the ones in Proposition 5.16.

6. Modular forms

Now we impose holomorphy conditions at all boundary components, not just
the standard one. We achieve this by conjugating the standard boundary compo-
nent by arbitrary elements δ ∈ GLr(F ). Recall from Proposition 1.12 that for any
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weak modular form f of weight k and type m for Γ, and for any δ ∈ GLr(F ), the
function f ∣k,mδ is a weak modular form of weight k and type m for the arithmetic
subgroup δ−1Γδ. Determining the behaviour of f at all boundary components is
equivalent to determining the behaviour of all conjugates f ∣k,mδ at the standard
boundary component.

Definition 6.1. Let f be a weak modular form of weight k and type m for Γ.

(a) If ord(δ−1Γδ)∩U(F )(f ∣k,mδ) ⩾ 0 for all δ ∈ GLr(F ), we call f a modular
form.

(b) If ord(δ−1Γδ)∩U(F )(f ∣k,mδ) ⩾ 1 for all δ ∈ GLr(F ), we call f a cusp form.

In particular, a modular form is a weak modular form f such that f ∣k,mδ is holo-
morphic at infinity for all δ ∈ GLr(F ). The space of these functions is denoted by
Mk,m(Γ). The space of cusp forms is denoted by Sk,m(Γ). As with weak modular
forms, we abbreviateMk(Γ) ∶= Mk,0(Γ) and Sk(Γ) ∶= Sk,0(Γ).

It may seem extravagant to impose conditions for infinitely many δ. However,
the next two facts show that for fixed Γ, we only need to check these conditions for
δ in a fixed finite set.

Proposition 6.2. The numbers in Definition 6.1 depend only on the double
coset ΓδP (F ).

Proof. Since f is a weak modular form of weight k and type m for Γ, for
any δ′ = γ′δγ with γ′ ∈ Γ and γ ∈ P (F ) we have f ∣k,mδ

′ = (f ∣k,mδ)∣k,mγ and hence
ord(δ′−1Γδ′)∩U(F )(f ∣k,mδ

′) = ord(δ−1Γδ)∩U(F )(f ∣k,mδ) by Proposition 5.13. □

Proposition 6.3. The double coset space Γ/GLr(F )/P (F ) is finite. More
precisely, let Cl(A) denote the class group of A. Then:

(a) GLr(A)/GLr(F )/P (F ) is in bijection with Cl(A).
(b) For any arithmetic subgroup Γ < GLr(F ), the set Γ/GLr(F )/P (F ) has

cardinality at most ∣Cl(A)∣ ⋅ [GLr(A) ∶ GLr(A) ∩ Γ].
(c) If Γ < GLr(A) then the double cosets of Γ/GLr(F )/P (F ) can be repre-

sented by elements of GLr(A) if and only if Cl(A) = {1}.

Proof. By the orbit-stabiliser theorem the set GLr(F )/P (F ) is in bijection
with the set of one-dimensional subspaces of F r and hence with Pr−1(F ). This
bijection is equivariant under the left action of GLr(F ). To prove (a) it thus
suffices to find a bijection between GLr(A)/Pr−1(F ) and Cl(A).

For this we associate to any column vector x = (xi)i ∈ F
r ∖ {0} the fractional

ideal I(x) ∶= ∑iAxi ⊂ F . This ideal depends only on the GLr(A)-orbit of x,
and its ideal class depends only on the corresponding point of Pr−1(F ). Together
we therefore obtain a well-defined map GLr(A)/Pr−1(F ) → Cl(A). This map is
surjective, because r ⩾ 2 and every ideal of a Dedekind domain can be generated
by 2 elements. We claim that it is also injective.

To see this we view Ar as a space of row vectors, so that right multiplication
by x determines a surjective homomorphism of A-modules px ∶ A

r → I(x). Since
I(x) is a projective A-module, the associated short exact sequence 0 → ker(px) →
Ar → I(x) → 0 splits. Moreover, since the isomorphism class of a finitely generated
projective A-module depends only on its rank and its highest exterior power, the
isomorphism class of ker(px) is determined by that of I(x).
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Suppose now that two vectors x, y ∈ F r ∖ {0} correspond to the same ideal
class. Then I(y) = u ⋅ I(x) for some u ∈ F ×, and by the preceding remarks there
exists an isomorphism of A-modules f ∶ ker(px) → ker(py). Combining these via
suitable splittings we find an isomorphism of A-modules g ∶ Ar → Ar making the
following diagram commute:

0 // ker(px)

f ≀
��

// Ar

g ≀
��

px // I(x)

u⋅ ≀
��

// 0

0 // ker(py) // Ar
py // I(y) // 0.

Writing g as right multiplication by a matrix γ ∈ GLr(A), the commutativity on
the right hand side then means that aγy = axu for all a ∈ Ar. Thus γy = xu for
some γ ∈ GLr(A) and u ∈ F

×, which is precisely the desired injectivity.
This finishes the proof of (a). Parts (b) and (c) are direct consequences of

(a). □

Corollary 6.4. Suppose that Γ = GLr(A) for a principal ideal domain A.
Then:

(a) The condition in Definition 6.1 is independent of δ.
(b) If m /≡ 0 mod (q − 1), any modular form of weight k and type m for Γ is

a cusp form.

Proof. Part (a) follows from Propositions 6.2 and 6.3 (a). To prove (b) let f
be a modular form of weight k and type m for Γ, and let fn be its coefficients in
the u-expansion from Proposition 5.4, which are weak modular forms for the group
ΓM = GLr−1(A). By assumption we then have fn = 0 for all n < 0. If f is not a cusp
form, then f0 is not identically zero, so Corollary 5.10 implies that k ≡ (r − 1)m
modulo ∣ΓM ∩ {scalars}∣ = q − 1. But then f itself is also not identically zero, so
(1.11) gives k ≡ rm modulo ∣Γ∩{scalars}∣ = q − 1. Both congruences together imply
that m ≡ 0 modulo (q − 1), contrary to the assumption. □

Remark 6.5. By Theorem 5.9 the coefficient fn of the u-expansion of a modular
form f is a weak modular form of weight k − n for a subgroup ΓM < GLr−1(F ). In
contrast to the case of modular forms in characteristic zero, the weight k − n here
goes to −∞ for n→∞. In Theorem 11.1 (b) of Part 2 we will see that any modular
forms of weight < 0 for ΓM must be zero if r − 1 ⩾ 2. Thus for r ⩾ 3 and n large
enough, the coefficient fn will not be a modular form (only failing the holomorphic
at infinity condition). However, one expects that there will be some rank r − 1
discriminant function ∆a and integer N for which ∆N

a fn will be holomorphic at
infinity. It may be interesting to find bounds on N in terms of n.

Proposition 6.6. For any δ ∈ GLr(F ) we have f ∈ Mk,m(Γ) if and only if
f ∣k,mδ ∈ Mk,m(δ

−1Γδ).

Proof. Direct consequence of Proposition 1.12 and the formula (1.6). □

In particular, whenever Γ1 ◁ Γ is a normal subgroup of finite index, the map
f ↦ f ∣k,mγ for all γ ∈ Γ defines a right action of Γ on Mk,m(Γ1). As a direct
consequence of Definition 6.1 and Proposition 5.14 the subspace of invariants is
then

(6.7) Mk,m(Γ1)
Γ =Mk,m(Γ).
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Moreover, (1.10) and (1.11) imply that

Mk,m(Γ) = Mk,m′(Γ) whenever m ≡m
′ modulo ∣det(Γ)∣, and(6.8)

Mk,m(Γ) = 0 unless k ≡ rm modulo ∣Γ ∩ {scalars}∣.(6.9)

As a direct consequence of the definitions we also have

(6.10) Mk,m(Γ) ⋅Mk′,m′(Γ) ⊂Mk+k′,m+m′(Γ)

for all k, k′,m,m′. In particular we can form the graded ring of modular forms

(6.11) M∗(Γ) ∶= ⊕
k⩾0
Mk(Γ).



Part 2

Comparison with the Algebraic
Theory



Introduction

In this part, we identify the analytic modular forms from Part 1 with the
algebraic modular forms defined in [Pi13] and deduce qualitative consequences
such as the finite dimensionality of the space of modular forms of given level and
weight.

By definition, weak Drinfeld modular forms of weight k are holomorphic func-
tions on the rigid analytic Drinfeld period domain Ωr that satisfy a certain twisted
transformation law under the action of an arithmetic congruence subgroup Γ <
GLr(F ). Drinfeld modular forms are weak Drinfeld modular forms that are holo-
morphic at infinity after transformation by all elements of GLr(F ). By construction
these seem to be purely analytic objects, but in this part we identify them with
objects from algebraic geometry, as follows.

Roughly speaking, the quotient Γ/Ωr is the set of C∞-valued points of a certain
moduli space of Drinfeld modules M , which is an algebraic variety over C∞. The
transformation law means that weak modular forms of weight k can be interpreted
as holomorphic sections of Lk for a certain invertible sheaf L on M , at least if Γ
is sufficiently small. Here L is the dual of the relative Lie algebra of the universal
Drinfeld module over M . Since M is affine of dimension r − 1, for r ⩾ 2 there is
an abundance of non-algebraic holomorphic sections of Lk. (So the analogue of the
Köcher principle for Siegel modular forms does not hold.)

To algebraise Drinfeld modular forms, we translate the condition at infinity
into a condition on a compactification M of the moduli space M . For this we use
the Satake compactification that was constructed analytically by Kapranov [Ka87]
in the special case A = Fq[t] and by Häberli [Hä21] in general, and algebraically
by the third author in [Pi13]. By [Pi13] the sheaf L extends naturally to an

invertible sheaf on M , again denoted L, which is constructed as the dual of the
relative Lie algebra of the unique generalised Drinfeld module over M that extends
the universal Drinfeld module over M .

The main result of Part 2, Theorem 10.9, states that the analytic Drinfeld
modular forms of weight k correspond precisely to the sections of Lk overM . Since
M is a projective algebraic variety, it follows that the space of modular forms of
each weight k is finite dimensional, and that the graded ring of modular forms of
all weights for fixed Γ is a normal integral domain that is finitely generated as a
C∞-algebra: see Theorem 11.1. In the case r = 2 all this was done in Goss’s thesis
[Go80b].

Establishing these results with adequate precision requires a fair amount of
technical details. For later use we also discuss the action of GLr(F ) as well as
Hecke operators.

Outline of Part 2. As a preparation for the modular interpretation of Γ/Ωr,
in Section 7 we construct the universal family of Drinfeld modules over Ωr and its
level structures. We also study its behaviour at the standard boundary component.
In Proposition 7.16 we show that the universal family descends to a family over
ΓU /Ω

r which extends naturally to a generalised Drinfeld module over the larger
domain U obtained by adjoining a copy of Ωr−1.

In Section 8 we construct the precise identification of Γ/Ωr with a moduli space
of Drinfeld modules. This requires working with the ring of finite adèles Af

F of F



7. UNIVERSAL FAMILY OF DRINFELD MODULES 25

and identifying Γ/Ωr with a connected component of a double quotient of the form

GLr(F )/(Ω
r ×GLr(Af

F )/K)

for an open compact subgroup K < GLr(Â). That in turn can be identified natu-
rally with the space of C∞-valued points Mr

A,K(C∞) on a certain algebraic moduli
space of Drinfeld modules Mr

A,K . This identification requires a precise description
of the universal family and its level structure. Working adèlically also entails that
Mr

A,K is an algebraic variety over the given global field F itself, which eventually
shows that the space of modular forms for Γ comes from a vector space over a
certain finite abelian extension of F instead of C∞.

As explained in Remark 1.8, there are different conventions about whether Ωr

consists of row or column vectors and about how GLr(F∞) acts on it. In this
monograph we have chosen to use column vectors and left multiplication. This
affects the way that the universal family of Drinfeld modules on GLr(F )/(Ω

r ×
GLr(Af

F )/K) must be described. As our convention differs from that of [Pi13],
several formulas from there have to be transformed to be used here. For instance,
in the isomorphism (8.1) a double coset [(ω, g)] now corresponds to a point on the
moduli space that was represented by the double coset [(ωT , (gT )−1)] in [Pi13].
The change in convention also affects the functoriality in Proposition 8.16, in whose
proof the precise relationship is indicated. We wish to apologise for the resulting
inconvenience.

In Section 9 we review the relevant facts about the Satake compactification of
Mr

A,K of Mr
A,K . The crucial properties in Proposition 9.3 are that the composite

map ΓU /Ω
r ↠ Γ/Ωr ↪Mr

A,K(C∞) extends to an étale morphism U →Mr
A,K(C∞)

for the larger domain U from Section 7 and that, repeating this after transformation
by arbitrary elements of GLr(Af

F ), the images of these maps cover a Zariski open

subset Mr,+
A,K(C∞) of M

r
A,K(C∞) whose closed complement has codimension ⩾ 2.

Using this map we can identify the pullback of the generalised Drinfeld module on
Mr

A,K with that constructed over U in Section 7.
In Section 10 we use these facts to show that an analytic modular form is holo-

morphic at infinity if and only if the corresponding section of Lk over Mr
A,K(C∞)

extends holomorphically to a section over Mr,+
A,K(C∞). By rigid analytic analogues

of the Hartogs principle and of GAGA the latter condition is equivalent to being
the restriction of a section of Lk over Mr

A,K(C∞) in the algebro-geometric sense,
thereby establishing our first main result, Theorem 10.9.

This earns us our piece of cake in Section 11, where we deduce that the space
of modular forms of each weight k is finite dimensional, and that the graded ring of
modular forms of all weights for fixed Γ is a normal integral domain that is finitely
generated as a C∞-algebra.

The final Section 12 explains how the comparison isomorphism between analytic
and algebraic modular forms behaves under Hecke operators on both sides.

7. Universal family of Drinfeld modules

As a preparation for the following sections, we construct the universal family of
Drinfeld modules on Γ/Ωr associated to an A-lattice L ⊂ F r and study its behaviour
at the standard boundary component. We first review the necessary details about
Drinfeld modules and generalised Drinfeld modules.
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Consider any scheme S over F . For any line bundle E on S, let EndFq(E) de-
note the ring of Fq-linear endomorphisms of the group scheme underlying E. (These
endomorphisms need not commute with scalar multiplication by OS .) By [Dr74,

§5], any such endomorphism is a finite sum ∑i biτ
i for sections bi ∈ H

0(S,E1−qi),
where τ ∶ E → Eq, x↦ xq denotes the q-power Frobenius morphism. Set deg(a) ∶=
dimFq(A/(a)) for any a ∈ A ∖ {0} and deg(0) ∶= −∞.

Recall that a Drinfeld A-module of rank r over S is a pair (E,φ) consisting of
a line bundle E over S and a ring homomorphism

(7.1) φ ∶ A→ EndFq(E), a↦ φa =
r deg(a)
∑
i=0

φa,iτ
i

with φa,i ∈H
0(S,E1−qi) satisfying the two conditions:

(a) The derivative dφ ∶ a ↦ φa,0 is the structure homomorphism A ↪ F →
H0(S,OS).

(b) For any a ∈ A ∖ {0} the term φa,r deg(a) is a nowhere vanishing section of

E1−qrdeg(a)

.

If instead of (b) we require only:

(c) For any point s ∈ S and any non-constant a ∈ A there exists i > 0 with
φa,i /= 0;

we obtain the notion of a generalised Drinfeld A-module of rank ⩽ r over S from
[Pi13, Def. 3.1]. Over any point s ∈ S, the map φ then defines a Drinfeld A-module
of some rank rs satisfying 1 ⩽ rs ⩽ r.

An isomorphism of (generalised or not) Drinfeld A-modules over S is an isomor-
phism of line bundles that is equivariant with respect to the action of A on both
sides. Furthermore, following [Pi13, Def. 3.8], a generalised Drinfeld A-module
(E,φ) over S is called weakly separating if, for any Drinfeld A-module (E′, φ′) over
any field F ′ containing F , at most finitely many fibers of (E,φ) over F ′-valued
points of S are isomorphic to (E′, φ′).

The analogous notions are used over a rigid analytic base S.

For the following construction we fix a finitely generated projectiveA-submodule
L ⊂ F r of rank r. Recall that elements of F r are viewed as row vectors and points in
Ωr as column vectors. Any ω ∈ Ωr thus determines an A-lattice Lω ⊂ C∞ of rank r.
Let eLω be the associated exponential function from (2.1). For any a ∈ A ∖ {0} we
have an inclusion of A-lattices Lω ⊂ a−1Lω of finite index, so eLω(a

−1Lω) is a finite
Fq-subspace of C∞. Thus

(7.2) ψLω
a ∶= a ⋅ eeLω(a−1Lω)

is a polynomial in EndFq(Ga,C∞) which by Proposition 2.3 (a) and (b) satisfies the

functional equation ψLω
a (eLω(z)) = eLω(az). Setting also ψLω

0 ∶= 0, we obtain the
Drinfeld A-module (Ga,C∞ , ψ

Lω) over C∞ that is uniformised by the lattice Lω. As
ω varies over Ωr, the exponential function eLω(z) is holomorphic in (z,ω) ∈ C∞×Ωr;
hence ψLω

a is holomorphic in ω ∈ Ωr for each a ∈ A. Together this therefore defines
a Drinfeld A-module

(7.3) (Ga,Ωr , ψL)

of rank r over Ωr.
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Also, any element ℓ ∈ F r determines a holomorphic section

(7.4) µL
ℓ ∶ ω ↦ eLω(ℓω)

of Ga,Ωr which depends only on the residue class ℓ + L. For any non-zero ideal
N ⊂ A with Nℓ ⊂ L this section lies in the N -torsion subgroup ψL[N] of ψL.
Varying ℓ +L over N−1L/L this endows the Drinfeld A-module (Ga,Ωr , ψL) with a
full level structure of level N by mapping

(7.5) N−1L/LÐ→ ψL[N], ℓ +L↦ µL
ℓ .

Next consider an arbitrary element γ ∈ GLr(F ). Then for any ω ∈ Ωr we have
Lω = Lγ−1γω = j(γ,ω) ⋅ Lγ−1 ⋅ γ(ω) by (1.3). Multiplication by j(γ,ω)−1 thus
induces an isomorphism of Drinfeld A-modules

(7.6) (Ga,C∞ , ψ
Lω)

∼
Ð→ (Ga,C∞ , ψ

Lγ−1⋅γ(ω)).

Here the target is the pullback of the Drinfeld A-module (Ga,Ωr , ψLγ−1) via the
isomorphism γ ∶ Ωr → Ωr, ω ↦ γ(ω), evaluated at ω. Multiplication by the holo-
morphic function j(γ, )−1 thus induces an isomorphism of Drinfeld A-modules

(7.7) (Ga,Ωr , ψL)
∼
Ð→ γ∗(Ga,Ωr , ψLγ−1)

over Ωr. Also, for any ℓ ∈ F r, using Proposition 2.3 (b) we can calculate

(7.8)

µL
ℓ (ω) = eLω(ℓω)

= ej(γ,ω)⋅Lγ−1⋅γ(ω)(j(γ,ω) ⋅ ℓγ
−1 ⋅ γ(ω))

= j(γ,ω) ⋅ eLγ−1⋅γ(ω)(ℓγ
−1 ⋅ γ(ω))

= j(γ,ω) ⋅ µLγ−1

ℓγ−1
(γ(ω)).

Multiplication by j(γ, )−1 thus also sends the level N structure ℓ + L ↦ µL
ℓ of

(Ga,Ωr , ψL) to the level N structure ℓγ−1 +Lγ−1 ↦ γ∗µLγ−1

ℓγ−1
of γ∗(Ga,Ωr , ψLγ−1).

Now let Γ < GLr(F ) be an arithmetic subgroup whose right action on F r

normalises the lattice L. Recall from [Dr74, Prop. 6.2] that Γ < GLr(F ) acts
discontinuously on Ωr; hence the quotient Γ/Ωr exists as a rigid analytic space by
[FvdP04, §6.4]. Let πΓ ∶ Ω

r ↠ Γ/Ωr denote the projection morphism.
Assume that Γ acts freely on Ωr. Then Γ also acts freely on Ga,Ωr = Ga × Ω

r

through γ(z,ω) ∶= (j(γ,ω)−1z, γ(ω)), so the quotient EΓ ∶= Γ/(Ga ×Ω
r) exists and

is a line bundle on Γ/Ωr. By construction the space of its sections over any open
subset U ⊂ Γ/Ωr is
(7.9)
EΓ(U) ∶= {f ∶ π

−1
Γ (U) → C∞ holomorphic ∣ ∀γ ∈ Γ ∶ f(γ(ω)) = j(γ,ω)−1f(ω)}.

This line bundle comes with a natural isomorphism

(7.10) π∗ΓEΓ
∼
Ð→ Ga,Ωr .

For any γ ∈ Γ the equality πΓ = πΓ ○ γ induces a commutative diagram

(7.11)

π∗ΓEΓ ∼
(7.10) // Ga,Ωr

≀
��

γ∗π∗ΓEΓ ∼
(7.10) // γ∗Ga,Ωr Ga,Ωr ,
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where the vertical map on the right is multiplication by j(γ, )−1. The isomorphism
(7.7) for all γ ∈ Γ implies that there is a unique Drinfeld A-module of the form
(EΓ, ψ̄

L) over Γ/Ωr such that (7.10) induces an isomorphism

(7.12) π∗Γ(EΓ, ψ̄
L)

∼
Ð→ (Ga,Ωr , ψL).

Moreover, since Γ normalises L, it acts on N−1L/L for any non-zero ideal
N ⊂ A. For any residue class ℓ + L that is fixed by Γ, the formula (7.8) implies
that the associated torsion point µL

ℓ descends to a torsion point µ̄L
ℓ of (EΓ, ψ̄

L). In
particular, if Γ acts trivially on N−1L/L, the level N structure (7.5) descends to a
unique level N structure of (EΓ, ψ̄

L)

(7.13) N−1L/LÐ→ ψ̄L[N], ℓ +L↦ µ̄L
ℓ .

Now set ΓU ∶= Γ ∩ U(F ) as in (4.2) and let Λ′ ∶= ι−1(ΓU) ⊂ F
r−1 be the

corresponding subgroup from (4.4), which is commensurable with Ar−1. Then by
Theorem 4.16 there exist an admissible open subset U ⊂ C∞ × Ωr−1 containing
{0} ×Ωr−1 and a holomorphic map

(7.14) ϑ ∶ ΓU /Ω
r Ð→ U , [(ω1

ω′
)] z→ (eΛ′ω′(ω1)−1

ω′
)

which induces an isomorphism of rigid analytic spaces ΓU /Ω
r ∼
Ð→ U ∩(C×∞ ×Ωr−1).

Also πΓ factors through projection morphisms

Ωr
πΓU //

πΓ

55ΓU /Ω
r

π
ΓU
Γ // Γ/Ωr.

For all γ ∈ ΓU , the definition (1.2) implies that j(γ,ω) = 1 and hence eLγ(ω) = eLω

and ψ
Lγ(ω)
a = ψLω

a . For ease of notation we denote the function on Ga × ΓU /Ω
r

induced by ψLω
a again by ψLω

a . Then the Drinfeld A-module (Ga,Ωr , ψL) is the
pullback under πΓU

of a unique Drinfeld A-module of the form (Ga,ΓU /Ωr , ψL) over
ΓU /Ω

r. Moreover the isomorphism (7.12) descends to a natural isomorphism

(7.15) (πΓU

Γ )
∗(EΓ, ψ̄

L)
∼
Ð→ (Ga,ΓU /Ωr , ψL).

Proposition 7.16. There exists a unique generalised Drinfeld A-module of the
form (Ga,U , ψ̃

L) over U such that

(Ga,ΓU /Ωr , ψL) = ϑ∗(Ga,U , ψ̃
L).

Its restriction to {0} ×Ωr−1 ⊂ U is a Drinfeld A-module of constant rank r − 1.

Proof. Since ϑ defines an isomorphism between ΓU /Ω
r and its image U ′ ∶=

U ∩ (C×∞ ×Ωr−1, it is trivial to transfer the rank r Drinfeld module ψL from ΓU /Ω
r

to U . The real content of the Proposition is that it extends to a generalised Drinfeld
module on U . The strategy of the proof is to start with the exponential function
C∞ × (U ∩ (C×∞ ×Ωr−1)) Ð→ C∞, (z, ϑ([ω])) ↦ eLω(z) associated to the Drinfeld
A-module ψL rather than the Drinfeld module ψL itself, because the Drinfeld mod-
ule can always be reconstructed from the exponential function. In the first part of
the proof, we translate the formula for the exponential function associated to ψL

to U ′. More specifically, by writing ω = (ω1

ω′
) as before, we will express eLω(z) as an

infinite product in the variables (z, u,ω′) for u = uω′(ω1) ∶= eΛ′ω′(ω1)
−1.
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For this we define subgroups L′ and L1 by the commutative diagram with exact
rows

0 // F r−1 // F r // F // 0
∪ v′↦(0,v′) ∪ (v1,v′)↦v1 ∪

0 // L′ // L // L1
// 0.

Since L is commensurable with Ar, the subgroups L′ and L1 are commensurable
with Ar−1 and A, respectively. Next, for any (ℓ1, v

′) ∈ L and any λ′ ∈ Λ′ we have

(1 λ′

0 1
) ∈ ΓU and hence (ℓ1, v

′)(1 λ′

0 1
) = (ℓ1, ℓ1λ

′ + v′) ∈ L. In particular this implies

that ℓ1Λ
′ ⊂ L′. As both Λ′ and L′ are commensurable with Ar−1, this is an inclusion

of finite index if ℓ1 /= 0.
Next we fix a subgroup L̃1 ⊂ L which maps isomorphically to L1 under the

projection F r ↠ F . Then for any ω = (ω1

ω′
) ∈ Ωr we have Lω = L̃1ω ⊕ L

′ω′. Using
Proposition 2.3 (a) and the definition (2.1) of the exponential function, for any
z ∈ C∞ we thus have

(7.17) eLω(z) = eeL′ω′(Lω)(eL′ω′(z)) = z̃ ⋅ ∏
ℓ∈L̃1∖{0}

(1 −
z̃

eL′ω′(ℓω)
)

with z̃ = eL′ω′(z). To transform the denominator write ℓ ∈ L̃1 ∖ {0} in the form
ℓ = (ℓ1, v

′) with ℓ1 ∈ L1 ∖ {0} and v
′ ∈ F r−1. Then we have an inclusion of lattices

Λ′ω′ ⊂ ℓ−11 L′ω′, and by the F∞-linear independence of the coefficients of ω′ the
index is precisely [L′ ∶ ℓ1Λ

′] < ∞. By the additivity of the exponential function we
have

eΛ′ω′(ℓ
−1
1 ℓω) = eΛ′ω′(ω1 + ℓ

−1
1 v′ω′) = u−1 + eΛ′ω′(ℓ

−1
1 v′ω′)

with u = eΛ′ω′(ω1)
−1. Using Proposition 2.3 again we deduce that

eL′ω′(ℓω) = ℓ1 ⋅ eℓ−11 L′ω′(ℓ
−1
1 ℓω)

= ℓ1 ⋅ eeΛ′ω′(ℓ−11 L′ω′)(eΛ′ω′(ℓ
−1
1 ℓω))

= ℓ1 ⋅ eeΛ′ω′(ℓ−11 L′ω′)(u
−1 + eΛ′ω′(ℓ

−1
1 v′ω′)).

By the definition and the additivity of the exponential function this in turn yields

eL′ω′(ℓω) = ℓ1 ⋅ (u
−1 + eΛ′ω′(ℓ

−1
1 v′ω′)) ⋅ ∏

ℓ′∈L′∖ℓ1Λ′

modulo ℓ1Λ′

(1 −
u−1 + eΛ′ω′(ℓ

−1
1 v′ω′)

eΛ′ω′(ℓ−11 ℓ′ω′)
)

= ℓ1 ⋅ (u
−1 + eΛ′ω′(ℓ

−1
1 v′ω′)) ⋅ ∏

ℓ′∈L′∖ℓ1Λ′

modulo ℓ1Λ′

eΛ′ω′(ℓ
−1
1 (ℓ

′ − v′)ω′) − u−1

eΛ′ω′(ℓ−11 ℓ′ω′)

= ℓ1 ⋅
1 + eΛ′ω′(ℓ

−1
1 v′ω′) ⋅ u

u[L′∶ℓ1Λ′]
⋅ ∏
ℓ′∈L′∖ℓ1Λ′

modulo ℓ1Λ′

eΛ′ω′(ℓ
−1
1 (ℓ

′ − v′)ω′) ⋅ u − 1

eΛ′ω′(ℓ−11 ℓ′ω′)

=
ℓ1

u[L′∶ℓ1Λ′]
⋅

∏
ℓ′∈L′ mod ℓ1Λ′

(1 − eΛ′ω′(ℓ
−1
1 (ℓ

′ − v′)ω′) ⋅ u)

∏
ℓ′∈L′∖ℓ1Λ′ mod ℓ1Λ′

eΛ′ω′(ℓ
−1
1 ℓ′ω′)

,
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where the last transformation uses the fact that (−1)[L
′∶ℓ1Λ′]−1 = 1 because [L′ ∶

ℓ1Λ
′] is a power of q. Plugging this into the formula (7.17) we conclude that

(7.18)

eLω(z) = z̃ ⋅ ∏
(ℓ1,v′)∈L̃1∖{0}

⎛
⎜
⎜
⎝

1 − z̃ ⋅
u[L

′∶ℓ1Λ′]

ℓ1
⋅

∏
ℓ′∈L′∖ℓ1Λ′ mod ℓ1Λ′

eΛ′ω′(ℓ
−1
1 ℓ′ω′)

∏
ℓ′∈L′ mod ℓ1Λ′

(1 − eΛ′ω′(ℓ
−1
1 (ℓ

′ − v′)ω′) ⋅ u)

⎞
⎟
⎟
⎠
.

As (ℓ1, ℓ
′) runs through L̃1 ∖ {0}, the index [L′ ∶ ℓ1Λ

′] goes to infinity. Using the
geometric series we can therefore expand the right hand side of (7.18) as a power
series in u whose coefficients are functions of (z̃, ω1).

In the second part of the proof, we will show that this expression converges
locally uniformly for all z̃ ∈ C∞ and all (u,ω1) in a suitable tubular neighbourhood
of {0} × Ωr−1. In particular, it will also converge for all z ∈ C∞ when u = 0 and
thus extends to an exponential function on a tubular neighbourhood containing
{0} ×Ωr−1.

For this take any n > 0. By Proposition 4.7 (c) there exists a constant cn > 0,
such that for any ω′ ∈ Ωr−1

n and any v′ ∈ F r−1
∞ we have ∣eΛ′ω′(v

′ω′)∣ < cn. In
particular this inequality holds for ℓ−11 ℓ′ and ℓ−11 (ℓ

′ − v′) in place of v′. Thus if
∣u∣ ⩽ rn ∶= (2cn)

−1, we have ∣eΛ′ω′(ℓ
−1
1 (ℓ

′ − v′)ω′) ⋅ u∣ < 2−1, so the geometric series
for

1

1 − eΛ′ω′(ℓ−11 (ℓ
′ − v′)ω′) ⋅ u

converges uniformly to a value of norm 1. Combining the inequalities yields the
bound
RRRRRRRRRRRRRRRRR

u[L
′∶ℓ1Λ′]

ℓ1
⋅

∏
ℓ′∈L′∖ℓ1Λ′ mod ℓ1Λ′

eΛ′ω′(ℓ
−1
1 ℓ′ω′)

∏
ℓ′∈L′ mod ℓ1Λ′

(1 − eΛ′ω′(ℓ
−1
1 (ℓ

′ − v′)ω′) ⋅ u)

RRRRRRRRRRRRRRRRR

⩽
r
[L′∶ℓ1Λ′]
n c

[L′∶ℓ1Λ′]−1
n

∣ℓ1∣
=

2−[L
′∶ℓ1Λ′]

∣ℓ1∣cn
.

As both ∣ℓ1∣ and [L
′ ∶ ℓ1Λ

′] go to infinity with ℓ1, for any R > 0 this proves that the
right hand side of (7.18) converges uniformly for all (z̃, u, ω′) ∈ B(0,R)×B(0, rn)×
Ωr−1

n . Varying n and R it therefore converges locally uniformly on C∞ × T for the
tubular neighbourhood T ∶= ⋃n⩾1B(0, rn) × Ω

r−1
n and the limit is a holomorphic

function of (z̃, u, ω′). Substituting z̃ = eL′ω′(z), which is already a holomorphic
function of (z,ω′) ∈ C∞ × Ωr−1, thus yields a holomorphic function E(z, u,ω′) on
C∞ × T such that

(7.19) eLω(z) = E(z, eΛ′ω′(ω1)
−1, ω′)

for all z ∈ C∞ and ω = (ω1

ω′
) ∈ Ωr with ϑ([ω]) ∈ T .

In the third and final part of the proof, we show how this exponential function
on C∞×T gives rise to a generalised Drinfeld module and do all the necessary checks
to show that it is a generalised Drinfeld module whose restriction to {0}×Ωr−1 has
constant rank r − 1.

Recall that for any ω ∈ Ωr, the Drinfeld A-module ψLω is characterised by
the fact that for each a ∈ A ∖ {0} the function ψLω

a is an Fq-linear polynomial in
C∞[z] satisfying the functional equation ψLω

a (eLω(z)) = eLω(az). Writing this as
an identity of power series in z and observing that eLω(z) = z + (higher terms),
it follows that each coefficient of ψLω

a is a certain polynomial with coefficients in
A in finitely many coefficients of eLω(z). By what we have just proved, these
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coefficients, as functions of (eΛ′ω′(ω1)
−1, ω′), extend to holomorphic functions of

(u,ω′) ∈ T . Thus the same is true for the coefficients of ψLω
a . In other words, there

is a unique holomorphic function ψ̃L
a on C∞ × T , which is an Fq-linear polynomial

of degree ⩽ r deg(a) in z, such that

(7.20) ψLω
a (z) = ψ̃L

a (z, eΛ′ω′(ω1)
−1, ω′)

for all z ∈ C∞ and ω = (ω1

ω′
) ∈ Ωr with ϑ([ω]) ∈ T . Setting ψ̃L

0 ∶= 0, the fact

that a ↦ ψL
a is an Fq-algebra homomorphism by continuity implies that a ↦ ψ̃L

a

is also Fq-algebra homomorphism. Moreover, the fact that ∂
∂z
ψL
a = a identically

implies that ∂
∂z
ψ̃L
a = a identically as well. Furthermore, by continuity the functional

equation ψLω
a (eLω(z)) = eLω(az) extends to a functional equation

(7.21) ψ̃L
a (E(z, u,ω

′), u, ω′) = E(az, u,ω′)

for all z ∈ C∞ and (u,ω′) ∈ T . If we substitute u ∶= 0, the right hand side of (7.18)
becomes just z̃ = eL′ω′(z); hence E(z,0, ω

′) = eL′ω′(z). Thus (7.21) reduces to the
equation

(7.22) ψ̃L
a (eL′ω′(z),0, ω

′) = eL′ω′(az).

For any ω′ ∈ Ωr−1 the map a ↦ ψ̃L
a ( ,0, ω′) is therefore the Drinfeld A-module of

rank r−1 associated to the lattice L′ω′ ⊂ C∞. All this together proves that a↦ ψ̃L
a

constitutes a generalised Drinfeld A-module of rank ⩽ r over T , whose restriction
to the locus u = 0 is a Drinfeld A-module of constant rank r − 1.

We have thus proved the desired statement over T . Since ψ̃L is already given
over U∩(C×∞×Ωr−1), the existence and uniqueness also follows over U , as desired. □

8. Drinfeld moduli spaces

Let Â ≅ ∏pAp be the profinite completion of A and Af
F = Â ⊗A F the ring

of finite adèles of F . For any open compact subgroup K < GLr(Â) let M
r
A,K be

the Drinfeld modular variety of level K, which is a normal integral affine algebraic
variety over F . The associated rigid analytic space over C∞ possesses a natural
isomorphism

(8.1) GLr(F )/(Ω
r ×GLr(Af

F )/K)
∼
Ð→ Mr

A,K(C∞),

whose precise characterisation we shall describe below. For any g ∈ GLr(Af
F ) let

πg denote the composite morphism

(8.2) Ωr // GLr(F )/(Ω
r ×GLr(Af

F )/K) ∼
(8.1) // Mr

A,K(C∞),
[ω]

� // [(ω, g)].

Consider the arithmetic subgroup

(8.3) Γg ∶= GLr(F ) ∩ gKg
−1.

Then πg factors through an isomorphism Γg/Ω
r ∼
Ð→Mg(C∞) for a unique connected

component Mg of Mr
A,K ×SpecF SpecC∞. In other words we have a commutative
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diagram

(8.4)

Ωr
πg //

πΓg����

Mr
A,K(C∞)

Γg/Ω
r ∼ //
( �

ig
66

Mg(C∞).

∪

For any γ ∈ GLr(F ) and k ∈K we have [(ω, g)] = [(γ(ω), γgk)] and hence

(8.5) πg = πγgk ○ γ.

For any two elements g, g′ ∈ GLr(Af
F ) we have Mg = Mg′ if and only if g and g′

represent the same double coset in GLr(F )/GLr(Af
F )/K. Thus for any choice of

representatives g1, . . . , gn ∈ GLr(Af
F ) we have

(8.6) Mr
A,K ×SpecF SpecC∞ =

n

∐
i=1
Mgi .

Since Mr
A,K is integral, these connected components over C∞ are Galois conjugate

over F . Let FK denote the field of constants of Mr
A,K (which is a certain ray class

field of F that can be characterised uniquely by abelian class field theory). Then
the different connected components Mgi are just the varieties obtained by base
change Mr

A,K ×SpecFK
SpecC∞ for all F -linear embeddings FK ↪ C∞.

For later use we also record:

Proposition 8.7. Elements g1, . . . , gn ∈ GLr(Af
F ) form representatives of the

double quotient GLr(F )/GLr(Af
F )/K if and only if their determinants det(g1), . . . ,

det(gn) form representatives of F ×/(Af
F )
×/det(K).

Proof. Direct consequence of strong approximation [Ma91, (6.8)], [Pr77] for
the simply connected reductive group SLr to the effect that the closure of SLr(F )
in GLr(Af

F ) is SLr(Af
F ). □

Now assume thatK is fine, which by [Pi13, Def. 1.4] means that the image ofK
in GLr(A/p) is unipotent for some maximal ideal p ⊂ A. Then by [Pi13, Prop. 1.5]
there is a natural universal family of Drinfeld A-modules (E,φ) over Mr

A,K , using
which one can interpret Mr

A,K as a fine moduli space of Drinfeld A-modules with
some generalised level structure. The pullback of (E,φ) under the morphism (8.1)
can be described as follows. Viewing elements of F r and Âr and (Af

F )
r as row

vectors, for any g ∈ GLr(Af
F ) we set

(8.8) Lg ∶= Ârg−1 ∩ F r ⊂ (Af
F )

r,

which is a finitely generated projective A-module of rank r. Since K < GLr(Â), by
construction the right action of Γg on F r normalises Lg. Moreover, the assumption
that K is fine implies that all torsion elements of Γg are unipotent; hence Γg

acts freely on Ωr. There is therefore a natural Drinfeld A-module (EΓg , ψ̄
Lg) over

Γg/Ω
r such that π∗Γg

(EΓg , ψ̄
Lg) ≅ (Ga,Ωr , ψLg) by (7.12). For this there is a natural

isomorphism

(8.9) i∗g(E,φ)
∼
Ð→ (EΓg , ψ̄

Lg).

Moreover, suppose that K is the principal congruence subgroup of level N

K(N) ∶= {k ∈ GLr(Â) ∣ k ≡ Idr mod N}
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for some non-zero ideal N ⊂ A. Then Mr
A,K(N) represents the functor which to

any scheme S over F associates the set of isomorphism classes of tuples (E,φ,µ)
consisting of a Drinfeld A-module (E,φ) of rank r over S and a full levelN structure
µ ∶ N−1Ar/Ar → φ[N]. For any g ∈ GLr(Af

F ) we then have

Γg = {γ ∈ GLr(F ) ∣ (ℓ +Lg)γ = ℓ +Lg for all ℓ ∈ N−1Lg}.

Thus the Drinfeld A-module (EΓg , ψ̄
Lg) on Γg/Ω

r is endowed with a full level N

structure µ̄Lg ∶ N−1Lg/Lg → ψ̄Lg [N] by (7.13). To any coset ℓ + Ar ⊂ N−1Ar

associate the coset

(8.10) ℓg +Lg ∶= (ℓ + Â
r)g−1 ∩ F r ⊂ N−1Lg.

This induces an isomorphism N−1Ar/Ar ∼
→ N−1Lg/Lg. The isomorphism (8.9)

sends the level N structure ℓ +Ar ↦ i∗gµ(ℓ +A
r) to the level N structure ℓ +Ar ↦

ℓg +Lg ↦ µ̄L
ℓ . In fact this characterises the isomorphism (8.9) uniquely. Moreover,

since Mr
A,K(N) is a fine moduli space for Drinfeld A-modules with a full level N

structure, this also characterises the isomorphism (8.1) uniquely in this case.

For an arbitrary open compact subgroupK, choose anyN such thatK(N) ◁K.
Then the finite group K/K(N) acts onMr

A,K(N) by transforming the level N struc-

ture, and the quotient is naturally isomorphic to Mr
A,K . The group K/K(N) also

acts by right multiplication on GLr(F )/(Ω
r ×GLr(Af

F )/K(N)), and the isomor-
phism (8.1) in the case of K is obtained from that in the case of K(N) by taking
quotients. In particular, the two instances of the map ig from (8.4) for K and
K(N) form a commutative diagram with the projection Mr

A,K(N)↠Mr
A,K .

Similarly, if K is fine, in [Pi13, Prop. 1.5] the universal family on Mr
A,K was

constructed precisely so that its pullback is the given universal family overMr
A,K(N).

The isomorphism (8.9) in the case of K is the unique one whose pullback yields the
isomorphism (8.9) in the case of K(N).

It is useful to know that isomorphisms of Drinfeld modules can be characterised
uniquely by using just one torsion point. Since K is fine, by definition its image
in GLr(A/p) is unipotent for some maximal ideal p ⊂ A, and so it fixes some non-
zero coset ℓ + Âr ⊂ p−1Âr. For each g ∈ GLr(Af

F ) the subgroup Γg then fixes the
corresponding coset ℓg +Lg ⊂ p

−1Lg defined by (8.10). The associated torsion point

µ
Lg

ℓg
thus descends to a nowhere zero p-torsion point of (EΓg , ψ̄

Lg) over Γg/Ω
r. On

the other hand, choosing N ⊂ p, the group K/K(N) fixes the coset ℓ+Âr; hence the
associated p-torsion point coming from the level N structure descends to a nowhere
zero p-torsion point of the universal family (E,φ) over Mr

A,K . By construction the
isomorphism (8.9) identifies the respective p-torsion points. As any isomorphism
of Drinfeld modules is scalar and hence determined by the image of any non-zero
point, it follows that the isomorphism is uniquely characterised by this.

In the following we care mostly about the composite isomorphism

(8.11)π∗g(E,φ) = π
∗
Γg
i∗g(E,φ) ∼

(8.9) // π∗Γg
(EΓg , ψ̄

Lg) ∼
(7.12) // (Ga,Ωr , ψLg).

This changes with g as follows. Consider any g ∈ GLr(Af
F ) and γ ∈ GLr(F ) and

k ∈K. Since K < GLr(Â), from (8.8) we deduce that

Lγgk = Ârk−1g−1γ−1 ∩ F r = (Ârg−1 ∩ F r)γ−1 = Lgγ
−1.
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The isomorphisms from (8.11) for g and for γgk thus fit into a diagram

(8.12)

π∗g(E,φ) ∼
(8.11) for g //

(8.5)

(Ga,Ωr , ψLg)

≀ (7.7)
��

γ∗π∗γgk(E,φ) ∼
(8.11) for γgk // γ∗(Ga,Ωr , ψLγgk),

where the vertical map on the right is multiplication by j(γ, )−1. Using (7.8) one
verifies that the isomorphisms preserve some nowhere vanishing torsion point. Thus
the two composites must coincide; in other words the diagram (8.12) commutes.

We end this section by looking at functoriality. Consider a second open compact
subgroup K ′ < GLr(Â) and an element h ∈ GLr(Af

F ) such that hK ′h−1 <K. Then
there is a well-defined map

(8.13) Jh ∶ GLr(F )/(Ω
r ×GLr(Af

F )/K
′) // GLr(F )/(Ω

r ×GLr(Af
F )/K),

[(ω, gh)]
� // [(ω, g)].

If h has coefficients in Â, we have Âr ⊂ Ârh−1 and hence

Lg = Ârg−1 ∩ F r ⊂ Ârh−1g−1 ∩ F r = Lgh

for any g ∈ GLr(Af
F ). Thus for any ω ∈ Ωr we have Lg ⋅ ω ⊂ Lgh ⋅ ω, and using

Proposition 2.3 (a) we obtain an isogeny of Drinfeld modules

(8.14) η̃h ∶= eeLg ⋅ω(Lgh⋅ω) ∶ (Ga,Ωr , ψLg) Ð→ (Ga,Ωr , ψLgh).

By contrast, if h−1 has coefficients in Â, we have Ârh−1 ⊂ Âr and hence Lgh ⊂ Lg,
which yields an isogeny of Drinfeld modules

(8.15) ξ̃h ∶= eeLgh ⋅ω
(Lg ⋅ω) ∶ (Ga,Ωr , ψLgh) Ð→ (Ga,Ωr , ψLg).

By construction the isogenies η̃h and ξ̃h are mutually inverse isomorphisms if h ∈
GLr(Â). In analogy with (8.2) write

π′gh ∶ Ωr // GLr(F )/(Ω
r ×GLr(Af

F )/K
′) ∼

(8.1) // Mr
A,K′(C∞),

[ω]
� // [(ω, gh)].

Proposition 8.16. (a) Via (8.1) the map Jh corresponds to a morphism
of varieties

Jh ∶ M
r
A,K′ Ð→Mr

A,K .

(b) For every g ∈ GLr(Af
F ) we have πg = Jh ○ π

′
gh.

Now assume that K and K ′ are fine, and let (E,φ) and (E′, φ′) denote the respec-
tive universal families on Mr

A,K and Mr
A,K′ . Then:

(c) If h has coefficients in Â, there is a natural isogeny ηh ∶ J
∗
h(E,φ) →

(E′, φ′) which for every g ∈ GLr(Af
F ) makes the following diagram com-

mute:

π∗g(E,φ)
(b)

≀ (8.11) for g
��

π′∗ghJ
∗
h(E,φ)

π′∗ghηh // π′∗gh(E
′, φ′)

≀ (8.11) for gh
��

(Ga,Ωr , ψLg)
η̃h // (Ga,Ωr , ψLgh).
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(d) If h−1 has coefficients in Â, there is a natural isogeny ξh ∶ (E
′, φ′) →

J∗h(E,φ) which for every g ∈ GLr(Af
F ) makes the following diagram com-

mute:

π′∗gh(E
′, φ′)

≀ (8.11) for gh
��

π′∗ghξh // π′∗ghJ
∗
h(E,φ)

(b)
π∗g(E,φ)

≀ (8.11) for g
��

(Ga,Ωr , ψLgh)
ξ̃h // (Ga,Ωr , ψLg).

(e) For any a ∈ A ∖ {0} such that both h and ah−1 have coefficients in Â, we
have ηh ○ ξa−1h = φ

′
a and ξa−1h ○ ηh = J

∗
hφa.

(f) If h ∈ GLr(Af
F ) is a scalar matrix and K = K ′, then Jh is the identity

morphism. If in addition h = a ⋅ Idr for a ∈ A ∖ {0}, then ηh = φa. If
instead h = a−1 ⋅ Idr for a ∈ A ∖ {0}, then ξh = φa.

Proof. (Sketch) The formulas in (b), (e), and (f) follow by direct calculation
from the constructions in (8.13) and (8.14) and (8.15), once the remaining assertions
are proved.

The constructions of Jh and ξh in (a) and (d) are those of [Pi13, Props. 2.6–
7]. (Except that due to the change of convention explained in Remark 1.8 the
present morphism Jh corresponds to the morphism J(hT )−1 from [Pi13, Prop. 2.6],
and the present isogeny ξh to the isogeny ξ(hT )−1 from [Pi13, Prop. 2.7].) Roughly
speaking, by taking invariants everything reduces to the case that K = K(N)
and K ′ = K(N ′), where Jh and ξh can be described explicitly using the modular
interpretation.

The construction of ηh in (c) is dual to that of ξh and follows the same principles.
For an alternative construction observe that the formulas in (e) characterise ηh
uniquely in terms of ξa−1h. Noting that the endomorphism φ′a of (E′, φ′) also
factors through the isogeny ξa−1h ∶ (E

′, φ′) → J∗h(E,φ) constructed via the modular
interpretation, one can construct ηh by the formula ηh ○ ξa−1h = φ

′
a and deduce its

properties from that. □

Proposition 8.17. Consider open compact subgroups K,K ′,K ′′ < GLr(Â) and
elements h,h′ ∈ GLr(Af

F ) such that hK ′h−1 <K and h′K ′′h′−1 <K ′. Then we have:

(a) Jhh′ = Jh ○ Jh′ .
(b) ηhh′ = ηh′ ○ J

∗
h′ηh if K,K ′,K ′′ are fine and h,h′ have coefficients in Â.

(c) ξhh′ = J
∗
h′ξh ○ ξh′ if K,K

′,K ′′ are fine and h−1, h′−1 have coefficients in Â.

Proof. Direct calculation for the maps in (8.13) and (8.14) and (8.15). □

9. Satake compactification

According to [Pi13, Def. 4.1], any normal integral proper algebraic variety

Mr
A,K over F which contains Mr

A,K as an open dense subvariety, such that the

universal family (E,φ) extends to a weakly separating generalised Drinfeld A-
module (Ē, φ̄) over Mr

A,K , is called a Satake compactification of Mr
A,K . By [Pi13,

Thm. 4.2], such a Satake compactification exists and is projective over F , and to-
gether with its “universal family” (Ē, φ̄) it is uniquely determined up to unique
isomorphism. The proof, however, tells us very little about what the boundary of
this compactification looks like.
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A rigid analytic construction of the same Satake compactification was given by
Kapranov [Ka87] in the special case A = Fq[t] and by Häberli [Hä21] in general.
They explicitly construct a rigid analytic space that is projective over C∞ and has

a natural stratification by finitely many rigid analytic spaces of the form Γ′/Ωr′ for
integers 1 ⩽ r′ ⩽ r and arithmetic subgroups Γ′ < GLr′(F ). Häberli also proves that

the result is naturally isomorphic to Mr
A,K(C∞). What we need from this is an

analytic description of Mr
A,K along all boundary strata of codimension 1, where

the fibers of the universal family (Ē, φ̄) are Drinfeld modules of rank r − 1.

Since Mr
A,K is integral and contains Mr

A,K as an open dense subvariety, each
connected componentMg ofMr

A,K×SpecF SpecC∞ is open and dense in a connected

component Mg of Mr
A,K ×SpecF SpecC∞, and the decomposition (8.6) extends to

a decomposition

(9.1) Mr
A,K ×SpecF SpecC∞ =

n

∐
i=1
Mgi .

Also, the field of constants of Mr
A,K is again FK , and the connected components

Mgi are just the varieties obtained by base change Mr
A,K ×SpecFK

SpecC∞ for all
F -linear embeddings FK ↪ C∞.

Assume that K is fine. Consider any g ∈ GLr(Af
F ), and set Γg,U ∶= Γg ∩ U(F )

and Λ′g ∶= ι
−1(Γg,U) ⊂ F

r−1 as in (4.2) and (4.4). By Theorem 4.16 there exist an

admissible open subset Ug ⊂ C∞ × Ωr−1 containing {0} × Ωr−1 and a holomorphic
map

(9.2) ϑg ∶ Γg,U /Ω
r Ð→ Ug, [(

ω1

ω′
)] z→ (

eΛ′gω′(ω1)−1

ω′
),

which induces an isomorphism of rigid analytic spaces Γg,U /Ω
r ∼
Ð→ Ug∩(C×∞×Ωr−1).

Proposition 9.3. (a) There exists a unique morphism of rigid analytic

spaces π̄g ∶ Ug →Mg(C∞) making the following diagram commute:

Ωr
πΓg,U // //

πg

��

Γg,U /Ω
r � � ϑg // Ug

π̄g

��
Mr

A,K(C∞)
� � // Mr

A,K(C∞).

(b) This morphism is étale and its image is a Zariski open subset ofMr
A,K(C∞).

(c) Varying g ∈ GLr(Af
F ), the union of the images of the different maps π̄g

is equal to Mr,+
A,K(C∞) for a certain Zariski open subset Mr,+

A,K of Mr
A,K

whose complement has codimension ⩾ 2.

Proof. This is due to Kapranov [Ka87] in the special case A = Fq[t], and to
Häberli [Hä21] in the general case. □

Remark 9.4. For our application of Proposition 9.3 in the proof of Lemma
10.7, it would suffice to have, for every g, an étale morphism on some arbitrarily
small open subset Vg ⊂ Ug that is not contained in C×∞ × Ωr−1, such that every

connected component of codimension 1 ofMr
A,K(C∞)∖Mr

A,K(C∞) contains a point
in the image of Vg for some g. It is probably possible to prove this without the
explicit description of Mr

A,K(C∞) by Kapranov and Häberli, using only the fact
from [Pi13, Prop. 4.10] that the fiber of the universal family (Ē, φ̄) over the generic
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point of any irreducible component of codimension 1 of Mr
A,K ∖M

r
A,K is a Drinfeld

A-module of rank r − 1. But it would be a shame not to use the wonderful results
from [Ka87] and [Hä21] when they are available.

Next let (Ga,Ug
, ψ̃Lg) be the generalised Drinfeld A-module over Ug that is

furnished by Proposition 7.16.

Proposition 9.5. There exists a unique isomorphism of generalised Drinfeld
modules over Ug

π̄∗g(Ē, φ̄)
∼
Ð→ (Ga,Ug , ψ̄

Lg),

whose pullback under ϑg ○ πΓg,U
∶ Ωr → Ug is the isomorphism

π∗Γg,U
ϑ∗g π̄

∗
g(Ē, φ̄)

9.3 (a)
π∗g(E,φ) ∼

(8.11) // (Ga,Ωr , ψLg) ∼
7.16 // π∗Γg,U

ϑ∗g(Ga,Ug , ψ̄
Lg).

Proof. Over Ug ∩ (C×∞ × Ωr−1) the isomorphism is obtained from the con-
struction preceding (7.15). The extension to Ug follows from analytic versions of
[Pi13, Props. 3.7–8], which say that homomorphisms and isomorphisms of gener-
alised Drinfeld modules extend uniquely under open dense embeddings of normal
integral schemes, and whose proofs work equally well in the analytic setting. □

Proposition 9.6. In the situation of Proposition 8.16 we have:

(a) The morphism Jh ∶ M
r
A,K′ → Mr

A,K extends uniquely to a morphism J̄h ∶

Mr
A,K′ →Mr

A,K .

Now assume that K and K ′ are fine, and let (Ē, φ̄) and (Ē′, φ̄′) denote the respec-

tive universal families on Mr
A,K and Mr

A,K′ . Then:

(b) If h has coefficients in Â, the isogeny ηh ∶ J
∗
h(E,φ) → (E

′, φ′) extends
uniquely to an isogeny η̄h ∶ J̄

∗
h(Ē, φ̄) → (Ē

′, φ̄′).
(c) If h−1 has coefficients in Â, the isogeny ξh ∶ (E

′, φ′) → J∗h(E,φ) extends
uniquely to an isogeny ξ̄h ∶ (Ē

′, φ̄′) → J̄∗h(Ē, φ̄).

Proof. (Sketch) Assertions (a) and (c) are proved in [Pi13, Prop. 4.11]. The
same kinds of arguments establish (b). □

Finally, the formulas in Proposition 8.16 (e), (f) and in Proposition 8.17 auto-
matically extend to the respective Satake compactification, because the extended
morphisms already exist and two morphisms on an integral scheme are equal if they
coincide on an open dense subscheme.

10. Analytic versus algebraic modular forms

We keep the notation from the preceding section, and first we also assume that
K is fine. Let Lie Ē denote the Lie algebra of Ē, which is an invertible coherent
sheaf of modules onMr

A,K . (It is naturally isomorphic to the sheaf of sections of Ē,
but in the present context it is safer to view it as the Lie algebra.) Consider the
dual invertible sheaf L ∶= (Lie Ē)∨. By [Pi13, Thm. 5.3] this is ample. For any
integer k we abbreviate Lk ∶= L⊗k. Following [Pi13, Def. 5.4] we have:

Definition 10.1. An algebraic Drinfeld modular form of weight k and level K
is an element of the space

Malg
k (M

r
A,K) ∶= H0(Mr

A,K ,L
k).
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Since Mr
A,K is a projective algebraic variety with field of constants FK , this

is a finite-dimensional vector space over FK or, depending on one’s point of view,
over F . Our aim is to relate it with a space of analytic modular forms. Note that
the decomposition (9.1) yields natural isomorphisms

(10.2) Malg
k (M

r
A,K)⊗F C∞ ≅ H0(Mr

A,K×SpecF SpecC∞,Lk) ≅
n

⊕
i=1
H0(Mgi ,L

k).

Also, any irreducible componentMg ofMr
A,K ×SpecF SpecC∞ has field of definition

FK ; hence pullback induces an isomorphism

(10.3) Malg
k (M

r
A,K) ⊗FK

C∞ ≅ H0(Mg,L
k).

Let Lan denote the invertible sheaf on the rigid analytic space Mr
A,K(C∞) ob-

tained from L. Its pullback π∗gL
an is an invertible sheaf on Ωr, which must be

trivial, because Ωr is a Stein space ([SS91, Prop. 4]). In fact, we have an explicit
trivialisation: The isomorphism of line bundles π∗gE → Ga,Ωr underlying the iso-
morphism of Drinfeld modules (8.11) induces an isomorphism for the dual of the
sheaf of sections

(10.4) π∗gL
an ∼
Ð→ OΩr .

Via this trivialisation, the pullback of any section s ∈ H0(Mr
A,K(C∞), (Lan)k) be-

comes a holomorphic function π∗gs ∶ Ω
r → C∞.

Lemma 10.5. For any section s ∈H0(Mr
A,K(C∞), (Lan)k) and any g ∈ GLr(Af

F )

and γ ∈ GLr(F ) and k ∈K we have

π∗gs = (π
∗
γgks)∣kγ.

Proof. Since L is the dual of the invertible sheaf of sections of Ē, the com-
mutative diagram (8.12) yields a commutative diagram

π∗g(L
an)k ∼

(10.4) for g //

(8.5)

OΩr

≀ multiplication by j(γ, )k

��
γ∗π∗γgk(L

an)k ∼
(10.4) for γgk // γ∗OΩr OΩr .

For any ω ∈ Ωr, evaluating s at the point πg(ω) = πγgk(γ(ω)) therefore yields the
equality

j(γ,ω)k ⋅ (π∗gs)(ω) = (π
∗
γgks)(γ(ω)).

In view of (1.5) this implies that

(π∗gs)(ω) = j(γ,ω)−k ⋅ (π∗γgks)(γ(ω)) = ((π
∗
γgks)∣kγ)(ω),

as desired. □

Lemma 10.6. The map π∗g induces an isomorphism

H0(Mg(C∞), (Lan)k)
∼
Ð→ Wk(Γg).
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Proof. By definition the pullback by πg yields an isomorphism from

H0(Mg(C∞), (Lan)k) to the space of Γg-invariant sections in H0(Ωr, π∗g(L
an)k).

But for every γ ∈ Γg we have πγg = πg ○ γ
−1 = πg by (8.5); so by Lemma 10.5 the γ-

invariance translates into the formula π∗gs = (π
∗
gs)∣kγ. By Definition 1.9 the image

of π∗g is therefore just the space of weak modular forms Wk(Γg). □

Lemma 10.7. The map π∗g induces an isomorphism

H0(Mg,L
k)

∼
Ð→ Mk(Γg).

Proof. By rigid analytic GAGA due to Köpf [Kö74, Satz 4.7], analytifi-

cation yields an isomorphism H0(Mg,L
k)

∼
→ H0(Mg(C∞), (Lan)k). Next, set

M+
g ∶=Mg∩M

r,+
A,K(C∞) for the Zariski open subsetMr,+

A,K ofMr
A,K from Proposition

9.3 (c). Since Mg is normal integral and the complement Mg ∖M
+
g has codimen-

sion ⩾ 2, by Bartenwerfer [Ba76, Satz 10] the restriction map induces an isomor-

phism H0(Mg(C∞), (Lan)k)
∼
→H0(M+

g (C∞), (Lan)k). By Lemma 10.6 any section

s ∈ H0(Mg(C∞), (Lan)k) corresponds to a weak modular form π∗gs ∈ Wk(Γg). It

remains to determine when s extends to a section in H0(M+
g (C∞), (Lan)k).

We first analyse when it extends to the image of the map π̄g from Proposition
9.3 (a). Recall that L was defined as the dual of the invertible sheaf of sections
of Ē. Thus the isomorphism of generalised Drinfeld modules in Proposition 9.5
induces an isomorphism

(10.8) π̄∗gL
an ≅ OUg .

Let ϑ̄ ∶ Ωr → Ug be the composite morphism in the top row of the diagram in
Proposition 9.3 (a). Then by construction the pullback of the trivialisation (10.8)
to Ωr via ϑ̄ is just the trivialisation in (10.4). Thus s extends to a section of (Lan)k

over the image of π̄g if and only if the function π∗gs ∶ Ω
r → C∞ is the pullback via

ϑ̄ of a holomorphic function Ug → C∞. Here π∗gs is already a ΓU -invariant function
and therefore possesses a u-expansion by Proposition 5.4. Thus it is the pullback
of a holomorphic function on Ug if and only if it is holomorphic at infinity in the
sense of Definition 5.12.

Now recall that for any g, g′ ∈ GLr(Af
F ) we haveMg =Mg′ if and only if g′ = γgk

for some γ ∈ GLr(F ) and k ∈K. By Proposition 9.3 (c) the partial compactification
M+

g is therefore the union of the images of the maps π̄γgk for all such γ and k. By
the above argument for γgk in place of g, it follows that s extends to a section in
H0(M+

g (C∞), (Lan)k) if and only if for all γ and k the pullback π∗γgks is holomorphic

at infinity. But by Lemma 10.5 we have π∗γgks = (π
∗
gs)∣kγ

−1. Varying γ we thus

conclude that π∗g induces an isomorphism from H0(M+
g (C∞), (Lan)k) to the space

of modular formsMk(Γg). Combining everything yields the desired result. □

Theorem 10.9. If K is fine, the maps π∗g and the isomorphisms (10.3) respec-
tively (10.2) induce isomorphisms

Malg
k (M

r
A,K) ⊗FK

C∞
∼
Ð→ Mk(Γg),

Malg
k (M

r
A,K) ⊗F C∞

∼
Ð→

n

⊕
i=1
Mk(Γgi).

Proof. Direct consequence of Lemma 10.7. □
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The above isomorphisms are functorial in the following sense. Consider a second
fine open compact subgroup K ′ < GLr(Â) and an element h ∈ GLr(Af

F ) such
that hK ′h−1 < K. By Proposition 9.6 (a) this data determines a morphism J̄h ∶

Mr
A,K′ Ð→Mr

A,K . As before let (Ē′, φ̄′) denote the universal generalised Drinfeld

module on Mr
A,K′ . Let L′ denote the dual of the invertible sheaf of sections of Ē′.

With h fixed, consider any sufficiently divisible scalar a ∈ A ∖ {0}, so that the
element ha ∈ GLr(Af

F ) has coefficients in Â. As a consequence of Propositions
8.16 (f) and 8.17, we then have J̄ha = J̄h. The derivative of the isogeny η̄ha in
Proposition 9.6 (b) thus induces an isomorphism

(dη̄ha)
∨ ∶ J̄∗hL = J̄

∗
haL

∼
Ð→ L′.

Lemma 10.10. The isomorphism

ρh ∶= a ⋅ (dη̄ha)
∨ ∶ J̄∗hL

∼
Ð→ L′

is independent of the choice of a.

Proof. Consider a second element b ∈ A ∖ {0} such that hb has coefficients
in Â. Then so does hab, and Propositions 8.17 (b) and 8.16 (f) imply that ηhab =
ηb ○ ηha = φ

′
b ○ ηha. Taking derivatives we deduce that dηhab = dφ

′
b ○ dηha = b ⋅ dηha

and hence ab ⋅(dηhab)
∨ = ab ⋅b−1 ⋅(dηha)

∨ = a ⋅(dηha)
∨. Interchanging a and b implies

that ab ⋅(dηhab)
∨ = b ⋅(dηhb)

∨ and hence a ⋅(dηha)
∨ = b ⋅(dηhb)

∨. Finally, this equality
over the dense open subscheme Mr

A,K′ automatically extends to an equality over

Mr
A,K′ . □

Using pullback and the isomorphism ρh we can now define a natural F -linear
pullback map on modular forms, again denoted J∗h , by the commutative diagram

(10.11)

J∗h ∶ M
alg
k (M

r
A,K)

//Malg
k (M

r
A,K′)

H0(Mr
A,K ,L

k)
J̄∗h // H0(Mr

A,K′ , J̄∗hL
k)

ρk
h // H0(Mr

A,K′ ,L′k).

To describe its behavior under the isomorphisms from Theorem 10.9, for any g ∈
GLr(Af

F ) consider the arithmetic subgroup Γ′gh ∶= GLr(F )∩ ghK
′(gh)−1, which by

construction is contained in the arithmetic subgroup Γg ∶= GLr(F ) ∩ gKg
−1.

Proposition 10.12. For any g ∈ GLr(Af
F ) the diagram

Malg
k (M

r
A,K)

J∗h //

π∗g

��

Malg
k (M

r
A,K′)

π′∗gh

��
Mk(Γg)

� � //Mk(Γ
′
gh)

commutes, where the horizontal map on the bottom is the inclusion map.

Proof. Assume first that h has coefficients in Â. As L and L′ are the duals
of the invertible sheaves of sections of Ē and Ē′, Proposition 8.16 (c) yields a
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commutative diagram

π∗gL
an

≀ (10.4) for g

π′∗ghJ
∗
hL

an
π′∗ghρh = π′∗gh(dηh)∨ // π′∗ghL

′an

≀ (10.4) for gh

OΩr

(dη̃h)∨ // OΩr .

By the construction (8.14) of η̃h we have dη̃h = 1. The desired commutativity thus
follows from the definition of π∗g and π′∗gh.

In the general case take any a ∈ A∖{0} such that ha ∈ GLr(Af
F ) has coefficients

in Â. Repeating the above calculation twice with (g, h) replaced by (g, ha) and
(gh, a), respectively, and noting that π′gha = π

′
gh, yields a commutative diagram

π∗gL
an

≀ (10.4) for g

π′∗gha(dηha)∨ // π′∗ghaL
′an

≀ (10.4) for gha

π′∗ghL
′anπ′∗gha(dηa)∨oo

≀ (10.4) for gh

OΩr
id // OΩr OΩr .

idoo

Here dηa = dφ
′
a = a by Proposition 8.16 (f), hence the upper horizontal arrow on the

right is multiplication by a−1. Together we thus obtain the commutative diagram

π∗gL
an

≀ (10.4) for g

π′∗ghρh = a⋅π′∗gha(dηha)∨ // π′∗ghL
′an

≀ (10.4) for gh

OΩr
id // OΩr ,

and again the desired commutativity follows from the definition of π∗g and π′∗gh. □

Proposition 10.13. (a) If K =K ′ and h ∈K, then J∗h = id.
(b) If K =K ′ and h = a ⋅ Idr for a ∈ A ∖ {0} then J∗h = a

k ⋅ id.
(c) For any fine open compact subgroups K,K ′,K ′′ < GLr(Â) and elements

h,h′ ∈ GLr(Af
F ) such that hK ′h−1 < K and h′K ′′h′−1 < K ′, we have

J∗hh′ = J
∗
h′ ○ J

∗
h .

Proof. Direct computation using Proposition 8.17. □

Now recall that the elements g1, . . . , gn appearing in Theorem 10.9 are the
representatives of the double quotient GLr(F )/GLr(Af

F )/K used in (8.6). Likewise
choose representatives g′1, . . . , g

′
n′ of the double quotient GLr(F )/GLr(Af

F )/K
′. For

each 1 ⩽ j ⩽ n′ consider the arithmetic subgroup Γ′g′j
∶= GLr(F ) ∩ g

′
jK
′g′−1j , and

choose 1 ⩽ ij ⩽ n and γj ∈ GLr(F ) and kj ∈K such that γjg
′
jh
−1kj = gij . Then direct

calculations show that γjΓ
′
g′j
γ−1j < Γgij

and that the following diagram commutes:

(10.14)

n′

∐
j=1

Γ′g′j
/Ωr

∼
(π′g′j ) //

��

GLr(F )/(Ω
r ×GLr(Af

F )/K
′)

∼ //

��

Mr
A,K′(C∞)

Jh

��n

∐
i=1

Γgi/Ω
r

∼
(πgi

)
// GLr(F )/(Ω

r ×GLr(Af
F )/K)

∼ // Mr
A,K(C∞),
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where the vertical map in the middle is [(ω, g)] ↦ [(ω, gh−1)] and the one on the
left sends a coset Γ′g′j

ω in the j-th subset to the coset Γgij
γj(ω) in the ij-th subset.

Proposition 10.15. If K and K ′ are fine, the map J∗h from (10.11) and the
isomorphisms from Theorem 10.9 for K ′ and K fit into a commutative diagram

Malg
k (M

r
A,K) ⊗F C∞

≀ 10.9

��

J∗h⊗id //Malg
k (M

r
A,K′) ⊗F C∞

≀ 10.9

��n

⊕
i=1
Mk(Γgi)

//
n′

⊕
j=1
Mk(Γ

′
g′j
)

(fi)
n
i=1

� // (fij ∣kγj)
n′

j=1.

Proof. For each 1 ⩽ j ⩽ n′ we have a commutative diagram

Malg
k (M

r
A,K)

J∗h //

π∗
g′
j
h−1

$$

π∗gij

{{

Malg
k (M

r
A,K′)

π′∗
g′
j

��
Mk(Γgij

)
f ↦ f ∣kγj //Mk(Γg′jh

−1)
� � incl. //Mk(Γ

′
g′j
),

which commutes on the left by the equation γjg
′
jh
−1kj = gij and Lemma 10.5, and

on the right by Proposition 10.12 for g = g′jh
−1. Summing over all j yields the

desired formula. □

Finally consider an arbitrary open compact subgroup K < GLr(Af
F ). Let K̃

be any open normal subgroup of K which is fine, for instance, the principal con-
gruence subgroup K(N) for a sufficiently divisible non-zero ideal N ⫋ A. Then by

Proposition 10.13 the maps J∗h for all h ∈ K induce a right action of K/K̃ on the

space of modular forms of level K̃. In [Pi13, Def. 5.4] we defined:

Definition 10.16. The space of algebraic Drinfeld modular forms of weight k
and arbitrary level K is the space of K-invariants

Malg
k (M

r
A,K) ∶= M

alg
k (M

r
A,K̃
)K .

Once defined using one choice of K̃, the same equality then holds for arbitrary

open compact subgroups K̃◁K < GLr(Af
F ). This makesMalg

k (M
r
A,K) independent

of the choice of K̃. Moreover, for any g ∈ GLr(Af
F ) we define the pullback map π∗g on

Malg
k (M

r
A,K) as the restriction of the map π∗g onMalg

k (M
r
A,K̃
). Using Proposition

10.12 in the case h = Idr we find that this is again independent of the choice of K̃.

Likewise we can define a map J∗h ∶ M
alg
k (M

r
A,K) →M

alg
k (M

r
A,K′) for arbitrary h, K,

K ′ as the restriction to K-, resp. K ′-invariants from suitable smaller open compact
subgroups. With this we can now conclude:

Proposition 10.17. Theorem 10.9 and Propositions 10.12 and 10.13 and 10.15
hold for arbitrary open subgroups.

Proof. (Sketch) For all h ∈ K we have hK ′h−1 = K ′, so using Proposi-
tion 10.15 with K replaced by K ′ we can translate the right action of K/K ′ on
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Malg
k (M

r
A,K′)⊗FC∞ to the space⊕ n′

j=1Mk(Γ
′
g′j
). This action interchanges the sum-

mandsMk(Γ
′
g′j
) whenever g′j lies in the same coset GLr(F )giK, and the stabiliser

of such a summand acts through the action of all γ ∈ Γgi by f ↦ f ∣kγ. But the space
of invariants in Mk(Γ

′
g′j
) under this action is simply Mk(Γgi). Taking invariants

we thus deduce the second isomorphism in Theorem 10.9 for the group K. The
remaining statements follow in the same way by taking invariants in each case. □

11. Finiteness results

Theorem 11.1. For any congruence subgroup Γ < GLr(F ) we have:

(a) dimC∞Mk,m(Γ) < ∞ for any integers k and m.
(b) Mk,m(Γ) = 0 whenever k < 0 and r ⩾ 2.
(c) The graded ring M∗(Γ) ∶= ⊕k⩾0Mk(Γ) is a normal integral domain that

is finitely generated as a C∞-algebra.

Proof. First assume that Γ is the principal congruence subgroup Γ(N) associ-
ated to some level 0 /= N ⫋ A. Setting K ∶=K(N), for g = 1 the arithmetic subgroup

Γg from (8.3) is then Γ. By Theorem 10.9 we thus have H0(Mr
A,K ,L

k) ⊗FK
C∞ ≅

Mk(Γ). As space of sections of a coherent sheaf on a projective algebraic variety
it is therefore finite dimensional, proving (a). Moreover, since L is ample by [Pi13,
Thm. 5.3], this space is zero if k < 0 and every irreducible component of the variety

has dimension ⩾ 1, proving (b). Also, the ring ⊕k⩾0H
0(Mr

A,K ,L
k) is a normal in-

tegral domain that is finitely generated as an F -algebra by [Pi13, Thm. 5.6], from
which (c) follows.

Next, for any two congruence subgroups Γ′◁Γ, the respective space or graded
ring for Γ is obtained from that for Γ′ by taking invariants under a certain action
of the finite group Γ/Γ′. The statements for Γ thus follow from those for Γ′.

Finally, for an arbitrary congruence subgroup Γ < GLr(F ) consider the finitely
generated A-submodule L ∶= Γ ⋅Ar ⊂ F r, and choose an ideal 0 /= I ⫋ A such that
IL ⊂ Ar. Let Γ′ be the subgroup of elements of Γ that act trivially on L/IL. Then
Γ′ ◁ Γ and Γ′ < GLr(A). Also Γ′ is again a congruence subgroup, so it contains
Γ(N) for some level 0 /= N ⫋ A. As Γ′ < GLr(A), we then have Γ(N)◁Γ′◁Γ, and
the statements for Γ follow from those for Γ(N) by applying the above reduction
step twice. □

Proposition 11.2. Let Γ < GLr(A) be a congruence subgroup whose image in
GLr(A/p) is unipotent for some maximal ideal p ⊂ A. Then for every k ≫ 0 there
exists a non-zero cusp form of weight k for Γ.

For an explicit construction of such cusp forms using Eisenstein series see Re-
mark 16.11.

Proof. Choose a level 0 /= N ⫋ A such that Γ(N) < Γ, and set K ∶=K(N) ⋅Γ <
GLr(Â). Then K is fine, and for g = 1 we have Γg =K∩GLr(A) = Γ. Let∞ denote

the reduced divisor on Mr
A,K with support Mr

A,K ∖M
r
A,K . By Theorem 10.9 and

the definition of cusp forms we then have

H0(Mr
A,K ,L

k(−∞)) ⊗FK
C∞ ≅ Sk(Γ).

As L is ample, the left hand side is non-zero for all k ≫ 0, as desired. □
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12. Hecke operators

Consider any element h ∈ GLr(Af
F ) and any open compact subgroups K, K ′ <

GLr(Â) such that hK ′h−1 < K. Then by (10.11) and Proposition 10.17, there is a
well-defined pullback map

(12.1) J∗h ∶ M
alg
k (M

r
A,K) Ð→ M

alg
k (M

r
A,K′)

satisfying Proposition 10.13.
We can also construct a natural map in the other direction. Since J∗h is an

isomorphism if hK ′h−1 = K, we restrict ourselves to the case that h = Idr and
K ′ < K. Choose an open subgroup K̃ < K ′ which is normal in K. Then by
Definition 10.16 we have

(12.2)

Malg
k (M

r
A,K)

� � J∗Idr //Malg
k (M

r
A,K′) � w

J∗Idr

**
Malg

k (M
r
A,K̃
)K
� � //Malg

k (M
r
A,K̃
)K

′

trace
mm

� � //Malg
k (M

r
A,K̃
).

We define the dotted arrow by

(12.3) f z→ trace(f) ∶= ∑h′
J∗h′f,

where h′ runs through a set of representatives of the quotient K ′/K. The composite
of this trace map with the vertical isomorphisms in (12.2) is the pushforward map

(12.4) JIdr,∗ ∶ M
alg
k (M

r
A,K′) Ð→ M

alg
k (M

r
A,K).

Now consider any element h ∈ GLr(Af
F ) and any open compact subgroup K <

GLr(Â), bearing no particular relation with each other. Then we call the pair of
morphisms

(12.5) Mr
A,K Mr

A,K∩h−1Kh

Jhoo JIdr // Mr
A,K

the Hecke correspondence on Mr
A,K associated to h. The composite map

(12.6) Th ∶ M
alg
k (M

r
A,K)

J∗h //Malg
k (M

r
A,K∩h−1Kh)

JIdr,∗ //Malg
k (M

r
A,K)

is called the Hecke operator on Malg
k (M

r
A,K) associated to h. It depends only on

the double coset KhK.

The composites of Hecke operators are calculated as follows:

Proposition 12.7. For any h, h′ ∈ GLr(Af
F ) and any open compact subgroup

K < GLr(Â) the Hecke operators onMalg
k (M

r
A,K) satisfy

Th′ ○ Th = ∑
h′′
[K ∩ h′′−1Kh′′ ∶K ∩ h−1Kh ∩ h′′−1Kh′′] ⋅ Th′′

where h′′ runs through a set of representatives of the double quotient

(hKh−1 ∩K)/hKh′/(K ∩ h′−1Kh′).

Proof. This is [Pi13, Prop. 6.10] with the change of conventions taken into
account. □
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In the rest of this section we work out how the maps JIdr,∗ and Th translate
under the isomorphism from Theorem 10.9.

Proposition 12.8. Consider any open compact subgroups K ′ < K < GLr(Â)
and any representatives g1, . . . , gn of the double quotient GLr(F )/GLr(Af

F )/K and
representatives g′1, . . . , g

′
n′ of the double quotient GLr(F )/GLr(Af

F )/K
′. For each

1 ⩽ i ⩽ n consider the arithmetic subgroup Γgi ∶= GLr(F ) ∩ giKg
−1
i and for each

1 ⩽ j ⩽ n′ the arithmetic subgroup Γ′g′j
∶= GLr(F ) ∩ g

′
jK
′g′−1j . Then the map JIdr,∗

from (12.4) and the isomorphisms from Theorem 10.9 for K ′ and K fit into a
commutative diagram

Malg
k (M

r
A,K′) ⊗F C∞

≀ 10.9

��

JIdr,∗⊗id //Malg
k (M

r
A,K) ⊗F C∞

≀ 10.9

��n′

⊕
j=1
Mk(Γ

′
g′j
) //

n

⊕
i=1
Mk(Γgi),

(fj)
n′

j=1
� // (∑

j,γ

fj ∣kγ)
n

i=1,

where, for each index i, the sum extends over all pairs of indices 1 ⩽ j ⩽ n′ and
elements γ ∈ GLr(F ) ∩ g

′
jKg

−1
i up to left multiplication by Γ′g′j

.

Proof. Suppose first that K ′◁K. Then for any h ∈K and any 1 ⩽ i ⩽ n there
is an index 1 ⩽ jih ⩽ n

′ and an element γih ∈ GLr(F ) such that g′jih ∈ γihgih
−1K ′.

By Propositions 10.15 and 10.17 the map J∗h ⊗ id thus corresponds to the map

(fj)
n′

j=1 z→ (fjih ∣kγih)
n
i=1.

Next observe that jih is unique and γih is unique up to multiplication on the left
by Γ′g′jih

, and both depend only on i and the coset K ′h. Summing over all cosets

K ′h ⊂K thus shows that JIdr,∗ ⊗ id corresponds to the map

(fj)
n′

j=1 z→ ∑
K′h

(fjih ∣kγih)
n
i=1 = (∑

j,γ

fj ∣kγ)
n

i=1

with the indicated summation over (j, γ). This proves the assertion in the case
K ′◁K.

In the general case, one must take an open compact subgroup K̃ < K ′ which
is normal in K, choose representatives for GLr(F )/GLr(Af

F )/K̃, write down the

commutative diagrams from Proposition 10.15 for the maps J∗Idr
∶ Malg

k (M
r
A,K) →

Malg
k (M

r
A,K̃) and J

∗
Idr
∶ Malg

k (M
r
A,K′) →M

alg
k (M

r
A,K̃) and J

∗
h ∶ M

alg
k (M

r
A,K̃) Ð→

Malg
k (M

r
A,K̃) for all h ∈K, and eliminate everything concerning K̃ from the result-

ing expression for JIdr,∗ ⊗ id. We leave this direct and tedious calculation to the
reader. □

Proposition 12.9. Consider any element h ∈ GLr(Af
F ), any open compact

subgroup K < GLr(Â) and any representatives g1, . . . , gn of the double quotient
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GLr(F )/GLr(Af
F )/K. Then the Hecke operator Th from (12.6) and the isomor-

phism from Theorem 10.9 fit into a commutative diagram

Malg
k (M

r
A,K) ⊗F C∞

≀ 10.9

��

Th⊗id //Malg
k (M

r
A,K) ⊗F C∞

≀ 10.9

��n

⊕
i=1
Mk(Γgi)

//
n

⊕
i=1
Mk(Γgi),

(fi)
n
i=1

� // (∑
i′,δ

fi′ ∣k δ)
n

i=1,

where, for each index i, the sum extends over all pairs of indices 1 ⩽ i′ ⩽ n and
elements δ ∈ GLr(F ) ∩ gi′KhKg

−1
i up to left multiplication by Γgi′ . Moreover, the

index i′ that actually occurs in the sum depends only i and h.

Proof. Set K ′ ∶= K ∩ h−1Kh and choose representatives g′1, . . . , g
′
n′ of the

double quotient GLr(F )/GLr(Af
F )/K

′. For each 1 ⩽ j ⩽ n′ select an index 1 ⩽
ij ⩽ n and elements γj ∈ GLr(F ) and kj ∈ K such that γjg

′
jh
−1kj = gij . Then by

Propositions 10.15 and 12.8 we have a commutative diagram

Malg
k (M

r
A,K) ⊗F C∞

≀ 10.9

��

J∗h⊗id //Malg
k (M

r
A,K′) ⊗F C∞

≀ 10.9

��

JIdr,∗⊗id //Malg
k (M

r
A,K) ⊗F C∞

≀ 10.9

��n

⊕
i=1
Mk(Γgi)

//
n′

⊕
j=1
Mk(Γ

′
g′j
) //

n

⊕
i=1
Mk(Γgi),

(fi)
n
i=1

� // (fij ∣kγj)
n′

j=1
� // (∑

j,γ

fij ∣kγj ∣kγ)
n

i=1,

where, for each index i, the sum extends over all pairs of indices 1 ⩽ j ⩽ n′ and
elements γ ∈ GLr(F ) ∩ g

′
jKg

−1
i up to left multiplication by GLr(F ) ∩ g

′
jK
′g′−1j .

Using the fact that fij ∣kγj ∣kγ = fij ∣k γjγ we can rewrite this as

(12.10) (fi)
n
i=1 z→ (∑

j,δ

fij ∣k δ)
n

i=1,

where, for each index i, the sum extends over all pairs of indices 1 ⩽ j ⩽ n′ and ele-
ments δ ∈ GLr(F )∩γjg

′
jKg

−1
i up to left multiplication by GLr(F )∩γjg

′
jK
′g′−1j γ−1j .

To analyse this sum note first that by construction we have γjg
′
j = gijk

−1
j h.

For each j the element δ therefore runs through GLr(F ) ∩ gijk
−1
j hKg−1i up to left

multiplication by GLr(F ) ∩ gijk
−1
j hK ′h−1kjg

−1
ij
.

For any j and δ that occur in the sum this shows that δgi ∈ gijk
−1
j hK. Taking

determinants and using the fact that kj ∈K we deduce that det(gi) and det(gijh)

represent the same coset in F ×/(Af
F )
×/det(K). The coset of det(gij) therefore

depends only on i and h, but not on j. By Proposition 8.7 it follows that ij depends
only on i and h, but not on j. For the rest of the proof we therefore fix indices i and
i′ such that det(gi) and det(gi′h) represent the same coset in F ×/(Af

F )
×/det(K),

and we can restrict ourselves to indices j with ij = i
′.

Note that this already proves the last statement of the proposition. It also shows
that δ lies in GLr(F ) ∩ gi′KhKg

−1
i . Moreover, since hK ′h−1 < K and kj ∈ K, we

have GLr(F )∩gi′k
−1
j hK ′h−1kjg

−1
i′ ⊂ GLr(F )∩gi′Kg

−1
i′ = Γgi′ . Thus any equivalence

class of pairs (j, δ) in the sum (12.10) determines a unique coset Γgi′ δ.
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Suppose that two pairs (j, δ) and (j′, δ′) determine the same coset Γgi′ δ = Γgi′ δ
′.

Write δ′ = εδ with ε ∈ Γgi′ . Since δ ∈ gi′k
−1
j hKg−1i and δ′ ∈ gi′k

−1
j′ hKg

−1
i , it follows

that δ′ lies in both εgi′k
−1
j hKg−1i and gi′k

−1
j′ hKg

−1
i . Multiplying by gi from the

right we deduce that εgi′k
−1
j hk = gi′k

−1
j′ h for some k ∈ K. By the definition of Γgi′

we have g−1i′ ε
−1gi′ ∈ K, and since kj , kj′ ∈ K, we find that k = h−1kjg

−1
i′ ε

−1gi′k
−1
j′ h ∈

K ∩ h−1Kh =K ′. The calculation εγjg
′
jk = εgi′k

−1
j hk = gi′k

−1
j′ h = γj′g

′
j′ now implies

that g′j and g′j′ represent the same double coset in GLr(F )/GLr(Af
F )/K

′. By

the choice of g′1, . . . , g
′
n′ as representatives of these double cosets it follows that

j = j′. Thus both δ and δ′ lie in GLr(F ) ∩ gi′k
−1
j hKg−1i , and hence ε = δ′δ−1 lies in

GLr(F )∩gi′k
−1
j hKh−1kjg

−1
i′ . Since also ε ∈ Γgi′ = GLr(F )∩gi′Kg

−1
i′ and kj ∈K and

hKh−1 ∩K = hK ′h−1, we then actually have ε ∈ GLr(F )∩gi′k
−1
j hK ′h−1kjg

−1
i′ . This

shows that the map sending an equivalence class of pairs (j, δ) in the sum (12.10)
to the coset Γgi′ δ is injective.

Consider now an arbitrary element δ ∈ GLr(F ) ∩ gi′KhKg
−1
i . Choose k ∈ K

such that δ ∈ gi′k
−1hKg−1i . By the choice of g′1, . . . , g

′
n′ there exists an index j

with GLr(F )gi′k
−1hK ′ = GLr(F )g

′
jK
′. Since γjg

′
j = gijk

−1
j h, we deduce that

GLr(F )gi′k
−1hK ′ = GLr(F )gijk

−1
j hK ′. By the same argument as above it follows

that i′ = ij , and we can find an element ε ∈ GLr(F ) such that εgi′k
−1h ∈ gi′k

−1
j hK ′.

Since hK ′h−1 < K and kj , k ∈ K, we then have ε ∈ GLr(F ) ∩ gi′k
−1
j hK ′h−1kg−1i′ <

GLr(F )∩gi′Kg
−1
i′ = Γgi′ . Thus εδ ∈ GLr(F )∩εgi′k

−1hKg−1i = GLr(F )∩gi′k
−1
j hKg−1i ,

and so the coset Γgi′ δ arises from the pair (j, εδ) in the sum (12.10). In other words
the map sending an equivalence class of pairs (j, δ) in the sum (12.10) to the coset
Γgi′ δ is surjective.

All this together shows that in (12.10) we can equivalently sum over all δ ∈
GLr(F ) ∩ gi′KhKg

−1
i up to left multiplication by Γgi′ . Also, since fij = fi′ ∈

Mk(Γgi′ ), the function fi′ ∣k δ depends only on the coset Γgi′ δ. This finishes the
proof. □

Finally, we define Hecke operators on analytic Drinfeld modular forms as fol-
lows:

Definition 12.11. For any arithmetic subgroups Γ, Γ′ < GLr(F ) and any
element δ ∈ GLr(F ) we define the associated Hecke operator by

Tδ ∶ Mk(Γ
′) Ð→Mk(Γ), f z→∑γ

f ∣k γ,

where γ runs through a set of representatives of the quotient Γ′/Γ′δΓ.

Using (1.6) and Proposition 6.6 one finds that this is well-defined, and by
construction it depends only on the double coset Γ′δΓ. Also, since the action of
GLr(F ) preserves cusp forms and Mk(Γ) ∩ Sk(Γ ∩ δ

−1Γ′δ) = Sk(Γ), the Hecke
operator induces a map

(12.12) Tδ ∶ Sk(Γ
′) Ð→ Sk(Γ).

We can now rewrite the formula in Proposition 12.9 as follows.

Theorem 12.13. The map on the bottom in Proposition 12.9 is equal to

(fi)
n
i=1

� // (∑
i′,δ

Tδ(fi′))
n

i=1,
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where, for each index i, the sum extends over all pairs of indices 1 ⩽ i′ ⩽ n and
double cosets Γgi′ δΓgi ⊂ GLr(F ) ∩ gi′KhKg

−1
i . Again the index i′ that actually

occurs depends only on i and h.

Proof. By construction the set GLr(F ) ∩ gi′KhKg
−1
i is invariant under left

multiplication by Γgi′ = GLr(F )∩gi′Kg
−1
i′ and right multiplication by Γgi = GLr(F )∩

giKg
−1
i , and it is a finite disjoint union of double cosets Γgi′ δΓgi . The formula re-

sults by direct computation from (1.6). □

Remark 12.14. In Theorem 12.13 it can happen that GLr(F ) ∩ gi′KhKg
−1
i

decomposes into several double cosets. This is related to the fact that the algebraic
Hecke operator Th is by construction defined over F , whereas the analytic Hecke
operator Tδ is only defined over C∞. Thus ifMr

A,K∩h−1Kh(C∞) has more connected

components thanMr
A,K(C∞), their common field of definition FK∩h−1Kh is a proper

extension of the field of definition FK of the connected components of Mr
A,K(C∞),

and the algebraic Hecke operator Th can be viewed as an analytic Hecke operator
Tδ followed by a trace map with respect to FK∩h−1Kh/FK .
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Examples



Introduction

In the present Part 3 we illustrate the general theory constructed in Parts 1
and 2 by constructing some important families of modular forms.

Let L be a finitely generated projective A-submodule of rank r of F r, viewed
as a set of row vectors. For any ω ∈ Ωr we thus obtain a strongly discrete A-lattice
Lω ⊂ C∞ of rank r. Our convention on row vectors implies that GLr(F ) acts on
F r from the right. We denote the stabiliser of L by

ΓL ∶= {γ ∈ GLr(F ) ∣ Lγ = L}.

For L = Ar we simply have ΓL = GLr(A). Note that for any non-zero ideal N ⊂ A,
an element of GLr(F ) stabilises the lattice L if and only if it stabilises the lattice
N−1L; thus ΓN−1L = ΓL. More generally, for any coset v + L ⊂ F r we consider the
congruence subgroup

Γv+L ∶= {γ ∈ GLr(F ) ∣ vγ +Lγ = v +L} < ΓL.

Also, for any non-zero ideal N ⊂ A we consider the principal congruence group

ΓL(N) ∶= ⋂
v∈N−1L

Γv+L = ker(ΓL → Aut(N−1L/L)).

All these groups are arithmetic subgroups of GLr(F ).

Outline of Part 3. In Section 13 we construct the Eisenstein series of all
weights k ⩾ 1 associated to all cosets v + L and compute their u-expansions in
Proposition 13.10. In Theorem 13.16 we show that they are modular forms of
weight k for the groups Γv+L.

In Section 14 we determine the action of Hecke operators (defined in Section
12) on Eisenstein series, restricting ourselves to Hecke operators that are supported
away from the level of the Eisenstein series (see Assumption 14.1). In each case,
Theorem 14.11 identifies the Hecke image of an Eisenstein series as a linear com-
bination of Eisenstein series. In particular, we deduce that Eisenstein series are
eigenforms under many Hecke operators.

Coefficient forms are defined in Section 15, they are modular forms for ΓL

which occur as coefficients of Drinfeld modules, isogenies or exponential functions
associated to the lattice Lω.

Section 16 deals with discriminant forms, which arise as highest coefficients
of Drinfeld modules or as roots thereof. These are always cusp forms. Certain
(q − 1)-st roots are examples of modular forms with non-zero type m.

Lastly, we discuss the special case of A = Fq[t] and L = A
r in Section 17. Here

we exploit the explicit description of algebraic modular forms for Γ(t) from [PS14]
and [Pi13] together with our identification of analytic and algebraic modular forms
from Part 2. This allows us to prove in Theorem 17.1 that the graded ringM∗(Γ(t))
of modular forms of all weights for Γ(t) is generated over C∞ by the weight one
Eisenstein series E1,v+L for all v ∈ t−1L ∖L. Using invariants, we then deduce that
the rings M∗(GLr(A)) and M∗(SLr(A)) are generated by suitable algebraically
independent coefficient forms. This generalises known results from the r = 2 case
due to Cornelissen, Goss and Gekeler, respectively. Lastly, we give some dimension
formulae in Theorem 17.11.
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13. Eisenstein series

For any integer k ⩾ 1 and any vector v ∈ F r we define the Eisenstein series of
weight k associated to the coset v +L by

(13.1) Ek,v+L(ω) ∶= ∑
0 /=x ∈v+L

(xω)−k.

Proposition 13.2. This series defines a holomorphic function Ωr → C∞.

Proof. By Proposition 3.4 it suffices to show that the series converges uni-
formly on the affinoid set Ωr

n from (3.2) for every n. For this observe that any
x ∈ F r ∖ {0} determines a unimodular F∞-linear form

x
∣x∣ on F

r
∞. For any ω ∈ Ω

r
n it

follows that

∣xω∣ = ∣x∣ ⋅ ∣ x∣x∣ω∣
(3.1)

⩾ ∣x∣ ⋅ h(ω) ⋅ ∣ω∣
(3.2)

⩾ ∣x∣ ⋅ ∣πn∣ ⋅ ∣ω∣
3.3
⩾ ∣x∣ ⋅ ∣πn∣ ⋅ ∣ξ∣.

As x runs through (v +L) ∖ {0}, the norm ∣x∣ goes to infinity; hence ∣xω∣−k goes to
zero uniformly over Ωr

n, as desired. □

Some basic transformation properties of Eisenstein series are:

Proposition 13.3. (a) For every γ ∈ GLr(F ) we have Ek,v+L∣kγ = Ek,vγ+Lγ .
(b) In particular Ek,v+L is a weak modular form of weight k for the group

Γv+L.
(c) For any A-submodule of finite index L′ ⊂ L we have Ek,v+L = ∑v′+L′ Ek,v′+L′ ,

where the sum extends over all L′-cosets v′ +L′ ⊂ v +L.

Proof. (a) results from the calculation

(Ek,v+L∣kγ)(ω)
(1.5)
= j(γ,ω)−k ⋅ ∑

0 /=x ∈v+L
(x ⋅ γ(ω))−k

= ∑
0 /=x ∈v+L

(j(γ,ω) ⋅ x ⋅ γ(ω))−k

(1.3)
= ∑

0 /=x ∈v+L
(xγω)−k

= Ek,vγ+Lγ(ω).

(b) is a direct consequence of (a), and (c) is obvious from the definition (13.1). □

Our next goal is to determine the u-expansion of Ek,v+L, which requires some
preparation. For any strongly discrete Fq-subspace H ⊂ C∞ consider the power
series expansion of the exponential function

(13.4) eH(z) ∶= z ⋅ ∏
h∈H∖{0}

(1 −
z

h
) =

∞
∑
i=0
eH,qiz

qi

with eH,qi ∈ C∞ and eH,1 = 1 that is furnished by Proposition 2.2.

Proposition 13.5. (a) For any strongly discrete Fq-subspace H ⊂ C∞ we
have

eH(z)
−1 = ∑

h∈H
(z − h)−1.
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(b) For every k ⩾ 1, there exists a unique so-called Goss polynomial Gk(X,Y1, Y2, . . .)
with coefficients in Fp in the variables X and Yi for all integers 1 ⩽ i <
logq k, such that for every strongly discrete Fq-subspace H ⊂ C∞ we have

Gk(eH(z)
−1, eH,q, eH,q2 , . . .) = ∑

h∈H
(z − h)−k.

(c) These polynomials further satisfy:
(i) Gk is monic of degree k in X and divisible by X.
(ii) G1 =X and Gk =X(Gk−1 +∑1⩽i<logq k YiGk−qi) for all k > 1.

(iii) Gpk = G
p
k.

(iv) X2 ∂
∂X
Gk = kGk+1.

Proof. The existence of these polynomials was first obtained by Goss in
[Go80c, Prop. 6.6], but in this generality see Gekeler [Ge13, Thm. 2.6]. □

Remark 13.6. We shall see in Proposition 13.13 that the vanishing order at
infinity of the Eisenstein series Ek,v+L is controlled by the vanishing order of the
Goss polynomial Gk at X = 0. By part (i) of Proposition 13.5 (c) this vanishing
order is ⩾ 1, and part (ii) implies that it is equal to k for all k ⩽ q. In [Ge13],
Gekeler gives a formula for the order of the Goss polynomial at X = 0 in the case
A = Fp[t] andH = π̄A, where p is prime and π̄ is the Carlitz period. This determines
the vanishing order of the Eisenstein series in the rank 2 case for A = Fp[t].

Corollary 13.7. For any v ∈ F r ∖L we have

E1,v+L(ω) = eLω(vω)
−1.

Proof. Direct computation using the substitution x = v − ℓ and Proposition
13.5 (a):

E1,v+L(ω) = ∑
0 /=x ∈v+L

(xω)−1 = ∑
ℓ ∈L
(vω − ℓω)−1 = eLω(vω)

−1.

□

Now define A-submodules L′ and L1 by the commutative diagram with exact
rows

(13.8) 0 // F r−1 // F r // F // 0
∪ x′↦(0,x′) ∪ (x1,x

′)↦x1 ∪

0 // L′ // L // L1
// 0.

Since L is finitely generated projective of rank r, the A-modules L′ and L1 are
finitely generated projective of ranks r − 1 and 1, respectively. Also fix a subgroup
L̃1 ⊂ L which maps isomorphically to L1, so that L = L̃1 ⊕ ({0} × L

′). Write
v = (v1, v

′) ∈ F r = F × F r−1.

Lemma 13.9. The subgroup Λ′ ⊂ F r−1 from (4.4) that corresponds to Γv+L ∩
U(F ) is the finitely generated A-submodule of rank r − 1

Λ′ = {λ′ ∈ F r−1 ∣ (v1 +L1)λ
′ ⊂ L′}.

Moreover, for any x1 ∈ (v1 +L1) ∖ {0} the inclusion x1Λ
′ ⊂ L′ has finite index.
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Proof. For any λ′ ∈ F r−1 and (x1, x
′) ∈ F r = F ×F r−1 we have (x1, x

′)(1 λ′

0 1
) =

(x1, x1λ
′ + x′). By the definition of Γv+L in the introduction it follows that λ′ ∈ Λ′ if

and only if for every (x1, x
′) ∈ v +L we have (0, x1λ

′) ∈ L, or equivalently x1λ
′ ∈ L′.

As (x1, x
′) runs through v +L, its first component x1 runs through v1 +L1, so the

formula for Λ′ follows.
Since L′ and L1 are finitely generated A-modules of ranks r − 1 and 1, respec-

tively, the formula implies that Λ′ is a finitely generated A-submodule of rank r−1.
For x1 ∈ (v1 +L1)∖{0} it follows that x1Λ

′ ⊂ L′ is an inclusion of finitely generated
A-modules of the same rank and hence of finite index. □

As before we write ω = (ω1

ω′
) ∈ Ωr ⊂ C∞ ×Ωr−1. Then the expansion parameter

from (4.14) is the function u ∶= uω′(ω1) ∶= eΛ′ω′(ω1)
−1.

Proposition 13.10. We have

Ek,v+L((
ω1

ω′
)) = ∑

x=(x1,x′) ∈v+L̃1

⎧⎪⎪
⎨
⎪⎪⎩

Ek,x′+L′(ω
′) if x1 = 0,

Gk(eL′ω′(xω)
−1, eL′ω′,q, eL′ω′,q2 , . . .) if x1 /= 0,

where Gk is the k-th Goss polynomial from Proposition 13.5 and in the second case

eL′ω′(xω)
−1 =

u[L
′∶x1Λ

′]

x1
⋅

∏
ℓ′∈L′∖x1Λ′ mod x1Λ′

eΛ′ω′(x
−1
1 ℓ′ω′)

∏
ℓ′∈L′ mod x1Λ′

(1 − eΛ′ω′(x
−1
1 (ℓ

′ − x′)ω′) ⋅ u)
.

Moreover, the right hand side converges locally uniformly for all (u,ω′) in a suitable
tubular neighbourhood of {0} ×Ωr−1.

Proof. Using the fact that L = L̃1⊕({0}×L
′), we break up the series defining

Ek,v+L as

(13.11) Ek,v+L(ω) = ∑
0 /=x ∈v+L

(xω)−k = ∑
x ∈v+L̃1

( ∑
0 /=y ∈x+({0}×L′)

(yω)−k).

Write x = (x1, x
′) ∈ F r = F × F r−1, and observe that for any y = (y1, y

′) ∈ F r =
F × F r−1 we have yω = y1ω1 + y

′ω′.
If x1 = 0, the inner sum of (13.11) is just

∑
0 /=y′ ∈x′+L′

(y′ω′)−k = Ek,x′+L′(ω
′).

Such a term occurs only if v lies in L + ({0} × F r−1), and then it occurs for a
unique x.

If x1 /= 0, we write y = x − (0, ℓ′), so that yω = xω − ℓ′ω′. By Proposition 13.5
(b) the inner sum of (13.11) then becomes

∑
ℓ′∈L′
(xω − ℓ′ω′)−k = Gk(eL′ω′(xω)

−1, eL′ω′,q, eL′ω′,q2 , . . .).

To transform eL′ω′(xω) we proceed as in the proof of Proposition 7.16. First, by
Lemma 13.9 we have an inclusion of finite index Λ′ω′ ⊂ x−11 L′ω′, and by the F∞-
linear independence of the coefficients of ω the index is precisely [L′ ∶ x1Λ

′]. By
the additivity of the exponential function we have

eΛ′ω′(x
−1
1 xω) = eΛ′ω′(ω1 + x

−1
1 x′ω′) = u−1 + eΛ′ω′(x

−1
1 x′ω′)
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with u = eΛ′ω′(ω1)
−1. Using Proposition 2.3 we deduce that

eL′ω′(xω) = x1 ⋅ ex−11 L′ω′(x
−1
1 xω)

= x1 ⋅ eeΛ′ω′(x−11 L′ω′)(eΛ′ω′(x
−1
1 xω))

= x1 ⋅ eeΛ′ω′(x−11 L′ω′)(u
−1 + eΛ′ω′(x

−1
1 x′ω′)).

By the definition and the additivity of the exponential function this in turn yields

eL′ω′(xω) = x1 ⋅ (u
−1 + eΛ′ω′(x

−1
1 x′ω′)) ⋅ ∏

ℓ′∈L′∖x1Λ′

modulo x1Λ′

(1 −
u−1 + eΛ′ω′(x

−1
1 x′ω′)

eΛ′ω′(x−11 ℓ′ω′)
)

= x1 ⋅ (u
−1 + eΛ′ω′(x

−1
1 x′ω′)) ⋅ ∏

ℓ′∈L′∖x1Λ′

modulo x1Λ′

eΛ′ω′(x
−1
1 (ℓ

′ − x′)ω′) − u−1

eΛ′ω′(x−11 ℓ′ω′)

= x1 ⋅
1 + eΛ′ω′(x

−1
1 x′ω′) ⋅ u

u[L′∶x1Λ′]
⋅ ∏
ℓ′∈L′∖x1Λ′

modulo x1Λ′

eΛ′ω′(x
−1
1 (ℓ

′ − x′)ω′) ⋅ u − 1

eΛ′ω′(x−11 ℓ′ω′)

=
x1

u[L′∶x1Λ′]
⋅

∏
ℓ′∈L′ mod x1Λ′

(1 − eΛ′ω′(x
−1
1 (ℓ

′ − x′)ω′) ⋅ u)

∏
ℓ′∈L′∖x1Λ′ mod x1Λ′

eΛ′ω′(x
−1
1 ℓ′ω′)

,

where the last transformation uses the fact that (−1)[L
′∶x1Λ

′]−1 = 1 because [L′ ∶
x1Λ

′] is a power of q. Combining everything we obtain the desired formula.
For the convergence take any n > 0. By Proposition 4.7 (c) there exists a

constant cn > 0, such that for any ω′ ∈ Ωr−1
n and any x′ ∈ F r−1

∞ we have ∣eΛ′ω′(x
′ω′)∣ <

cn. In particular this inequality holds for x−11 ℓ′ and x−11 (ℓ
′−x′) in place of x′. Thus

if ∣u∣ ⩽ rn ∶= (2cn)
−1, we have ∣eΛ′ω′(x

−1
1 (ℓ

′ −x′)ω′) ⋅u∣ < 2−1, so the geometric series
for

1

1 − eΛ′ω′(x−11 (ℓ
′ − x′)ω′) ⋅ u

converges uniformly to a value of norm 1. Combining the inequalities yields the
bound
RRRRRRRRRRRRRRRRR

u[L
′∶x1Λ

′]

x1
⋅

∏
ℓ′∈L′∖x1Λ′ mod x1Λ′

eΛ′ω′(x
−1
1 ℓ′ω′)

∏
ℓ′∈L′ mod x1Λ′

(1 − eΛ′ω′(x
−1
1 (ℓ

′ − x′)ω′) ⋅ u)

RRRRRRRRRRRRRRRRR

⩽
r
[L′∶ℓ1Λ′]
n c

[L′∶ℓ1Λ′]−1
n

∣x1∣
=

2−[L
′∶ℓ1Λ′]

∣x1∣cn
.

Also recall that Gk is a polynomial of fixed degree in X which is divisible by X,
and the values eL′ω′,q, eL′ω′,q2 , . . . for the other variables are holomorphic functions
on Ωr−1 and hence bounded on Ωr−1

n . As both ∣x1∣ and [L
′ ∶ x1Λ

′] go to infinity
with x1, this proves that the right hand side of the formula for Ek,x′+L′(ω

′) con-
verges uniformly for all (u,ω′) ∈ B(0, rn) ×Ω

r−1
n . Varying n it therefore converges

locally uniformly on the tubular neighbourhood ⋃n⩾1B(0, rn) ×Ω
r−1
n . □

Remark 13.12. In principle, the u-expansion of Ek,v+L in terms of powers of
u can be computed from Proposition 13.10 by multiplying out the geometric series
involved. As it stands, however, the sum is essentially a sum over a coset of L1 ⊂ F ,
which is a fractional ideal of A. In the rank 2 case, Petrov [Pe13] has shown that
there are many Drinfeld modular forms with such expansions and that they exhibit
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many desirable properties because of it. One may ask if there are other examples
in the higher rank case.

Proposition 13.13. (a) The u-expansion of Ek,v+L(ω) has constant term
Ek,x′+L′(ω

′) if v ∈ L+(0, x′) for some x′ ∈ F r−1, and constant term 0 oth-
erwise.

(b) If v /∈ L + ({0} × F r−1), the order at infinity of Ek,v+L(ω) with respect to
the group Γv+L ∩U(F ) is at least

ordX(Gk) ⋅min{[L′ ∶ x1Λ
′] ∣ x1 ∈ v1 +L1}.

Proof. Assertion (a) follows from Proposition 13.10 and the fact that the Goss
polynomialGk is divisible byX. In (b) let d ∶= ordX(Gk) denote the vanishing order
at X = 0 of Gk as a polynomial in independent variables X,Y1, Y2, . . . and write
Gk = X

dH(Y1, Y2, . . .) + (higher terms in X). Then each summand in Proposition
13.10 contributes

⎛
⎜
⎜
⎝

u[L
′∶x1Λ

′] ⋅

∏
ℓ′∈L′∖x1Λ′ mod x1Λ′

eΛ′ω′(x
−1
1 ℓ′ω′)

x1

⎞
⎟
⎟
⎠

d

⋅H(eL′ω′,q, eL′ω′,q2 , . . .)+(higher terms in u)

to the u-expansion of Ek,v+L(ω). Recall that v = (v1, v
′), so that as x = (x1, x

′)

runs through v + L̃1, its first component x1 runs through v1 + L1. Combining this
yields the desired lower bound. □

Remark 13.14. For the purposes explained in Remark 16.8 below, one should
hope that the inequality in Proposition 13.13 is always an equality in the case k = 1.
By (16.2) this would yield a formula for the order at infinity of every discriminant
form. For example we have:

Proposition 13.15. If A = Fq[t], for any v ∈ t−1L ∖ L the order at infinity
of E1,v+L with respect to the group Γv+L ∩ U(F ) is 0 if v ∈ L + ({0} × F r−1) and 1
otherwise.

Proof. As above write v = (v1, v
′). If v1 ∈ L1, the u-expansion of E1,v+L has

constant term E1,v′+L′ by Proposition 13.13 (a), which is non-zero by Corollary
13.7; hence the order is 0 in this case.

Otherwise we have t−1L1 = Fq ⋅ v1 + L1 and this A-module is generated by a
unique element x1 ∈ v1 + L1. By Lemma 13.9 we deduce that Λ′ = x−11 L′. This
x1 is then the unique element of the coset v1 + L1 that satisfies [L′ ∶ x1Λ

′] = 1.
Since, moreover, G1(X) = X by Proposition 13.5 (b), Proposition 13.10 implies
that E1,v+L(ω) =

u
x1
+(higher terms in u). The order is therefore 1 in that case. □

Theorem 13.16. The Eisenstein series Ek,v+L is a modular form of weight k
for the group Γv+L.

Proof. By Proposition 13.3 (b) it is already a weak modular form for Γv+L.
Moreover, for every γ ∈ GLr(F ) we have Ek,v+L∣kγ = Ek,vγ+Lγ by Proposition 13.3
(a), and the latter is holomorphic at infinity by Proposition 13.10. □

14. Hecke action on Eisenstein series

For any coset v+L the quotient (Av+L)/L is a finite A-module that is generated
by one element; hence it is isomorphic to A/N for a unique non-zero ideal N .
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Equivalently N is the largest ideal of A such that Γv+L contains the principal
congruence subgroup ΓL(N). We can therefore view N as a kind of level of the
Eisenstein series Ek,v+L. In this section we compute the effect on Ek,v+L of a Hecke
operator that is supported away from N .

For any finitely generated A-submodule L ⊂ F r of rank r and any prime p ⊂ A
let Lp denote the closure of L in F r

p , which is a finitely generated Ap-submodule
of rank r. Note that L can be recovered from the submodules Lp for all p as the

intersection F r ∩ ∏pLp within (Af
F )

r. Consider finitely generated projective A-
submodules L, L′ ⊂ F r of rank r, vectors v, v′ ∈ F r, and an element δ ∈ GLr(F ),
which together satisfy:

Assumption 14.1. For every prime p ⊂ A we have:

(a) vδ +Lpδ ⊂ v
′ +L′p,

(b) vδ +Lpδ = v
′ +L′p whenever v /∈ Lp, and

(c) Lpδ /⊂ pL
′
p.

Here (a) is equivalent to vδ +Lδ ⊂ v′ +L′, which includes the fact that Lδ ⊂ L′.
Given (a), condition (b) means that Ek,v+L and Ek,v′+L′ are Eisenstein series of the
same level N and that Tδ is supported only at primes not dividing N . Property
(c) is equivalent to Lδ /⊂ pL′ for any prime p, which serves as normalisation. If
L = L′ = Ar, then (a) means that δ has coefficients in A and maps v into v′ +Ar.
Then, in addition, condition (b) means that the determinant of δ is relatively prime
to N , and (c) means that δ is not congruent to the zero matrix modulo any prime
of A. Assumption 14.1 will remain in force until Theorem 14.11 below.

To begin with we abbreviate

Γ′ ∶= Γv′+L′ ,

Γ ∶= δ−1Γv+Lδ ∩ Γv′+L′ = Γvδ+Lδ ∩ Γv′+L′ < Γ′.

For any prime p ⊂ A we consider the open compact subgroups

K ′p ∶= { k ∈ GLr(Fp) ∣ v
′k +L′pk = v

′ +L′p },

Kp ∶= { k ∈ GLr(Fp) ∣ v
′k +L′pk = v

′ +L′p and vδk +Lpδk = vδ +Lpδ } < K ′p.

Since L′/Lδ is finite, for any prime p not dividing its annihilator we have Lpδ = L
′
p

and hence vδ+Lpδ = v
′+L′p. Thus for almost all p we haveKp =K

′
p. By Assumption

14.1 (b) this is so in particular if v /∈ Lp. Also, the equalities L′ = F r ∩∏pL
′
p and

L = F r ∩∏pLp imply that Γ′ = GLr(F ) ∩∏pK
′
p and Γ = GLr(F ) ∩∏pKp.

Lemma 14.2. For every p we have det(Kp) = det(K
′
p).

Proof. If v /∈ Lp, this follows from the fact that K ′p = Kp. Otherwise by
assumption we have Lpδ = vδ + Lpδ ⊂ v

′ + L′p = L
′
p and both are free Ap-modules

of rank r within F r
p . To prove the desired statement we can conjugate everything

by an arbitrary element of GLr(F ). By the elementary divisor theorem we may
thus without loss of generality assume that L′p = A

r
p and that Lpδ = A

r
ph for some

diagonal matrix h ∈ GLr(Fp). For any a ∈ A
×
p the diagonal matrix diag(1, . . . ,1, a)

then lies inKp with determinant a; hence A×p < det(Kp). As A×p is the unique largest
compact subgroup of F ×p , it follows that det(Kp) = det(K

′
p) = A

×
p , as desired. □
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Lemma 14.3. There is a natural bijection

Γ/Γ′ // ∏pKp/K
′
p,

Γγ
� // (Kpγ)p.

Proof. If two cosets Γγ1 and Γγ2 have the same image, we have Kpγ1 =Kpγ2
and hence γ1γ

−1
2 ∈ Kp for all p. Thus γ1γ

−1
2 ∈ GLr(F ) ∩ ∏pKp = Γ, and so Γγ1 =

Γγ2. The map is therefore injective. For the surjectivity consider any collection of
cosets Kpkp ⊂K

′
p. By Lemma 14.2 we may without loss of generality assume that

kp ∈ SLr(Fp) ∩K
′
p. By strong approximation in the group SLr there then exists an

element γ ∈ SLr(F ) ∩ ∏pKpkp. This element lies in GLr(F ) ∩ ∏pK
′
p = Γ

′; hence
the map is surjective. □

Next observe that for any γ ∈ Γ′ the subset vδγ+Lδγ ⊂ F r depends only on the
coset Γγ. For any x ∈ F r we let C(x) denote the number of such cosets for which
x ∈ vδγ + Lδγ. Similarly, for any k ∈ K ′p the subset vδk + Lpδk ⊂ F

r
p depends only

on the coset Kpk. For any x ∈ F r
p we let Cp(x) denote the number of such cosets

for which x ∈ vδk + Lpδk. For any fixed x ∈ F r the module (Ax +Av′ + L′)/Lδ is
finite, so for any prime p not dividing its annihilator we have x ∈ v′ +L′p = vδ +Lpδ
and K ′p =Kp and hence Cp(x) = 1.

Lemma 14.4. For any x ∈ F r we have C(x) = ∏pCp(x).

Proof. Since v ∈ F r and L = F r ∩∏pLp, for any γ ∈ Γ
′ we have the equality

vδγ + Lδγ = F r ∩ (vδγ +∏pLpδγ) within (Af
F )

r. Since x ∈ F r, it follows that
x ∈ vδγ+Lδγ if and only if x ∈ vδγ+Lpδγ for all p. But the latter condition depends
only on the coset Kpγ, so the product formula follows from Lemma 14.3. □

Now let qp denote the order of the residue field k(p) ∶= A/p. In principle one can
give an explicit formula for Cp(x) as a polynomial in qp with coefficients in Z. But
we are only interested in Cp(x) modulo (p), so we restrict ourselves to determining
this residue class. Let charX denote the characteristic function of a subset X ⊂ F r

p .

Lemma 14.5. For any prime p consider the unique integers µp,1 ⩾ . . . ⩾ µp,r ⩾ 0
such that L′p/Lpδ ≅ ⊕

r
j=1A/p

µp,j . Then for any x ∈ F r
p we have

Cp(x) ≡

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

charv′+L′p(x) if µp,1 ⩽ 1

charL′p∖pL′p(x) if 2 ⩽ µp,1 ⩽ µp,r−1 + 1

0 if µp,1 ⩾ µp,r−1 + 2

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

mod (qp).

Proof. By Assumption 14.1 (a) we have vδ +Lpδ ⊂ v
′ +L′p, so for any k ∈K ′p

we also have vδk + Lpδk ⊂ v
′ + L′p. Thus Cp(x) = 0 if x /∈ v′ + L′p. So till the end

of the proof we assume that x ∈ v′ + L′p. If in addition vδ + Lpδ = v
′ + L′p, we have

Kp =K
′
p and vδk+Lpδk = v

′+L′p and hence Cp(x) = 1. Till the end of the proof we
therefore assume that vδ +Lpδ /= v

′ +L′p. By Assumption 14.1 (b) this implies that

v ∈ Lp and hence Lpδ = vδ +Lpδ ⫋ v
′ +L′p = L

′
p. For ease of notation we abbreviate

the chosen exponents to µi ∶= µp,i. Then µ1 ⩾ 1, and Assumption 14.1 (c) requires
that µr = 0.

Both Lpδ ⊂ L
′
p are free Ap-modules of rank r within F r

p . To prove the desired
statement we can conjugate everything by an arbitrary element of GLr(F ). By
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the elementary divisor theorem we may thus without loss of generality assume that
L′p = A

r
p and Lpδ = ⊕

r
j=1 p

µjAp. Then K
′
p = GLr(Ap) and

Kp = h−1GLr(Ap)h ∩GLr(Ap) = { (aij)ij ∈ GLr(Ap) ∣ ∀i ⩾ j∶ aij ∈ p
µj−µiAp }.

Next observe that pµ1L′p ⊂ Lpδ ⊂ L
′
p. Consider the factor module L̄′ ∶= L′p/p

µ1L′p =

(A/pµ1)r and its submodule L̄ ∶= Lpδ/p
µ1L′p = ⊕

r
j=1 p

µjAp/p
µ1Ap. Then K

′
p surjects

to K̄ ′ ∶= GLr(A/p
µ1), and the image K̄ < K̄ ′ of Kp < K

′
p is the stabiliser of L̄. In

particular we have [K̄ ′ ∶ K̄] = [K ′p ∶ Kp]. To compute this number note that the
image of Kp in GLr(k(p)) is the parabolic subgroup

P (k(p)) ∶= { (āij)ij ∈ GLr(k(p)) ∣ ∀i ⩾ j∶ µj > µi ⇒ āij = 0 },

and a straightforward calculation shows that [GLr(k(p)) ∶ P (k(p))] ≡ 1 modulo
(qp). From this we deduce that

(14.6) [K ′p ∶Kp] ∈ ∏
i⩾j
q
max{0,µj−µi−1}
p ⋅ (1 + qpZ).

Also, let x̄ ∈ L̄′ denote the image of x ∈ v′ +L′p = L
′
p. Then

Cp(x) =
∣{k̄ ∈ K̄ ′ ∣ x̄ ∈ L̄k̄}∣

∣K̄ ∣
= [K ′p ∶Kp] ⋅

∣{k̄ ∈ K̄ ′ ∣ x̄k̄−1 ∈ L̄}∣

∣K̄ ′∣
.

If x̄ = 0, we deduce that Cp(x) = [K
′
p ∶ Kp]. Otherwise x̄ lies in the subset S̄ν ∶=

pνL̄′ ∖ pν+1L̄′ for a unique exponent 0 ⩽ ν < µ1. Since S̄ν is an orbit under K̄ ′, the
last fraction is equal to the proportional size of L̄ ∩ S̄ν versus S̄ν ; hence

(14.7) Cp(x) = [K
′
p ∶Kp] ⋅

∣L̄ ∩ S̄ν ∣

∣S̄ν ∣
.

To compute these cardinalities observe that

L̄ ∩ pνL̄′ =
r

⊕
j=1
(pµjAp ∩ p

νAp)/p
µ1Ap =

r

⊕
j=1

pmax{µj ,ν}Ap/p
µjAp

and hence

∣L̄ ∩ pνL̄′∣ =
r

∏
j=1

q
µ1−max{µj ,ν}
p .

The same calculation with ν + 1 in place of ν shows that

∣L̄ ∩ pν+1L̄′∣ =
r

∏
j=1

q
µ1−max{µj ,ν+1}
p .

Together this implies that

∣L̄ ∩ S̄ν ∣ = q
∑r

j=1(µ1−max{µj ,ν})
p − q

∑r
j=1(µ1−max{µj ,ν+1})

p .

Since µ1 > µr = 0, we certainly have µ1 −max{µr, ν} > µ1 −max{µr, ν + 1}, so the
first exponent is greater than the second. Therefore

(14.8) ∣L̄ ∩ S̄ν ∣ ∈ q
∑r

j=1(µ1−max{µj ,ν+1})
p ⋅ (−1 + qpZ).

A similar, but simpler, computation shows that

(14.9) ∣S̄ν ∣ ∈ q
r(µ1−ν−1)
p ⋅ (−1 + qpZ).

Combining the formulas (14.6) through (14.9) we deduce that

Cp(x) ∈ q
c(ν)
p ⋅ (1 + qpZ)
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for

c(ν) ∶= ∑
i⩾j

max{0, µj − µi − 1} +
r

∑
j=1
(µ1 −max{µj , ν + 1}) − r(µ1 − ν − 1).

By (14.6), the same formula is true in the case x̄ = 0 if we set ν ∶= µ1.
It remains to find out when this exponent is greater than 0. Combining the

terms for i = r with the rest of the formula and using the fact that µr = 0 yields

c(ν) = ∑r>i⩾j max{0, µj − µi − 1} +∑
r
j=1(max{0, µj − 1} −max{0, µj − ν − 1})

= ∑r>i⩾j max{0, µj − µi − 1} +∑
r
j=1max{0,min{µj − 1, ν}}.

Here all summands are ⩾ 0. Since µ1 ⩾ . . . ⩾ µr, the first sum contains a positive
term if and only if µ1 − µr−1 − 1 ⩾ 1, and the second sum contains a positive term
if and only if min{µ1 − 1, ν} ⩾ 1. Thus

c(ν) > 0 if µ1 ⩾ µr−1 + 2 or (µ1 ⩾ 2 and ν ⩾ 1),

c(ν) = 0 if µ1 ⩽ µr−1 + 1 and (µ1 ⩽ 1 or ν = 0).

Combining all the cases we conclude that

Cp(x) = 0 if x /∈ v′ +L′p,

Cp(x) = 1 if x ∈ v′ +L′p = vδ +Lpδ,

Cp(x) ≡ 0 mod (qp) if x ∈ v′ +L′p /= vδ +Lpδ and (µ1 ⩾ µr−1 + 2 or (µ1 ⩾ 2 and x ∈ pL′p)),

Cp(x) ≡ 1 mod (qp) if x ∈ v′ +L′p /= vδ +Lpδ and µ1 ⩽ µr−1 + 1 and (µ1 ⩽ 1 or x /∈ pL′p),

Since v′ + L′p = vδ + Lpδ if and only if L′p = Lpδ if and only if µ1 = 0, the desired
formula follows. □

Now recall from Definition 12.11 that the Hecke operator associated to the
double coset Γv+LδΓv′+L′ is defined by

(14.10) Tδ ∶ Mk(Γv+L) Ð→Mk(Γv′+L′), f z→∑γ
f ∣k γ,

where γ runs through a set of representatives of the quotient Γv+L/Γv+LδΓv′+L′ .

Theorem 14.11. Under Assumption 14.1 consider the integers µp,i from Lemma
14.5. If µp,1 ⩾ µp,r−1 + 2 for some p, we have

TδEk,v+L = 0. .

Otherwise let S be the finite set of primes p for which 2 ⩽ µp,1 ⩽ µp,r−1 + 1. For
any subset I ⊂ S set L′I ∶= ∏p∈I p ⋅ L

′. Then v′ + L′ = v′′ + L′ for some element
v′′ ∈ (v′ +L′) ∩ ⋂p∈S pL′p and

TδEk,v+L = ∑
I⊂S
(−1)∣I ∣ ⋅Ek,v′′+L′

I
.

Proof. By the construction of Γ and Γ′ we have Tδf = ∑γ Ek,v+L∣k δγ, where
γ runs through a set of representatives R of Γ/Γ′. Using the transformation rule
from Proposition 13.3 (a) and the definition (13.1) of Eisenstein series we deduce
that

(TδEk,v+L)(ω) = ∑
γ∈R

Ek,vδγ+Lδγ(ω) = ∑
γ∈R

∑
0 /=x ∈vδγ+Lδγ

(xω)−k = ∑
0 /=x ∈F r

C(x)⋅(xω)−k.

Here C(x) is determined by Lemmas 14.4 and 14.5: If µp,1 ⩾ µp,r−1 + 2 for some p,
we have C(x) = 0 for all x ∈ F r. Otherwise, for any prime p in the indicated set S,
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we have v ∈ Lp and hence v′ ∈ L′p by Assumption 14.1 (b). Thus p does not divide
the annihilator N of the coset v′ +L′/L′. By the Chinese remainder theorem there
therefore exists an element a ∈ ⋂p∈S p with a ≡ 1 modulo N , and then v′′ ∶= av′ lies
in (v′ +L′) ∩ ⋂p∈S pL′p. For any subset I ⊂ S we then have

F r ∩ ∏
all p

{
v′ +L′p if p /∈ I,

pL′p if p ∈ I,
} = v′′ +

⎛

⎝
F r ∩ ∏

all p

{
L′p if p /∈ I,

pL′p if p ∈ I,
}
⎞

⎠
= v′′ +L′I .

Lemmas 14.4 and 14.5 then imply that

C(x) ≡ ∏
p∉S

charv′+L′p(x) ⋅ ∏
p∈S

charL′p∖pL′p(x) modulo (q)

= ∏
p∉S

charv′+L′p(x) ⋅ ∏
p∈S
[charL′p(x) − charpL′p(x)]

= ∏
p∉S

charv′+L′p(x) ⋅ ∑
I⊂S
(−1)∣I ∣ ⋅ ∏

p∈S∖I
charL′p(x) ⋅∏

p∈I
charpL′p(x)

= ∑
I⊂S
(−1)∣I ∣ ⋅∏

p∉I
charv′+L′p(x) ⋅∏

p∈I
charpL′p(x)

= ∑
I⊂S
(−1)∣I ∣ ⋅ charv′′+L′

I
(x).

The desired formula now follows from the definition (13.1) of Eisenstein series. □

Corollary 14.12. Consider any δ ∈ GLr(F ) such that for every prime p ⊂ A
we have:

(a) vδ +Lpδ ⊂ v
′ +L′p,

(b) vδ +Lpδ = v
′ +L′p whenever v /∈ Lp, and

(c) pL′p ⫋ Lpδ.

Then the Hecke operator Tδ associated to the double coset Γv+LδΓv′+L′ satisfies

TδEk,v+L = Ek,v′+L′ .

Proof. In that case Assumption 14.1 holds with µp,1 ⩽ 1 for all p; hence we
are in the second case of Theorem 14.11 with S = ∅. □

Proposition 14.13. Consider any arithmetic subgroups Γ, Γ′ < GLr(F ), any
element δ ∈ GLr(F ), and any scalar a ∈ F ×. Then the Hecke operators Tδ and Ta−1δ
associated to the double cosets ΓδΓ′ and Γa−1δΓ′ satisfy

Ta−1δ = ak ⋅ Tδ.

Proof. As γ runs through a set of representatives of Γ/ΓδΓ′, the element
a−1γ runs through a set of representatives of Γ/Γa−1δΓ′. Since f ∣k(a

−1γ) = f ∣k(a
−1 ⋅

Idr)∣kγ = a
k ⋅ f ∣kγ by (1.6) and (1.7), the formula follows from the definition of

Hecke operators 12.11. □

Remark 14.14. Using Proposition 14.13, one can express any Hecke operator
in terms of another Hecke operator that is associated to a matrix with coefficients
in A. If one prefers, one can also require that the inverse matrix has coefficients
in A.

Remark 14.15. Combining Proposition 14.13 with Theorem 14.11 or Corollary
14.12, one obtains an explicit formula for Ta−1δEk,v+L as well. In the special case
v′ + L′ = v + L one obtains many Hecke operators for which Ev+L is an eigenform
with eigenvalue 1 or ak.
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Remark 14.16. In the case r = 2 Theorem 14.11 was proved by Gekeler [Ge86,
VIII.1]. For instance, for L = L′ = A2, the Hecke operator in [Ge86] associated to a
prime element π ∈ A is Tδ for the matrix δ = ( 1 0

0 π−1
) and satisfies TδEk,L = π

k ⋅Ek,L.

15. Coefficient forms

As before we fix a finitely generated projective A-submodule L ⊂ F r of rank r.
We will show that the coefficients of the exponential function eLω and of the as-
sociated Drinfeld A-module are modular forms for the group ΓL; these are the
coefficient forms in the title. We will also exhibit them as polynomials in Eisen-
stein series. The coefficients of eLω have been studied in a special case, for instance
in [Ge86, II.2] and [Ge11].

For every k ⩾ 0 we write ek,L(ω) ∶= eLω,qk , so that eLω(z) = ∑
∞
k=0 ek,L(ω)z

qk

with e0,L = 1. Then by [BR09, (9)] we have

(15.1) ek,L = Eqk−1,L +
k−1
∑
j=1

ej,L ⋅E
qj

qk−j−1,L.

By direct calculation [Ba14, Lemma 3.4.13] this is equivalent to the more suggestive

fact that z −∑i⩾1Eqi−1,L(ω)z
qi is the compositional inverse of eLω, in other words,

that for all ω ∈ Ωr and z ∈ C we have

(15.2) eLω(z −∑
i⩾1
Eqi−1,L(ω)z

qi) = z.

By induction on k the recursion formula (15.1) implies that ek,L is a universal
polynomial with coefficients in Fp in the Eisenstein series Eqi−1,L for all 1 ⩽ i ⩽ k.

Proposition 15.3. For all k ⩾ 0 we have:

(a) ek,L∣qk−1γ = ek,Lγ for all γ ∈ GLr(F ).

(b) ek,L is a modular form of weight qk − 1 for the group ΓL.
(c) The u-expansion of ek,L has constant term ek,L′ with L

′ as in (13.8). In
particular ek,L is not a cusp form.

Proof. For any γ ∈ GLr(F ) the exponential function associated to the lattice
Lγ(ω) ⊂ C∞ satisfies

eLγ(ω) = ej(γ,ω)−1Lγω(z)
2.3
= j(γ,ω)−1eLγω(j(γ,ω)z).

Comparing coefficients of zq
k

in the respective power series expansions yields

eL,qk(γ(ω)) = j(γ,ω)q
k−1eLγ,qk(ω),

proving (a). Part (b) follows from Theorem 13.16 and the formula (15.1) by induc-
tion on k. To prove (c), write ω = (ω1

ω′
) as before. For any fixed ω′ ∈ Ωr−1, if ω1 goes

to infinity, the defining formula (13.4) shows that eLω goes to eL′ω′ coefficientwise.
Thus ek,L goes to ek,L′ , and since the latter is non-zero, it follows that ek,L is not
a cusp form. □

Next let (Ga,Ωr , ψL) be the Drinfeld A-module of rank r over Ωr that was
associated to L in (7.3). Following (7.2) and (2.1) and Corollary 13.7, for any
a ∈ A ∖ {0} and any ω ∈ Ωr we then have

(15.4) ψLω
a (X) = a ⋅X ⋅ ∏

v ∈a−1L∖L
modulo L

(1 −E1,v+L(ω) ⋅X).
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This is an Fq-linear polynomial of degree [a−1L ∶ L] = qr deg(a) in X. We expand it
as

(15.5) ψLω
a (X) = ∑

i⩾0
gLa,i(ω) ⋅X

qi

with holomorphic functions gLa,i on Ωr, which are non-zero for i = 0 and i = r deg(a)

but zero whenever i > r deg(a). The formula (15.4) implies that each gLa,k is a

homogeneous symmetric polynomial of degree qk − 1 in the functions E1,v+L.
For an alternative description recall that ψLω

a can be characterised as the unique
Fq-linear polynomial such that ψLω

a (eLω(z)) = eLω(az). Plugging the expansions
for ψLω

a and eLω into this functional equation and using the fact that eL,1 = 1, we
deduce that for all k ⩾ 0 we have

(15.6) gLa,k +
k−1
∑
i=0

gLa,i ⋅ e
qi

k−i,L = ek,L ⋅ a
qk .

By induction on k this recursion relation implies that gLa,k is a universal polynomial
with coefficients in A in the functions ej,L for all 1 ⩽ j ⩽ k, or again in the Eisenstein
series Eqi−1,L for all 1 ⩽ i ⩽ k.

More generally, consider any non-zero ideal N ⊂ A. Then some positive power
of N is a principal ideal, say Nn = (a) for a ∈ A ∖ {0}, and we choose an element
N∗ ∈ C∞ such that (N∗)n = a. This element is well-defined up to multiplication by
a root of unity, and for any principal ideal (a) the value (a)∗ is equal to a times a

root of unity. We also set deg(N) ∶= dimFq(A/N), so that [N−1L ∶ L] = qr deg(N).

In analogy with the definition (7.2) of ψLω
a we define

(15.7) ψLω
N ∶= N∗ ⋅ eeLω(N−1Lω).

Note that for any principal ideal we have gL(a),i = g
L
a,i times a root of unity; hence

everything that follows about gLN,i applies equally to gLa,i.

For general N , by (2.1) and Corollary 13.7 we have

(15.8) ψLω
N (X) = N∗ ⋅X ⋅ ∏

v ∈N−1L∖L
modulo L

(1 −E1,v+L(ω) ⋅X).

As in (15.5) we define holomorphic functions gLN,i on Ωr by expanding

(15.9) ψLω
N (X) = ∑

i⩾0
gLN,i(ω) ⋅X

qi ,

which are non-zero for i = 0 and i = r deg(N) but zero whenever i > r deg(N). The
formula (15.8) implies that each gLN,k is a homogeneous symmetric polynomial of

degree qk − 1 in the functions E1,v+L.
For an alternative description observe that by the definition of ψLω

N and Propo-
sition 2.3 (a) we have

(15.10) ψLω
N (eLω(z)) = N∗ ⋅ eN−1Lω(z).

Plugging the respective expansions into this functional equation and using the fact
that eL,1 = 1, we deduce that for all k ⩾ 0 we have

(15.11) gLN,k +
k−1
∑
i=0

gLN,i ⋅ e
qi

k−i,L = N∗ ⋅ ek,N−1L.
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By induction on k this recursion relation implies that gLN,k is a polynomial with

coefficients in Fp[N
∗] in the functions ej,L and ej,N−1L for all 1 ⩽ j ⩽ k, or again in

the Eisenstein series Eqi−1,L and Eqi−1,N−1L for all 1 ⩽ i ⩽ k.

Proposition 15.12. For any non-zero ideal N ⊂ A and any k ⩾ 0 we have:

(a) gLN,k ∣qk−1γ = g
Lγ
N,k for all γ ∈ GLr(F ).

(b) gLN,k is a modular form of weight qk − 1 for the group ΓL.

(c) The u-expansion of gLN,k has constant term gL
′

N,k with L′ as in (13.8). In

particular gLN,k is a cusp form whenever k > (r − 1)deg(N), but not for

k = (r − 1)deg(N).

Proof. By construction gLN,i is a homogeneous symmetric polynomial of de-

gree qi − 1 in the functions E1,v+L. Thus the transformation formula in Propo-
sition 13.3 (a) directly implies (a). Part (b) follows from Theorem 13.16 and
the formula (15.11) by induction on k. To prove (c), write ω = (ω1

ω′
) as before.

For any fixed ω′ ∈ Ωr−1, if ω1 goes to infinity, the defining formula (13.4) shows
that eLω and eN−1Lω go to eL′ω′ and eN−1L′ω′ , respectively. The functional equa-
tion ψLω

N (eLω(z)) = N
∗ ⋅ eN−1Lω(z) and its counterpart for L′ω′ in place of Lω

thus imply that ψLω
N goes to ψL′ω′

N . Taking coefficients this shows that the u-

expansion of each gLN,k has constant term gL
′

N,k. Finally, that constant term is zero

for k > (r − 1)deg(N) and non-zero for k = (r − 1)deg(N). □

16. Discriminant forms

Definition 16.1. For any non-zero proper idealN ⫋ A we call ∆L
N ∶= g

L
N,r deg(N)

the discriminant form associated to N . Likewise we set ∆L
a ∶= g

L
a,r deg(a).

Since [N−1L ∶ L] is a power of q, we have (−1)[N
−1L∶L]−1 = 1 in Fq; hence by

(15.8) and (15.9) the above definition means that

(16.2) ∆L
N(ω) = N∗ ⋅ ∏

v ∈N−1L∖L
modulo L

E1,v+L(ω).

Proposition 16.3. (a) ∆L
N(ω) /= 0 for all ω ∈ Ωr.

(b) ∆L
N is a cusp form of weight qr deg(N) − 1 for the group ΓL.

(c) ∆aL
N = a

1−qrdeg(N)

⋅∆L
N for any a ∈ F .

Proof. (a) follows from (16.2) and Corollary 13.7, and (b) is a special case
of Proposition 15.12. Assertion (c) results from applying Proposition 15.12 (a) to
γ = a ⋅ Idr. □

Next recall that for any a ∈ A∖{0} the degree deg(a) is a multiple of the degree

deg(∞) of the residue field at ∞ over Fq. Therefore qr deg(a) − 1 is a multiple of

qr deg(∞) − 1.

Proposition 16.4. There exists a non-zero cusp form ∆L (cf. [Ge86, VI.(5.14)

& 5.15]) of weight qr deg(∞) − 1 for the group ΓL, such that for every a ∈ A∖ {0} we
have

∆L
a = (∆

L)
qrdeg(a)

−1

qrdeg(∞)
−1 ⋅ (some root of unity).

Moreover this ∆L is unique up to multiplication by some root of unity.
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Proof. Since ψL is a Drinfeld module, for all a, b ∈ A∖ {0} we have ψL
ab(X) =

ψL
a (ψ

L
b (X)). Substituting the expansions from (15.5) for ψL

ab and ψL
a and ψL

b and

taking highest coefficients implies that ∆L
ab = ∆L

a ⋅ (∆
L
b )

qrdeg(a)

. As the ring A is
commutative, interchanging a and b yields the same value; hence

∆L
b ⋅ (∆

L
a )

qrdeg(b)

= ∆L
a ⋅ (∆

L
b )

qrdeg(a)

.

By Proposition 16.3 we may divide by ∆L
a∆

L
b , obtaining the equality

(16.5) (∆L
a )

qrdeg(b)−1 = (∆L
b )

qrdeg(a)−1.

To exploit this fact, recall that by the Riemann-Roch theorem, every sufficiently
large multiple of deg(∞) arises as deg(a) for some element a ∈ A∖{0}. In particular
we can find non-constant elements b, c ∈ A such that deg(b) = deg(c)+deg(∞). Then
by Proposition 16.3 the quotient

(16.6) ∆L ∶=∆L
b /(∆

L
c )

qrdeg(∞)

is a well-defined holomorphic function on Ωr. The fact that ∆L
b and ∆L

c are modular

forms of respective weights qr deg(b) − 1 and qr deg(c) − 1 for ΓL implies that ∆L is a
weak modular form of weight

(qr deg(b) − 1) − (qr deg(c) − 1) ⋅ qr deg(∞) = qr deg(∞) − 1

for ΓL. Also, by direct calculation the formula (16.5) in the case a = c implies that

(∆L)q
rdeg(b)−1 = (∆L

b )
qrdeg(∞)−1.

Combining this with the formula (16.5) for arbitrary a we deduce that

(∆L
a )
(qrdeg(∞)−1)(qrdeg(b)−1) = (∆L)(q

rdeg(a)−1)(qrdeg(b)−1).

Thus ∆L
a /(∆

L)
qrdeg(a)

−1

qrdeg(∞)
−1 is a holomorphic function on Ωr whose (qr deg(∞)−1)(qr deg(b)−

1)-th power is identically 1. As the rigid analytic space Ωr is connected, this func-
tion is therefore constant and a root of unity. The last formula also shows that a
positive power of ∆L is holomorphic at every boundary component; hence the same
holds for ∆L. Thus ∆L has all the desired properties. Finally, the uniqueness is
clear from the stated condition. □

Proposition 16.7. For every non-zero proper ideal N ⫋ A we have

∆N−1L ⋅ (∆L
N)

qrdeg(∞)−1 = (∆L)q
rdeg(N)−1 ⋅ (some constant).

Proof. The formulas (15.7) and (15.10) imply that ψLω
N = N∗ ⋅ hLN , where hLN

is an isogeny of Drinfeld modules (Ga,Ωr , ψL) → (Ga,Ωr , ψN−1L). For any a ∈ A we

then have ψN−1L
a ○ hLN = h

L
N ○ ψ

L
a . Taking highest coefficients implies that

∆N−1L
a ⋅ (∆L

N)
qrdeg(a)

= ∆L
N ⋅ (∆

L
a )

qrdeg(N)

⋅ (some constant).

Dividing by ∆L
N and substituting the formulas for ∆N−1L

a and ∆L
a from Proposition

16.4 we obtain

(∆N−1L)
qrdeg(a)

−1

qrdeg(∞)
−1 ⋅ (∆L

N)
qrdeg(a)−1 = (∆L)

qrdeg(N)⋅ q
rdeg(a)

−1

qrdeg(∞)
−1 ⋅ (some constant).

Varying a or extracting roots as in Proposition 16.4 yields the desired formula. □
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Remark 16.8. If the class group Cl(A) of A is trivial, the above relations show
that ∆L is the unique fundamental discriminant form for ΓL.

In general, for any non-zero proper ideal M ⫋ A we have ΓM−1L = ΓL. The

discriminant forms ∆M−1L
a and ∆M−1L and ∆M−1L

N are therefore cusp forms for the
same group ΓL. Let H denote the multiplicative group generated by all of them,
modulo constants, which thus consists of nowhere vanishing holomorphic functions
on Ωr. Then the formulas in Propositions 16.3 (c) and 16.4 and 16.7 imply that as
N runs through a set of representatives of the ideal class group Cl(A), the functions

∆N−1L generate a subgroup of finite index, say H′.
On the other hand each discriminant form corresponds to a section of a certain

invertible sheaf on the Satake compactification of ΓL/Ω. As such, its divisor is
a formal Z-linear combination of the irreducible components of codimension 1 of
the boundary of the Satake compactification. These irreducible components are in
bijection with Cl(A), so the group D of divisors supported on the boundary of the
compactification is a free abelian group of rank Cl(A). Taking divisors maps the
above group H injectively into D.

One can expect that the image of H has finite index in D. In fact, precisely
such a statement is proved for an arbitrary congruence subgroup in the case r = 2
by Gekeler [Ge86, VII Thm. 5.11] and [Ge97, Thm. 4.1], and by Kapranov [Ka87,
top of page 546] for arbitrary r in the case A = Fq[t].

Note that, since H′ is generated by ∣Cl(A)∣ elements and has finite index in H,
the expectation is equivalent to saying that H is a free abelian group of rank
∣Cl(A)∣. This in turn means that, up to taking roots, the formulas in Propositions
16.3 (c) and 16.4 and 16.7 generate all multiplicative relations up to constant factors
between the discriminant forms.

Example 16.9. Suppose that SpecA is a rational curve and ∞ is a point of
degree 2 over Fq. Let P ⊂ A be the prime ideal associated to a point of degree
1 over Fq. Then the ideal class group of A has order 2 and is generated by the
class of P . Write P 2 = (a) for an element a ∈ A of degree 2. Then by Proposition
16.4 we have ∆L

a ∼ ∆L, where “∼” denotes equality up to a constant. Also, in

the notation of the proof of Proposition 16.7 we have a ⋅ hP
−1L

P ○ hLP = ψ
L
a . Taking

highest coefficients implies that ∆P−1L
P ⋅ (∆L

P )
qr ∼ ∆L

a ∼ ∆L. Together with the

same relation for P −1L in place of L and with the fact that ∆P−2L
P = ∆a−1L

P ∼ ∆L
P

by Proposition 16.3 (c), we conclude that

∆P−1L
P ⋅ (∆L

P )
qr ∼ ∆L and

∆L
P ⋅ (∆

P−1L
P )q

r

∼ ∆P−1L.

In this case we can therefore view ∆L
P and ∆P−1L

P as the two fundamental discrimi-
nant forms for ΓP , and by Remark 16.8 they should be multiplicatively independent.

Remark 16.10. In the case A = Fq[t] one can take ∆L = ∆L
t in Proposition

16.4. In [Ba16] this function is shown to satisfy a product formula which generalises
the Jacobi product formula in the rank 2 case of Gekeler [Ge85]. Another product
formula, involving r− 1 separate parameters with constant coefficients, rather than
u-expansions treated in the present monograph, was obtained by Hamahata [Ha02].

Remark 16.11. For any v ∈ F r ∖ L, the Eisenstein series E1,v+L is a non-zero
modular form of weight 1 for the group Γv+L by Corollary 13.7 and Theorem 13.16.
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Using Proposition 16.4 it follows that for any integer k ⩾ 0, the product ∆L ⋅Ek
1,v+L

is a non-zero cusp form of weight qr deg(∞) − 1 + k for Γv+L. In this way we can
explicitly produce non-zero cusp forms for Γv+L of any sufficiently large weight,
giving more substance to the abstract result of Proposition 11.2.

To finish this section we construct Drinfeld modular forms of non-zero type by
extracting roots from discriminant forms. This rests on the observation that for
every α ∈ F×q , applying Proposition 13.3 (a) to γ = α ⋅ Idr implies that

(16.12) E1,αv+L = E1,v+L ∣1 α ⋅ Idr
(1.7)
= α−1 ⋅E1,v+L.

Plugging this into (16.2), we can write each discriminant form as a (q−1)-st power
of another holomorphic function on Ωr.

Specifically, choose a set of representatives RL
N of N−1L ∖ L modulo addition

by L and multiplication by F×q . Choose an element λN ∈ C∞ satisfying λq−1N = −N∗.
Consider the function

(16.13) δLN(ω) ∶= λN ⋅ ∏
v∈RL

N

E1,v+L(ω).

Proposition 16.14. (a) We have (δLN)
q−1 = ∆L

N . In particular, another
choice of representatives or of λN changes δLN only by a factor in F×q .

(b) The function δLN is a cusp form of weight qrdeg(N)−1
q−1 and type deg(N) for

the group ΓL.

Proof. Abbreviate k ∶= ∣RL
N ∣ =

qrdeg(N)−1
q−1 and note that (∏α∈F×q α)

k = (−1)k =

−1. Using this, the definitions of δNL and ∆N
L and (16.12) imply that

(δLN)
q−1 = −N∗ ⋅ ∏

v∈RL
N

Eq−1
1,v+L = N∗ ⋅ ∏

v∈RL
N

∏
α∈F×q

α−1E1,v+L

= N∗ ⋅ ∏
v∈RL

N

∏
α∈F×q

E1,αv+L = ∆L
N(ω),

proving (a). The proof of (b) rests on properties of the Moore determinant, as-
sembled in [Go96, Chapter 1.3]: For any elements x1, . . . , xn of an Fq-algebra the
Moore determinant is defined as

(16.15) M(x1, x2, . . . , xn) ∶=

RRRRRRRRRRRRRRRRRRR

x1 ⋯ xn
xq1 xqn
⋮ ⋮

xq
n−1

1 ⋯ xq
n−1

n

RRRRRRRRRRRRRRRRRRR

.

Its most important property is [Go96, Cor. 1.3.7]

(16.16) M(x1, x2, . . . , xn) = ∏
(α1,...,αn)

(
n

∑
i=1
αixi),

where the product extends over all tuples in Fn
q ∖ {(0, . . . ,0)} whose first non-zero

entry is 1. Also, for any matrix B = (βij)i,j=1,...,n with coefficients in Fq we have
βq
ij = βij ; hence the multiplicativity of the determinant implies that

(16.17) M(
n

∑
i=1
βi1xi, . . . ,

n

∑
i=1
βinxi) = det(B) ⋅M(x1, x2, . . . , xn).
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To apply this, choose elements v1, . . . , vn ∈ N
−1L∖L whose residue classes form

a basis of the Fq-vector space N
−1L/L. Then the set RL

N of all elements of the form

∑
n
i=1 αivi, for tuples (α1, . . . , αn) ∈ Fn

q ∖ {(0, . . . ,0)} whose first non-zero entry is 1,

is a set of representatives of N−1L ∖ L modulo addition by L and multiplication
by F×q . The formula (16.16) and the additivity of the exponential function then
imply that

M(eLω(v1ω), . . . , eLω(vnω)) = ∏
(α1,...,αn)

(
n

∑
i=1
αieLω(viω)) = ∏

v∈RL
N

eLω(vω).

Take an arbitrary element γ ∈ ΓL. Then the same calculation with the basis
v1γ, . . . , vnγ yields

M(eLω(v1γω), . . . , eLω(vnγω)) = ∏
v∈RL

N

eLω(vγω).

For each j choose βij ∈ Fq such that vjγ ≡ ∑
n
i=1 βijvi modulo L. Then by the Fq-

linearity of the exponential function we have eLω(vjγω) = ∑
n
i=1 βijeLω(viγω); hence

with B ∶= (βij)i,j=1,...,n the formula (16.17) implies that

M(eLω(v1γω), . . . , eLω(vnγω)) = det(B) ⋅M(eLω(v1ω), . . . , eLω(vnω)).

Combining these computations we deduce that

∏
v∈RL

N

eLω(vγω) = det(B) ⋅ ∏
v∈RL

N

eLω(vω).

Using Proposition 13.3 (a) and Corollary 13.7 we find that

(δLN ∣kγ)(ω) = λN ⋅ ∏
v∈RL

N

(E1,v+L∣1γ)(ω) = λN ⋅ ∏
v∈RL

N

E1,vγ+L(ω)

= λN ⋅ det(B)
−1 ⋅ ∏

v∈RL
N

E1,v+L(ω) = det(B)−1 ⋅ δLN(ω).

To determine det(B) note that since L is a projective module of rank r over A, the
module N−1L/L is a free module of rank r over A/N . Without loss of generality we
may therefore assume that the Fq-basis v1, . . . , vn is formed by multiplying an A/N -
basis of N−1L/L with an Fq-basis of A/N . For a suitable order of this basis, the
matrix A is then simply a block diagonal matrix with m ∶= dimFq(A/N) = deg(N)
copies of γ on the diagonal. Therefore det(B) = det(γ)m. In view of (1.5) the above
calculation thus implies that

δLN ∣k,mγ = det(γ)m ⋅ δLN ∣kγ = δLN .

In other words δLN is a weak modular form of weight k and type m for the group ΓL.
But by Theorem 13.16 and construction it is already a modular form for the con-
gruence subgroup ΓL(N). It is therefore a modular form for ΓL. Finally, since ∆

L
N

is a cusp form, assertion (a) implies that δLN is a cusp form as well. This finishes
the proof of (b). □

Remark 16.18. In the case A = Fq[t] and L = A
r, the cusp form δLt was first

constructed by Gekeler in the 1980’s, and is called h(ω) in the literature. The r = 2
case appears in [Ge88a] while the r > 2 case was unpublished until [Ge17]. In
the meantime, it made an appearance as a weak modular form in [Ge89] and was
shown to be holomorphic at infinity by Perkins [Pe14]. In [BB17, Thm. 5.3] it is
shown to satisfy a product formula derived from the product formula of ∆L

t .
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17. The special case A = Fq[t]

Throughout this section we set A ∶= Fq[t] and L ∶= Ar. Then ΓL = GLr(A),
and Γ(t) ∶= ΓL((t)) is the subgroup of matrices in GLr(A) which are congruent to
the identity matrix modulo (t). Recall from (6.11) that the graded ring of modular
forms of all weights for an arithmetic group Γ is defined as

M∗(Γ) ∶= ⊕
k⩾0
Mk(Γ).

For Γ = Γ(t) this ring can be described very explicitly, and for a subgroup containing
Γ(t) a description can be deduced by taking invariants. In the case r = 2 the ring
was determined by Cornelissen [Co96] for Γ(t), by Goss [Go80a] for GL2(A), and
by Gekeler [Ge88a] for SL2(A).

Theorem 17.1. The ring M∗(Γ(t)) is generated over C∞ by the Eisenstein
series E1,v+L of weight 1 for all v ∈ t−1L ∖L, and all polynomial equations between
them are induced by the relations

E1,αv+L = α−1 ⋅E1,v+L for all v ∈ t−1L ∖L and α ∈ F×q , and

E1,v+L ⋅E1,v′+L = E1,v+v′+L ⋅ (E1,v+L +E1,v′+L) for all v, v′ ∈ t−1L ∖L with v + v′ /∈ L.

Proof. Let K(t) < GLr(Â) denote the subgroup of matrices that are con-
gruent to the identity matrix modulo (t). By construction it is open compact
and fine in the sense of [Pi13, Def. 1.4]. Let Mr

A,K(t) be the associated fine mod-
uli space of Drinfeld A-modules of rank r with a full level (t) structure. Then
GLr(Af

F ) = GLr(F ) ⋅ K(t), and so (8.4) with g = 1 provides an isomorphism

π1 ∶ Γ(t)/Ω
r ∼
Ð→ Mr

A,K(t)(C∞). The Satake compactification Mr
A,K(t) was de-

scribed explicitly in [PS14] and [Pi13], as follows.
Abbreviate V̄ ∶= t−1L/L, and let AV̄ denote the graded polynomial ring over

Fq in independent variables Yv̄ of degree 1 for all v̄ ∈ V̄ ∖ {0}. Let aV̄ ⊂ AV̄ be the
homogeneous ideal that is generated by the elements of the form

Yαv̄ − α
−1Yv̄ for all v̄ ∈ V̄ ∖ {0} and α ∈ F×q , and

Yv̄Yv̄′ − Yv̄+v̄′ ⋅ (Yv̄ + Yv̄′) for all v̄, v̄′ ∈ V̄ ∖ {0} with v̄ + v̄′ /= 0.

Let RV̄ ∶= AV̄ /aV̄ denote the graded factor ring. Then by [Pi13, Thm. 7.4] there
is a natural isomorphism

(17.2) Mr
A,K(t) ≅ Proj(RV̄ ⊗Fq F ),

which also identifies the invertible sheaf L from Section 10 with the ample sheaf
O(1) on Proj(RV̄ ⊗Fq F ). Combined with Theorem 10.9 we thus obtain an isomor-
phism of graded C∞-algebras

(17.3) M∗(Γ(t)) ≅ RV̄ ⊗Fq C∞.

By the proof of [Pi13, Thm. 7.4], the isomorphism (17.2) also realises the universal
generalised Drinfeld A-module over Mr

A,K(t) as the pair (Ē, φ̄) consisting of the
line bundle whose sheaf of sections is the invertible sheaf dual to O(1) and the
generalised Drinfeld A-module with

φ̄t(X) = t ⋅X ⋅ ∏
v̄∈V̄ ∖{0}

(1 − Ȳv̄ ⋅X),
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where Ȳv̄ ∈ RV denotes the residue class of Yv̄. On the other hand from (8.9) we
have a natural isomorphism

π∗g(Ē, φ̄) ≅ (Ga,Ωr , ψL),

and by equation (15.4) we have

ψLω
t (X) = t ⋅X ⋅ ∏

v ∈ t−1L∖L
modulo L

(1 −E1,v+L(ω) ⋅X).

Furthermore, the respective level structures send a non-zero residue class v̄ = v +L
to the element Ȳ −1v̄ in one case and to the function E1,v+L(ω)

−1 = eLω(vω) in the
other. Under the isomorphism (17.3) the element Ȳv̄ therefore corresponds precisely
to the Eisenstein series E1,v+L. By the construction of RV̄ these Eisenstein series
therefore generateM∗(Γ(t)) and satisfy precisely the stated algebraic relations. □

Corollary 17.4. The quotient field of M∗(Γ(t)) is a rational function field
over C∞ that is generated by the algebraically independent elements E1,vi+L as vi+L
runs through any Fq-basis of t−1L/L.

Proof. By [PS14] the ring RV is an integral domain and its quotient field is
a rational function field over Fq that is generated by the algebraically independent
elements Ȳv̄i for any basis v̄1, . . . , v̄r of V̄ . The corollary thus follows from the
isomorphism (17.3). □

Theorem 17.5. (a) The ringM∗(GLr(A)) is generated over C∞ by the
coefficient forms gLt,i of weight q

i−1 for all 1 ⩽ i ⩽ r, which are algebraically
independent over C∞. The same statement holds with the coefficient forms
ei,L or the Eisenstein series Eqi−1,L in place of gLt,i.

(b) The ring M∗(SLr(A)) is generated over C∞ by the coefficient forms gLt,i
of weight qi − 1 for all 1 ⩽ i ⩽ r − 1 and the determinant form δLt of weight
qr−1
q−1 , which are algebraically independent over C∞. The same statement

holds with the coefficient forms ei,L or the Eisenstein series Eqi−1,L in

place of gLt,i.

(c) Let Γ1(t) denote the subgroup of matrices in GLr(A) which are congruent
modulo (t) to an upper triangular matrix with diagonal entries 1. The
ringM∗(Γ1(t)) is generated over C∞ by the modular forms

∑
αi+1,...,αr∈Fq

E1,t−1(0,...,0,1,αi+1,...,αr)+L

of weight 1 for all 1 ⩽ i ⩽ r, which are algebraically independent over C∞.

Proof. For any subgroup Γ < GLr(A) containing Γ(t), the formula (6.7) shows
that M∗(Γ) is the subring of Γ-invariants in M∗(Γ(t)) for the natural action by
f ↦ f ∣kγ on each Mk(Γ(t)). By Proposition 13.3 (a) the action is given on the
generators of M∗(Γ(t)) by E1,v+L∣1γ = E1,vγ+L. This action factors through the
factor group Γ/Γ(t), which is GLr(Fq) in the case (a), respectively SLr(Fq) in
the case (b), respectively the subgroup of upper triangular matrices with diagonal
entries 1 in the case (c). Using a theorem of Dickson, the respective ring of invariants
was shown in [PS14, Theorem 3.1] to have the set of generators that is first named
in each case. The recursion relations (15.6) and (15.1) imply that by induction on i,
each generator gLa,i can be replaced by ei,L or again by Eqi−1,L.



70 EXAMPLES

Since we are taking invariants under a finite group, the ring M∗(Γ(t)) is an
integral extension ofM∗(Γ(t))

Γ. The respective quotient fields therefore have the
same transcendence degree over C∞. For the former this transcendence degree is r
by Corollary 17.4. In each case the r given generators of the subring M∗(Γ(t))

Γ

must therefore be algebraically independent over C∞. □

Theorem 17.6. For any integer k we have

Mk(SLr(A)) = ⊕
0⩽m<q−1

Mk,m(GLr(A)).

In addition, for any integer 0 ⩽m < q − 1 we have

Mk,m(GLr(A)) = (δ
L
t )

m ⋅M
k−m qr−1

q−1
(GLr(A)).

In particular, every modular form for GLr(A) of type /≡ 0 modulo (q − 1) is a cusp
form.

Proof. The determinant induces an isomorphism GLr(Fq)/SLr(Fq)
∼
Ð→ F×q ;

hence the action f ↦ f ∣kγ of GLr(Fq) on Mk(SLr(A)) factors through an action
of F×q . As any linear action of F×q on an Fq-vector space is diagonalisable, it follows
thatMk(SLr(A)) is a direct sum of eigenspaces. By Definition 1.9 and (1.5) these
eigenspaces are just the spacesMk,m(GLr(A)), proving the first equality.

The descriptions from Theorem 17.5 (a) and (b) imply that M∗(SLr(A)) is
a free module with basis 1, δLt , . . . , (δ

L
t )

q−2 over the subring M∗(GLr(A)). Since

(δLt )
m is a modular form of weight m qr−1

q−1 , this results in the second assertion. The

last one now follows from the fact that δLt is a cusp form. □

Remark 17.7. The last statement of Theorem 17.6 was already established
independently in Corollary 6.4 (b) using the u-expansion. Combined with Propo-

sition 17.8 below and the fact that δLt is a modular form of weight qr−1
q−1 and type 1

it directly implies the second statement of Theorem 17.6 by induction on m.

Proposition 17.8. The Satake compactificationMr
A,GLr(A) has only one bound-

ary component of codimension 1, and the cusp form δLt has vanishing order 1 there.1

Proof. The first statement can be deduced from the fact from Proposition
6.3 (a) that GLr(Af

F ) = GLr(A) ⋅P (F ) with the parabolic subgroup P < GLr from
(5.6).

For the second statement note first that under the isomorphism ι of (4.3) the
subgroups Γ(t) ∩U(F ) < GLr(A) ∩ U(F ) correspond to the subgroups (At)r−1 ⊂
Ar−1 of F r−1, which have index qr−1 in each other. Now consider any element v ∈

1Thus ∆L
t = (δLt )q−1 has vanishing order q − 1 here! This is at odds with the intuition that

∆L
t should have algebraic order of vanishing 1 at the cusp.

We point out that the identification of analytic modular forms with sections of a line bundle
(Theorem 10.9) is only established when the moduli scheme is fine, which Mr

A,GLr(A) is not.

Indeed, since GLr(A)∩U(F ) = SLr(A)∩U(F ), the u-parameter does not even distinguish between

GLr(A)/Ωr and SLr(A)/Ωr.

We can rescue our intuition as follows. By Corollary 5.10, the coefficient forms gLt,k (and thus,

by Theorem 17.5, all modular forms for GLr(A)) have u-expansions in which the only non-zero
terms have exponent divisible by q − 1. Therefore, these forms have expansions in the parameter

u′ = uq−1, and with respect to this parameter, ∆L
t has order of vanishing 1 at the cusp, as expected.

We thank Mihran Papikian for raising this issue.
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t−1L∖L. By the proof of Proposition 13.15 the subgroup Γv+L ∩U(F ) corresponds
to the subgroup (At)r−1 if v /∈ L+ ({0}×F r−1). By Proposition 13.15 we thus have

ordΓ(t)∩U(F )(E1,v+L) = ordΓv+L∩U(F )(E1,v+L) = {
0 if v ∈ L + ({0} × F r−1),
1 otherwise.

Taking the product over a set of representatives as in (16.13), where the second

case occurs qr−qr−1
q−1 = qr−1 times, we deduce that

ordΓ(t)∩U(F )(δ
L
t ) = qr−1.

Since [GLr(A)∩U(F ) ∶ Γ(t)∩U(F )] = q
r−1, it follows that ordGLr(A)∩U(F )(δ

L
t ) = 1,

as desired. □

Corollary 17.9. The cusp forms of all weights and type 0 for GLr(A) form
the principal ideal of M∗(GLr(A)) that is generated by ∆L

t . In other words, for
every integer k we have

Sk(GLr(A)) = ∆L
t ⋅Mk−qr+1(GLr(A)).

Proof. The cusp form δLt is non-zero everywhere by Propositions 16.3 (a)
and 16.14 (a). Thus for every cusp form f ∈ Sk,0(Γ), the quotient f/δLt is again
a weak modular form, and by Proposition 17.8 it is holomorphic at infinity; hence
f/δLt ∈ Mk− qr−1

q−1 ,−1(GLr(A)). By Theorem 17.6 with m = q − 2 this in turn implies

that f ∈ (δLt )
q−1Mk−qr+1,0(GLr(A)), as desired. □

Corollary 17.10. The space of cusp forms Sk(GLr(A)) is zero for k < qr − 1
and one-dimensional with basis ∆L

t for k = qr −1. In particular ∆L
t is an eigenform

for the Hecke operator associated to any double coset GLr(A)δGLr(A) ⊂ GLr(F ).

Proof. By Theorem 17.5 (a) we have Mk(GLr(A)) = 0 for k < 0 and = C∞
for k = 1. By Corollary 17.9 this implies the first statement, which in turn implies
the second. □

Theorem 17.11. We have the following dimension formulas for all k ⩾ 0 and
m:

(a) dimC∞Mk(Γ(t)) = ∑
i1,...,ir−1∈{0,1}

q∑ν ν⋅iν ⋅ (
k

∑ν iν
).

(b) Denote by PS(k) the number of partitions of k with parts in S = {q−1, q2−
1, . . . , qr − 1}. Then

dimC∞Mk(GLr(A)) = PS(k) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if (q − 1) ∤ k,

1

∏
r
i=2(q

i − 1)
⋅
kr−1

(r − 1)!
+O(kr−2) if (q − 1)∣k.

(c) dimC∞Mk,m(GLr(A)) =

⎧⎪⎪
⎨
⎪⎪⎩

PS(k −m
qr−1
q−1 ) if k ⩾m qr−1

q−1 ,

0 otherwise.

(d) dimC∞Mk(Γ1(t)) = (
k+r−1
r−1 ).

Proof. Assertion (a) follows from Theorem 17.1 together with [PS14, Thm. 1.10].
The first equality in (b) results from Theorem 17.5 (a). Clearly PS(k) is the number

of partitions of k
q−1 with parts in { q−1

q−1 ,
q2−1
q−1 , . . . ,

qr−1
q−1 }, which by [Na00, Thm. 15.2]

has the asymptotic behaviour given in (b). Assertion (c) is a direct consequence



72 EXAMPLES

of Theorem 17.6. Finally, by Theorem 17.5 (c) the dimension in (d) is just the
dimension of the space of homogeneous polynomials of degree k in the polynomial
ring C∞[X1, . . . ,Xr], which is well-known to be (k+r−1

r−1 ). □

Remark 17.12. Taking invariants one may obtain similar dimension formulas
for arbitrary arithmetic subgroups Γ containing Γ(t). In particular [Pi13, Thm. 8.4]
gives an explicit formula when Γ(t) < Γ < Γ1(t). It seems an interesting problem to
find a dimension formula in general.

Remark 17.13. Combining Theorem 17.1 and [PS14, Thm. 1.7] shows that
M∗(Γ(t)) is a Cohen-Macaulay normal integral domain. By taking invariants, the
argument in [PS14, §2] shows the same forM∗(Γ) whenever Γ(t) < Γ < Γ1(t). For
Γ = GLr(A) and SLr(A) the same follows from the explicit description in Theorem
17.5. One may ask: Is this only a rare event for small level, or is it a general
phenomenon?

Remark 17.14. In the case of classical modular forms and also in the case of
rank 2 Drinfeld modular forms, there are two approaches to dimension formulas.
The one is algebro-geometric, similar to the approach in 17.11. The other uses
valence formulas and vector space homomorphisms fromMk(Γ) → C∞, mapping a
modular form f to the constant coefficient f0 in its u-expansion. One may wonder
whether Gekeler’s recent valence formula [Ge18] could be used in the same way.
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