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Abstract. A Ducci sequence is a sequence of integer n-tuples
obtained by iterating the map

D : (a1, a2, . . . , an) 7→ (|a1 − a2|, |a2 − a3|, . . . , |an − a1|) .
Such a sequence is eventually periodic and we denote by P (n) the
maximal period of such sequences for given odd n. We prove a
lower bound for P (n) by counting certain partitions. We then
estimate the size of these partitions via the multiplicative order of
2 modulo n.

1. Introduction

Let n be a positive integer. A Ducci sequence is a sequence of integer
n-tuples obtained by iterating the map

D : Zn → Zn

defined as follows:

D : (a1, a2, . . . , an) 7→ (|a1 − a2|, |a2 − a3|, . . . , |an − a1|).
There is a long literature on Ducci sequences, see for example [BLM07,
BM08, Bre19, CM37, CST05, Cla18, Ehr90, Lud81, MST06, SB18] and
the references therein.

Ducci sequences are eventually periodic, and for each n the largest
period is denoted by P (n); it is the period of the sequence starting
with (0, 0, . . . , 0, 1). The sequence P (1), P (2), . . . is entry A038553 in
the Online Encyclopedia of Integer Sequences [OEIS]. Since P (2k) = 1
and P (2km) = 2kP (m) if m is not a power of 2, by [Ehr90, Theorem 4],
we restrict our attention to odd n.

The following upper bounds on P (n) are known. Denote by t =
ord(Z/nZ)∗(2) the multiplicative order of 2 modulo n. If there exists an
integer M for which 2M ≡ −1 mod n, then we say n is ‘with −1’ . The
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first of the following upper bounds is proved in [Lud81], the second
in [Ehr90] and the third in [Bre19].

It is convenient to introduce the following quantities

(1.1) B1(n) = 2t − 1 and B2(n) = n(2t/2 − 1).

Theorem A. Let n be an odd integer, and t the multiplicative order
of 2 modulo n. Then,

(1) P (n) divides B1(n).
(2) Suppose n is with −1, then P (n) divides B2(n).
(3) Suppose that n = pk with p ≡ 5 mod 8 prime and 2 is a prim-

itive root modulo pk. If the equation x2 − py2 = −4 has no
solutions in odd integers x, y ∈ Z, then P (n) divides 1

3
B2(n).

As for lower bounds, the first of the following results is found again
in [Ehr90], and the remaining ones in [GS95].

Theorem B. Let n be an odd integer. Then

(1) n divides P (n).
(2) P (n) = n if and only if n = 2r − 1 for some positive integer r.
(3) If n is with −1, then P (n) > n(n− 2).
(4) If n is with −1, then P (n) = n(n− 2) if and only if n = 2r + 1

for some positive integer r.

The goal of the present paper is to prove new asymptotic lower
bounds for P (n) in terms of t and n. Our starting point is the fact
from [BLM07] that P (n) is the lowest common multiple of multiplica-
tive orders of elements ζ + 1, where ζ 6= 1 ranges over the nth roots of
unity in the finite field F2t .

Since our results require that at least t >
√

2n holds, in Section 5
we also give a short survey of known results about the size of t.

2. Multiplicative orders and partitions

Let 1 6 a < n be an integer prime to n.
Consider the set of representatives, chosen in the interval [1, n], of

the coset a〈2〉 ⊆ (Z/nZ)∗ of the multiplicative group 〈2〉 generated by
2 in the residues ring modulo n. That is,

Sa,n :=
{
j ∈ Z>0 : 1 6 j 6 n, gcd(j, n) = 1,

∃ej ∈ Z>0, j ≡ a2ej mod n
}

Its cardinality is #Sa,n = t.
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Next, we consider the set of partitions of numbers6 t−1 into distinct
parts from Sa,n:

(2.1) Pa,n :=

{
(uj)j∈Sa,n ∈ {0, 1}t |

∑
j∈Sa,n

ujj 6 t− 1

}
.

Our main result is

Theorem 2.1. Suppose n is odd and a is relatively prime to n. Then
P (n) > #Pa,n.

Proof. It follows from [BLM07, Theorem 3.9] that P (n) is the lowest
common multiple of the multiplicative orders of ζ + 1, where ζ ranges
over all nth roots of unity 1 6= ζ ∈ F2t .

Let ζ ∈ F2t be a primitive nth root of unity. The idea is to show
that every partition in Pa,n leads to a distinct power of ζ + 1. For this
we follow the strategy of [ASV10].

Let u = (uj)j∈Sa,n ∈ Pa,n, and set

Qu =
∑
j∈Sa,n

uj2
ej ,

where j ≡ a2ej mod n. We also choose an integer b for which ab ≡
1 mod n. Now

(ζ + 1)Qu =
∏
j∈Sa,n

(ζ + 1)uj2
ej

=
∏
j∈Sa,n

(ζ2
ej

+ 1)uj

=
∏
j∈Sa,n

(ζbj + 1)uj =
∏
j∈Sa,n

(ϑj + 1)uj ,

where ϑ = ζb ∈ F2t is another primitive nth root of unity.
Let

v = (vj)j∈Sa,n ∈ Pa,n
be another partition distinct from u, we must show that v gives rise to
a distinct power of ζ + 1. Suppose (ζ + 1)Qu = (ζ + 1)Qv , so∏

j∈Sa,n

(ϑj + 1)uj =
∏
j∈Sa,n

(ϑj + 1)vj .

Denote by f(X) ∈ F2[X] the minimal polynomial of ϑ; it has degree
t. Then f(X) must divide U(X)− V (X), where

U(X) =
∏
j∈Sa,n

(Xj + 1)uj and V (X) =
∏
j∈Sa,n

(Xj + 1)vj .
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Since these polynomials have degree 6 t − 1 < deg f it follows that
U(X) = V (X). After removing common factors from both polynomials
(corresponding to uj = vj), we obtain the identity

(2.2)
∏
h∈H

(Xh + 1)uh =
∏
k∈K

(Xk + 1)vk ,

where H and K are disjoint subsets of Sa,n. But now we find that the
term of smallest positive degree is xe where e is the smallest element
of H∪K, but this only appears on one side of the identity (2.2). This
contradiction concludes the proof. �

Remark 2.2. Some parts of the proof of Theorem 2.1 can be short-
ened by appealing to [Pop14, Lemma 1], however for completeness
and since [Pop14] may not be easily accessible, we present a full self-
contained proof.

3. Counting partitions

Now we construct lower bounds for the cardinality of Pa,n for n of
prescribed arithmetic structure. As we have mentioned, these bounds
are only useful if t is not too small, specifically t >

√
2n.

Suppose first that t = ϕ(n), that is, 2 is a primitive root modulo n.
In this case, n = pk must be a power of an odd prime p.

When n = p, we find that Pa,n contains the set of partitions of n− 2
into distinct parts, and the standard asymptotic for that gives (see e.g.
[And76, Theorem 6.4])

Corollary 3.1. Suppose n = p is an odd prime and 2 is a primitive
root modulo p. Then, as n→∞,

P (n) > exp

[(
π√
3

+ o(1)

)√
n

]
.

The case of Corollary 3.1 is already contained in [Pop12, Theorem 1];
in particular, the completely explicit lower bound (for 2 a primitive root
modulo n = p)

P (n) >
(
80(n− 2)

)−√2
exp

(
π

√
n− 2

3

)
follows from [Pop12, Corollary 4], see also [Pop14] for some related
results.

Next, suppose that n = pk and 2 is a primitive root modulo n.
For this it suffices that 2 is a primitive root modulo p and p is not a
Wieferich prime, that is, 2p−1 6≡ 1 mod p2.
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We have t = pk−1(p−1) and Pa,n contains the set of partitions of t−1
into distinct parts which are not divisible by p. An asymptotic formula
for the number of such partitions appears in [Hag64, Corollary 7.2],
and we obtain

Corollary 3.2. Fix an odd non-Wieferich prime p and suppose that 2
is a primitive root modulo p. Let n = pk, then as k →∞, we have

P (n) > exp

[(
π√
3

√
p− 1

p
+ o(1)

)√
n

]
.

If t < ϕ(n), then, inspired by [GS98], we estimate the cardinality of
Pa,n as follows. Let 2 6 N < t be an integer, and denote by Sa,n(N) =
Sa,n ∩ [1, N ]. Each subset J ⊆ Sa,n(N) of cardinality #J = J 6 t/N
produces a valid partition u ∈ Pa,n, where uj = 1 if j ∈ J and uj = 0
otherwise. Thus we obtain

#Pa,n >
∑
J6t/N

(
#Sa,n(N)

J

)
.

It remains to estimate #Sa,n(N) and choose suitable a and N .
It is well known that,

#{j : 1 6 j 6 N, gcd(j, n) = 1} = Nϕ(n)/n+O(no(1)),

see, for example, [Shp18, Lemma 2.1].
Now among the cosets of 〈2〉 ⊆ (Z/nZ)∗, at least one must have at

least the average number of representatives in [1, N ], so there exists an
integer a, prime to n, for which

#Sa,n(N) >
t

ϕ(n)
·#{j : 1 6 j 6 N, gcd(j, n) = 1}

=
t

ϕ(n)

(
Nϕ(n)/n+O(no(1))

)
= (1 + o(1))

tN

n

as n→∞, provided N > nε for some fixed ε > 0.
Now we choose N =

⌊√
2n
⌋
. Since t > n1/2+ε, we have

#Sa,n(N) >
tN

n
+O(no(1)) = (2 + o(1))

t

N
.

Thus by the Stirling formula

#Pa,n >
∑
J6t/N

(
#Sa,n(N)

J

)
>

(
#Sa,n(N)

bt/Nc

)

> exp

(
(2 log 2 + o(1))

t

N

)
.

Thus we have proved
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Corollary 3.3. Suppose n is odd and t is the multiplicative order of 2
modulo n. Then

P (n) > exp

[
(log 4 + o(1))

t√
2n

]
.

In particular, if n = pk then it is easy to show that t > c(p)pk,
where c(p) > 0 depends only on p, hence Corollary 3.3 gives a version
of Corollary 3.2 in the form

P (n) > exp
(
c(p)
√
n
)
.

We remark that the condition t >
√

2n of Corollary 3.3 corresponds
to the limits of our method. Indeed, there are about ϕ(n)/t distinct
cosets Sa,n and since ϕ(n) = n1+o(1) each of them is expected to contain
very few elements from the interval [1, t] which are the only suitable
elements which can be used in the construction of the set Pa,n given
by (2.1).

Since

log 4√
2
≈ 0.98025 and

π√
3
≈ 1.8138,

in the case of t ≈ n we recover a result similar to Corollaries 3.1 and 3.2,
but with a smaller constant in the exponent.

Our lower bounds are quite small compared to the upper bounds
P (n) 6 B1(n) ∼ 2t and P (n) 6 B2(n) ∼ n2t/2, see (1.1), which follow
from Theorem A. On the other hand, they are typically much stronger
than linear and quadratic in n lower bounds which one can extract
from Theorem B.

4. Numerical results

It is interesting to compare the lower bound of Theorem 2.1 with
actual values of P (n). Table 4.1 shows numerical values of P (n) and
#Pa,n for odd n 6 101 and a representative a for each coset of the
factor group (Z/nZ)∗/〈2〉. Unsurprisingly, the largest value of #Pa,n
is achieved for a = 1 in these small cases, due to the presence of small
powers of two in S1,n. However, when n = 109, we find that

#P1,109 = 99 < 178 = #P3,109 = max
gcd(a,109)=1

#Pa,109.

These values were computed using Sage.
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n P (n) t a #Pa,n

3 3 2 1 2

5 15 4 1 5

7 7 3 1 3
- - - 3 1

9 63 6 1 7

11 341 10 1 33

13 819 12 1 55

15 15 4 1 4
- - - 7 1

17 255 8 1 8
- - - 3 5

19 9709 18 1 207

21 63 6 1 6
- - - 5 2

23 2047 11 1 28

- - - 5 4

25 25575 20 1 190

27 13797 18 1 79

29 475107 28 1 1261

31 31 5 1 5
- - - 3 2

- - - 5 1
- - - 7 1
- - - 11 1

- - - 15 1

33 1023 10 1 10
- - - 5 3

35 4095 12 1 16
- - - 3 4

37 3233097 36 1 4310

39 4095 12 1 22

- - - 7 2

41 41943 20 1 70

- - - 3 25

43 5461 14 1 17
- - - 3 10
- - - 7 4

45 4095 12 1 12

- - - 7 3

47 8388607 23 1 241

- - - 5 14

49 2097151 21 1 53

- - - 3 27

51 255 8 1 8
- - - 5 3

- - - 11 1

- - - 19 1

53 3556769739 52 1 35680

55 1048575 20 1 66
- - - 3 8

57 29127 18 1 33
- - - 5 8

59 31675383749 58 1 72503

61 65498251203 60 1 91103

63 63 6 1 6
- - - 5 2

- - - 11 1

- - - 13 1
- - - 23 1

- - - 31 1

n P (n) t a #Pa,n

65 4095 12 1 12
- - - 3 4

- - - 7 3
- - - 11 2

67 575525617597 66 1 176945

69 4194303 22 1 31
- - - 5 17

71 34359738367 35 1 1427
- - - 7 35

73 511 9 1 9

- - - 3 3

- - - 5 3
- - - 9 1

- - - 11 1

- - - 13 1
- - - 17 1

- - - 25 1

75 1048575 20 1 24
- - - 7 6

77 1073741823 30 1 100
- - - 3 70

79 549755813887 39 1 1028
- - - 3 106

81 10871635887 54 1 6159

83 182518930210733 82 1 911361

85 255 8 1 8
- - - 3 3
- - - 7 2

- - - 9 1
- - - 13 1
- - - 21 1
- - - 29 1

- - - 37 1

87 268435455 28 1 154
- - - 5 9

89 2047 11 1 11
- - - 3 6
- - - 5 3
- - - 9 2

- - - 11 1
- - - 13 1
- - - 19 1

- - - 33 1

91 4095 12 1 12
- - - 3 8

- - - 9 2

- - - 11 2
- - - 17 1

- - - 19 1

93 1023 10 1 10

- - - 5 2
- - - 7 2

- - - 11 1
- - - 17 1
- - - 23 1

95 22906492245 36 1 905

- - - 7 17

97 1627389855 48 1 2216

- - - 5 283

99 3243933 30 1 49

- - - 5 32

101 37905296863701641 100 1 4827382

Table 4.1. Values of P (n) and #Pa,n for odd n 6 101.
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5. Lower bounds on multiplicative orders

Since the quality of our bounds depends rather dramatically on the
multiplicative order of 2 modulo n, here we give a short outline of
known results.

First we observe that the applicability of Corollary 3.1 for infinitely
many prime n = p is equivalent to Artin’s conjecture, see [Mor12] for
an exhaustive survey. On the other hand, we are not aware of any
conditional (let alone unconditional) results or well-established conjec-
tures towards a version of Artin’s conjecture for non-Wieferich primes
which appear in Corollary 3.2. It is natural to expect that there are
infinitely many such primes but known results are scarce [Sil88].

Primes p and integers n for which t is large, in particular exceeds√
p, have been studied in many different contexts, but most commonly

in the theory of pseudorandom number generators . These results orig-
inate from the work of Erdős and Murty [EM99] and are conveniently
summarised in [KP05]. For example, for any function ψ(n) → 0 as
n → ∞ we have t > n1/2+ψ(n) for almost all (in a sense of relative
density) primes p = n (see [EM99, Theorem 1]) and odd integers n
(see [KP05, Theorem 11]). Furthermore, for a positive proportion of
primes p = n (see [KP05, Lemma 19])) and odd integers n (see [KP05,
Theorem 21]) we have t > n0.677.
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