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Abstract. By combining theorems of Drinfeld and Strauch, we show that the
monodromy representation on the special fiber of a Drinfeld modular variety,

with level not divisible by the characteristic, is surjective. We illustrate this

result in the special case of Drinfeld Fq [t]-modules in level t, and apply this to
show that the Kronecker factors of a Drinfeld modular polynomial in rank r

are irreducible.

Dedicated to Gerhard Frey on the occasion of his 75th birthday.

1. Statement of the main result

Throughout this paper we fix a global function field F of characteristic p > 0
with exact field of constants the finite field Fq of cardinality q. We fix a place ∞
of F , and let A denote the ring of elements of F which are regular away from ∞.
This is a Dedekind domain with finite class group Cl(A) and unit group A× = F×q .

Let I ⊂ A denote a proper non-zero ideal and nI the order of I in the ideal
class group Cl(A) of A. Let gI ∈ A be a generator of InI ; it is unique up to
multiplication by F×q . Hence A[1/I] := A[1/gI ] is independent of the choice of gI .
We also write ClI(A) for the I-class group of A, i.e., the group of fractional ideals
of A of support prime to I modulo its subgroup of principal fractional ideals that
possess a generator which is congruent to 1 modulo I. One has a short exact
sequence 0 −→ (A/I)×/F×q −→ ClI(A) −→ Cl(A) −→ 0.

Let r ≥ 1 be a positive integer and consider the functorMr
I from A[1/I]-schemes

S to Sets, which to any such S assigns the set of isomorphism classes of tuples
(L, φ, α), where L is a line bundle on S, where φ (together with L) is a Drin-
feld A-module φ : A −→ EndFq-gp sch./S(L) of rank r, and where α denotes a level
I-structure on (L, φ), subject to the condition that the characteristic ∂φ : A −→
EndS(LieL) = OS coincides with the structure morphism S −→ SpecA[1/I] com-
posed with the open immersion SpecA[1/I] −→ SpecA. By [Dri74, Prop. 5.3 and
Cor. to 5.4], the functor Mr

I is representable by a smooth finite type morphism
Mr
I −→ SpecA[1/I] of relative dimension r − 1. The universal Drinfeld module on

Mr
I we denote by

φrI : A −→ EndFq-gp sch./Mr
I
(LrI).

Let now p ⊂ A denote a maximal ideal that is prime to I. We write κp for its
residue field, Ap for the completion of A at p, and let κp be an algebraic closure
of κp.

Definition 1.1. We call Mr
I,p := Mr

I ×SpecA[1/I] Specκp the special fiber of Mr
I

at p.
1
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Let Mr
I,p be the base change Mr

I,p ×κp
κp and let φrI,p be the corresponding

universal Drinfeld module. The scheme Mr
I,p is regular. Its connected components

can be naturally labelled by ClI(A): By [Pap06, proof of Cor. 4.6] the connected
components of Mr

I,p are in bijection with those of M1
I,p
∼= Spec

(
RI ⊗A[1/I] κp

)
,

where by [Dri74, Thm. 1, §7] RI is the integral closure of A in the class field of F
associated to ClI(A). Now class field theory gives the desired labeling.

For each ideal class c in ClI(A), denote by ηc = Specκηc the generic point of the
corresponding component, and let ηc = Specκηc be a geometric point above κηc .
Observe that κηc contains κp.

Let φrηc denote the pullback of φrI,p to ηc. By [Dri74, Prop. 5.5], it is a Drinfeld

A-module of characteristic p and height 1, i.e., φrηc is ordinary. This means that
for any n ≥ 1 the group of pn-torsion points φrηc [pn](κηc) is a free A/pn-module of
rank r − 1.

Let gp be a generator of the principal ideal pnp , so that φrηc [pnnp ](κηc) is the set
of roots of φrηc,gnp (X). We define the p-adic Tate module of φrηc as

Tap φ
r
ηc = lim←−

n

φrηc [pnnp ](κηc),

where multiplication by gp defines the transition map in the inverse system. The
limit is independent of the choice of gp. By ordinariness of φrηc it is free of rank
r − 1 over Ap.

Observe that φrηc,gnp (X) = hn ◦ (X 7→ Xqn deg p

) for some unique Fq-linear poly-

nomial hn ∈ κηc [X] with non-vanishing linear term. The étale quotient φrηc [pnnp ]ét

of the finite flat A-module scheme φrηc [pnnp ] is Specκηc [X]/(hn(X)). The group

schemes φrηc [pnnp ]ét also form an inverse system, and one has φrηc [pnnp ](κηc) ∼=
φrηc [pnnp ]ét(κsep

ηc ) as finite A-modules. Because the polynomials hn are defined over
κηc , the absolute Galois group Gκηc = Gal(κsep

ηc /κηc) acts on Tap φ
r
ηc and by the

very construction of Tap φ
r
ηc , the group Gκηc acts Ap-linearly. This yields a contin-

uous group homomorphism

ρp,ηc : Gκηc −→ AutAp
(Tap φ

r
ηc) ∼= GLr−1(Ap).

Our main result is the following:

Theorem 1.2. The map ρp,ηc is surjective.

The proof is a simple consequence of the results [Dri74, Str10] by Drinfeld and
Strauch, which seems not to have been recorded in the literature. In fact, combining
the work of Drinfeld and Strauch, it even follows that the image under ρp,ηc of a
decomposition group of Gκηc at a supersingular point of Mr

I,p in the component of

ηc is already surjective; cf. Remark 4.2.

One might wonder about refinements of Theorem 1.2. For any point x of Mr
I,p

denote by ρp,x : Gx −→ Autp(Tap φ
r
x) the action of the absolute Galois group Gx =

Gal(κsep
x /κx) of the residue field at x on the corresponding Tate module Tap φ

r
x of

rank rx with 0 ≤ rx ≤ r − 1.

Question 1.3. Suppose that Endκx(φrx) = A. Is ρp,x(Gx) open in Autp(Tap φ
r
x) ∼=

GLrx(Ap)?

This appears to be a natural analog of the results [DP12] of Devic and Pink
on adelic openness for Drinfeld modules in special characteristic. They consider
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the Galois action of a Drinfeld A-module φ of rank r and characteristic p 6= 0
over a finitely generated field. If Endκx(φx) = A, their results imply that the
associated adelic Galois representation of Gx away from p and∞ has open image in
SLr(

∏
v 6=pAv). They also give a complete answer with no condition on Endκx(φx).

This leads to.

Question 1.4. Describe for any point x of Md
I,p the Zariski closure Gx of ρp,x(Gx)

in Autp(Tap φ
r
x) ∼= GLrx(Ap). Is ρp,x(Gx) an open subgroup in Gx(Ap)?

We end this introduction with a quick survey of the content of the individual
sections. Section 2 recalls the relevant work of Drinfeld on formal O-modules and
O-divisible groups from [Dri74]. Section 3 recalls the main theorem of Strauch, so
that in Section 4 we can combine the two and deduce the proof of Theorem 1.2.
Section 5 illustrates the main result in the special case of A = Fq[t] and level t,
where the moduli scheme can be described explicitly. In Section 6 we shall answer
in Proposition 6.2 a question raised in [BR16] related to the reduction of modular
polynomials of level p in the case A = Fq[t]. We shall prove that certain special
polynomials which are the natural building blocks of the mod p reduction of modular
polynomials are irreducible as asked in [BR16, Question 4.5].

2. Formal O-modules, O-divisible groups and deformations of
Drinfeld modules

Let K be a non-archimedean local field with ring of integers O and finite residue
field k. The normalized valuation on K is vK , its uniformizer $K and the cardinal-
ity of k will be qK . Let K̆ be the completion of the maximal unramified extension of

K and write Ŏ for its ring of integers. The residue field k̆ of Ŏ is an algebraic closure
of k. Denote by CNLŎ the category of complete noetherian local Ŏ-algebras C with

residue field k̆, and with morphisms being Ŏ-algebra homomorphisms f : C −→ C ′

such that f(mC) ⊂ mC′ , where for C ∈ CNLŎ we denote by mC its maximal ideal.
Let B be a ring. The power series ring over B in indeterminates x1, . . , xn will

be B[[x1, . . , xn]].

Definition 2.1 ([Dri74, § 1]). A formal group1 over B is a series Φ in B[[x, y]] such
that Φ(x, y) = Φ(y, x), Φ(x, 0) = x and Φ(Φ(x, y), z) = Φ(x,Φ(y, z)).

A homomorphism from a formal group Φ to a formal group Ψ over B is a series
β ∈ xB[[x]] such that Ψ(β(x), β(y)) = β(Φ(x, y)). Composition of homomorphisms
is composition of formal power series; it is well-defined because the series have zero
constant term.

The endomorphism ring of a formal group Φ is denoted End(Φ). It comes with
a natural homomorphism D : End(Φ) −→ B, given by differentiation at zero β 7→
Dβ =

(
d

dxβ
)
(0).

Suppose that B is an O-algebra via a map α. A formal O-module over B is a
pair X = (Φ, [·]X) where Φ is a formal group over B and [·]X is a homomorphism
O −→ End(Φ) such that D ◦ [·]X = α. Morphisms of formal O-modules are defined
in the obvious way.

1More correctly we should add the attributes one-dimensional and commutative; but we shall
not deal with any other kind of formal group; and so for the sake of brevity we suppress them.
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If α($K) = 0, then [$K ]X ∈ xB[[x]] can be written as the composition γ ◦ (x 7→
xq

h
K ) for some unique γ ∈ xB[[x]] with linear term Dγ 6= 0 and a unique h ≥ 1.

One calls h the height of the formal O-module X = (Φ, [·]X).

Example 2.2 ([Dri74, Rem. after Prop. 2.2], [Ros03, § 4]). Let s : A −→ O be a
ring homomorphism with s(p)O = $KO, and let C be in CNLŎ. This induces an
A-algebra structure on C, which we denote by γ. Let φ : A −→ C{τ}, a 7→ φa be
a Drinfeld A-module in standard form of rank r and characteristic γ; cf. [Dri74,
Rem. after Prop. 5.2]. Let Φ(x, y) = x+ y be the additive formal group law. Then
End(Φ) = C{{τ}}, the subring, under addition and composition, of xC[[x]] of power

series in the monomials xq
i

, i ≥ 0, with coefficients in C. It can be shown that φ

extends uniquely to a continuous ring homomorphism φ̂ : Ap −→ End(Φ), a 7→ φ̂a.
This uses that elements in p map to topologically nilpotent elements in C under

γ. This defines the structure of a formal Ap-module φ̂p = (Φ, φ̂) on Φ. Moreover

the height of the formal Ap-module φ̂p (mod mC) agrees with the height of the
Drinfeld A-module φ (mod mC).

Let k̆ be an O-algebra via reduction, i.e., via the canonical maps O −→ Ŏ −→ k̆.

Let X be a formal O-module over k̆ of finite height h > 0. A deformation of X
to C ∈ CNLŎ is a formal O-module XC over C whose reduction modulo mC is

equal to X. Two deformations XC and X ′C to C are isomorphic if there exists an
isomorphism of formal O-modules over C that reduces to the identity modulo mC .
Since h is finite, by [Dri74, Prop. 4.1] there is at most one such isomorphism.

Theorem 2.3 ([Dri74, Prop. 4.2]). The functor CNLŎ −→ Sets that associates to

C ∈ CNLŎ the set of deformations of X to C up to isomorphism is representable

by a ring RX in CNLŎ. The universal ring RX is a power series ring over Ŏ in
h− 1 indeterminates.

Definition 2.4. The universal formal group over RX is denoted by XX .

To recall the notion of O-divisible module (again of dimension 1), we need some
preparations. We fix a ring B in CNLŎ. Following [Tag93], for R any ring, we
define an R-module scheme over B to be a pair (G, φ), where G is a commutative
group scheme over B and φ : R −→ End(G) is a ring homomorphism. A map
(G, φ) −→ (G′, φ′) of R-module schemes is a map G −→ G′ of group schemes over B
that is equivariant for the R-action.

If G is finite flat over B, then one can define the étale and connected parts
G ét, Gloc of G, and one has a short exact sequence 0 −→ Gloc −→ G −→ G ét −→ 0;
see [Tat67, 1.4]. Because any endomorphism of G preserves Gloc, if G carries an R-
action, then the short exact sequence is one of R-module schemes. For the following,
we assume that K has positive characteristic. Then the field k is canonically a
subring of O.

Definition 2.5 ([Dri74, § 4], [Tag93, § 1]). Let r be in N. An O-divisible module
of rank r over B is an inductive system F = (Fn, in)n∈N such that for all n ∈ N
the following hold:

(a) Fn is a finite flat group scheme over B that carries an O-module structure.
(b) There is a closed immersion Fn ↪→ Ga,B of k-module schemes.2

2We restrict to O-modules of dimension 1 and therefore suppress the dimension in the
definition.
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(c) The order of Fn over B is qrnK ,
(d) The following sequence of O-module schemes over B is exact

0 −→ Fn
in−−→ Fn+1

$nK−−−→ Fn+1.

A morphism of O-divisible modules over B is a morphism of inductive systems of
O-module schemes.

Given an O-divisible module F = (Fn)n≥1, the connected and étale parts F loc =
(F loc

n )n≥1 and F ét = (F ét
n )n≥1 form O-divisible modules as well and one has a

degree-wise short exact sequence of O-divisible modules 0 −→ F loc −→ F −→ F ét −→
0. If F ét = 0, we call F local.

Concerning F ét note that since k̆ is algebraically closed, one has an isomorphism
of O-module schemes between F ét

n mod mB and the constant O-module scheme
Os/$n

KOs for s the rank of F ét. Hensel lifting shows that the same isomorphism

holds over B. Drinfeld writes F ét = Ks/Os.
To analyze F loc, we present in the following paragraphs, up to and including

Proposition 2.6, some results that are implicitly stated in [Dri74, § 4] and are
straightforward to deduce from [Tag93, § 1]. Suppose that F loc is non-trivial. Then
lim−→F

loc
n
∼= Spf B[[x]], and this isomorphism is one of formal k-module schemes, if

we identify Spf B[[x]] with the formal completion of Ga,B at the zero section. The
action of O on F loc induces an O-action on the formal additive group over B. The
resulting formal O-module will be denoted by XF .

Conversely, let X = (Φ, [·]X) be a formal O-module over B whose reduction to

k̆ has finite height h. Then a local divisible O-module is defined as follows: For
n ∈ N, write [$n

K ]X = Hnun uniquely with Hn ∈ B[x] monic of degree qhnK and

Hn (mod mB) = xq
hn
K , and un ∈ B[[x]] a unit. Then X[$n

K ] := SpecB[x]/(Hn) =
SpecB[[x]]/([$n

K ]X) is a finite flat scheme over B and one can verify for all n ≥ 1
that

(a) The formal O-module structure [·]X defines an O-action on X[$n
K ], and in

such a way that the closed immersion X[$n
K ] ↪→ Ga,B is one of k-module

schemes.

(b) One has a short exact sequence 0 −→ X[$n
K ] −→ X[$n+1

K ]
$K
−→ X[$n+1

K ] of
O-module schemes.

The resulting O-divisible local group is denoted by FX .

Proposition 2.6. The constructions X 7→ FX and F 7→ XF define mutual inverses
between the set of local divisible O-modules F of rank h and the set of formal O-
modules X = (Φ, [·]X) such that x (mod mB) has height h.

Example 2.7 ([Dri74, before Prop. 5.4]). Let C, φ, O, φ̂ be as in Example 2.2, and
let gp be a generator of the ideal pnp ⊂ A. Let r be the rank of φ and h its height.
One verifies the following:

(a) For n ≥ 0, the scheme φ[pnnp ] := C[x]/(φngp(x)) is finite flat over C and
possess an Ap-module structure via φ.

(b) The sequence (φ[pn])n with φ[pn] ↪→ φ[pn+1] given by inclusion defines a
divisible Ap-module φ[p∞] over C of height r.

(c) One has an isomorphism F loc ∼= (φ̂p[pn])n≥1.
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(d) The rank h of F loc is the height of φ (mod mC) over k̆, and one has F ét ∼=
(Fp/Ap)r−h.

Let Fk̆ be an O-divisible module of rank r over k̆. There is an obvious notion of
a deformation Fk̆ to O-divisible modules over rings C in CNLŎ and this defines a
functor CNLŎ −→ Sets.

Theorem 2.8 ([Dri74, Prop. 4.5]). Suppose that F loc
k̆

has height h > 0. Then the

functor CNLŎ −→ Sets that associates to C ∈ CNLŎ the set of deformations of Fk̆
to C up to isomorphism is representable by some ring RFk̆ in CNLŎ. The universal

ring RFk̆ is a power series ring over Ŏ in r − 1 indeterminates.

From here on, we let O := Ap with p a closed point of SpecA as in the introduc-

tion. We let φ0 : A −→ k̆{τ} be a Drinfeld-module of rank r whose characteristic is

given by A −→ Ap = O −→ Ŏ −→ k̆, for our chosen Ŏ. Let I ⊂ A be a proper non-
zero ideal with I + p = A. Choosing a level I-structure for φ0, which can be done

over k̆, defines a point of Md
I,p(k̆) which we denote by x. Then x defines a Drinfeld

A-module φx that is isomorphic to φ0 (over k̆) together with a level I-structure.
A deformation of φ0 to C ∈ CNLŎ is a Drinfeld A-module φ : A −→ C{τ}, in
standard form, up to isomorphism, which reduces modulo mC to φ0. By Hensel’s
Lemma, the level I-structure on φ0 extends uniquely to a level I-structure of φ over
C. Hence one can identify deformations of φ0 with morphisms SpecC −→Mr

I that

when composed with Spec k̆ −→ SpecC yield x. The following is Drinfeld’s analog
of the Serre-Tate theorem for Drinfeld A-modules.

Theorem 2.9 ([Dri74, 5.C, in part. Prop. 5.4]). The following holds

(a) The functor CNLŎ −→ Sets which associates to C ∈ CNLŎ the set of
deformations of φ0 to C is representable by the completion of the stalk of
OMr

I⊗A[1/I]Ŏ at x; in particular, this completion is independent of the choice

of I.
(b) The natural transformation from deformations of φ0 to deformations of the
O-divisible group φ0[p∞] defined in Example 2.7, is an isomorphism. I.e.,

there is a natural isomorphism of Ŏ-algebras

Rφ0[p∞] −→ ÔMr
I⊗A[1/I]Ŏ,x.

3. The result of Strauch

Let K, O, k, K̆, Ŏ, k̆ and CNLŎ be as in the previous section. Let X be a formal
group over k of height h and let RX and XX be as in Theorem 2.3. The following is

from [Str10, § 1,2]. First one may choose an identification RX
∼= Ŏ[[u1, . . . , uh−1]]

such that the multiplication by $K on XX is given by a power series [$K ]XX ∈
RX [[x]] with the property that for all i = 0, . . . , h one has

(1) [$K ]XX ≡ uix
qiK (mod (u0, . . . , ui−1, x

qiK+1)),

with the conventions u0 = $K and uh = 1.
For m ∈ {0, . . . , h− 1} put

Rm := Ŏ[[u1, . . . , uh−1]]/(u0, . . . , um)

with the convention that R0 = RXX . Then the closed reduced subscheme of SpecR0

where the height of the connected component of XX [$∞K ] is at least m is equal
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to SpecRm, and the open part of SpecRm where the height of the connected
component is equal to m is

Um := SpecRm \ V (um).

Let κm be the field of fractions of Rm and put ηm = Specκm. Let κm be an
algebraic closure of κm and put ηm = Specκm. Fix a positive integer n. Denote by

TaXX ,ηm := lim←−
n

XX [$n
K ]ηm(κm)

the Tate-module of XX at ηm. It is a free O-module of rank h−m. The absolute
Galois group π1(ηm, ηm) of κm acts O-linearly on it. We denote the resulting
representation by

ρXX ,m : π1(ηm, ηm) −→ AutO(TaXX ,ηm) ∼= GLh−m(O).

It clearly factors via π1(Um, ηm). Then [Str10, Thm. 2.1], asserts:

Theorem 3.1. For any m ∈ {0, . . . , h−1} the homomorphism ρXX ,m is surjective.

4. Proof of Theorem 1.2

Let the notation be as in Section 1. Set in addition O = Ap, K = FracO,

k = A/p and take K̆, Ŏ, k̆ as in Section 2. Let ξc ∈ Mr
I,p(k̆) be a supersingular

point in the component of Mr
I labelled by c.3 Consider the following canonical

morphisms of schemes

Spec ÔMr
I,p
,ξc

//

ι̂

++
SpecOMr

I,p
,ξc

ι //Mr
I,p,

with ÔMr
I,p
,ξc the completion of the local ring OMr

I,p
,ξc . Denote by η̂c the generic

point of Spec ÔMr
I,p
,ξc and choose a minimal geometric point η̂c over η̂c together

with a map η̂c −→ ηc. Let Mr,ord
I,p

⊂ Mr
I,p be the locus of ordinary Drinfeld A-

modules. It is an open subscheme since its complement is defined by the vanishing
of the coefficient of (φrI,p)gp ∈ Mr

I,p[τ ] in degree deg gp, where Mr
I,p is the coordi-

nate ring of the affine scheme Mr
I,p, and hence its complement is closed in Mr

I,p.

We obtain a corresponding diagram of fundamental groups with continuous group
homomorphisms

(2) π1

(
ι̂−1(Mr,ord

I,p
), η̂c

)
// π1

(
ι−1(Mr,ord

I,p
), ηc

)
// π1(Mr,ord

I,p
, ηc)

π1(η̂c, η̂c)

OO

// π1(ηc, ηc).

OO 66

Over Mr,ord
I,p

the Tate-module

Tap φ
r
ηc = lim←−

n

φrηc [pnnp ](κηc),

is free over O of rank r − 1, and we have continuous homomorphisms.

(3) π1(η̂c, η̂c) −→ π1(ηc, ηc) −→ π1(Mr,ord
I,p

, ηc) −→ AutO(Tap φ
r
ηc).

3Supersingular points exist; and via the action of Hecke correspondences, which preserves the
supersingular locus, they can be seen to lie in every component.



8 GEBHARD BÖCKLE AND FLORIAN BREUER

By Theorem 2.9, the ring Spec ÔMr
I,p
,ξc is naturally identified with the special fiber

of the universal deformation ring of the O-divisible module φrξc [p∞]. Because ξc is
supersingular, it is a local O-divisible module of rank r, and thus by Proposition 2.6
it arises from a formal O-module of height r. Now by Theorem 3.1 of Strauch, the
composition of the maps in (3) is surjective.

We have thus proved the following result.

Theorem 4.1. The monodromy representation π1(η̂c, η̂c) −→ AutO(Tap φ
r
ηc) is

surjective.

Hence the map π1(ηc, ηc) −→ AutO(Tap φ
r
ηc) is surjective, as well. This completes

the proof of Theorem 1.2.

Remark 4.2. One can think of the image of π1(η̂c, η̂c) in π1(Mr,ord
I,p

, ηc) as the de-

composition group at ξc. From this viewpoint, Theorem 3.1 says that already the
image of this decomposition group surjects onto AutO(Tap φ

r
ηc) ∼= GLr−1(O). Ac-

cording to the same theorem, the decomposition groups at points of height m < r
map onto a natural subgroup of AutO(Tap φ

r
ηc) isomorphic to GLm−1(O).

5. An example

For the remainder of this article we specialize to the case A = Fq[t] and level
I = tA. We also set B = A[ 1

t ] = Fq[t, 1
t ], we let p ∈ A be a non-zero prime (monic

irreducible polynomial) and suppose p 6= t (otherwise, just replace t by t+ 1), and
we write |p| = qdeg(p). Let κp = A/p with algebraic closure κ̄p. As a preparation
for Section 6, in the present section we will work out an explicit example of the
main result.

We start by recalling Pink’s explicit description of Mr
t [PS14, Pin13], see also

[Bre16, Theorem 2] for more details: Let V be an Fq-vector space of dimension
r ≥ 1 and write V ′ = V r{0}. Denote by SV = SymB(V ) the symmetric algebra of
V over B and by KV the fraction field of SV . Denote by RSV,0 = B[ vv′ | v, v ∈ V

′]
the subalgebra of KV generated over B by quotients of non-zero elements of V .
Then the base-change of Mr

t to SpecB is given by

Mr
t,B = SpecRSV,0,

which has geometrically irreducible fibres. Furthermore, for any fixed v1 ∈ V ′, the
universal Drinfeld module φ = φrη on Mr

t,B is determined by

t 7→ φt(X) = tX
∏
v∈V ′

(
1− v1

v
X
)
∈ RSV,0[X]

with level structure
V
∼−→ φ[t]; v 7→ v

v1
.

The base change of the moduli scheme Mr
t,B to κp is Mr

t,p = Spec
(
RSV,0⊗Bκp[X]

)
,

with universal Drinfeld module the reduction of φ modulo p, which we denote φ.
We have

φpn(X) = φ
ét

pn(X |p|
n

),

where φ
ét

pn(X) ∈ RSV,0 ⊗B κp[X] is a separable Fq-linear polynomial of degree

|p|n(r−1). The outer terms in the local-étale decomposition

0 −→ φ[pn]loc −→ φ[pn] −→ φ[pn]ét −→ 0
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are given by

φ[pn]loc = Spec
(
RSV,0 ⊗B κp[X]/〈X |p|

n

〉
)

and

φ[pn]ét = Spec
(
RSV,0 ⊗B κp[X]/〈φét

pn(X)〉
)
.

Denote by κη the fraction field of RSV,0 ⊗B κp, which is the function field of

Mr
t,p over κp, and by κη(φ[pn]ét) the splitting field of φ

ét

pn(X) over κη.

Now Theorem 1.2 says the following: For every positive integer n, we have

(4) Gal
(
κη(φ[pn]ét)/κη

) ∼= GLr−1(A/pn).

6. An application

In this last section, we consider a variant of the above example and answer a
question posed in [BR16].

Suppose g1, g2, . . . , gr−1 are algebraically independent over Fq(t) and set L =
Fq(t, g1, . . . , gr−1), a rational function field of transcendence degree r over Fq.

We define the Drinfeld module ψ : A −→ L{τ} by

t 7→ ψt(X) = tX + g1X
q + · · ·+ gr−1X

qr−1

+Xqr ∈ L[X].

It is shown in [Bre16, Thm. 6] that, for every non-zero proper ideal n ⊂ A,

Gal(L(ψ[n])/L) ∼= GLr(A/n).

Our goal is to prove a similar result in special characteristic.
Denote by Lt = L(ψ[t]) the splitting field of ψt(X) over L, and set

RSt = B
[
v,

1

v
| 0 6= v ∈ ψ[t]

]
⊂ Lt,

the subalgebra of Lt generated over B by v and 1
v for 0 6= v ∈ ψ[t]. It is a graded

ring if we set deg(v) = 1 for all 0 6= v ∈ ψ[t]. We have ψt(X) ∈ RSt[X].
Fix a non-zero t-torsion point 0 6= v1 ∈ ψ[t], and consider the isomorphic Drinfeld

module φ = v−1
1 ψv1 over Lt. We denote by Lt,0 = L(φ[t]) ⊂ Lt the splitting field

of φt(X) over L, and set

RSt,0 = B
[ v
v′
| v, v′ ∈ ψ[t], v′ 6= 0

]
⊂ Lt,0.

This is the degree zero component of RSt.
We have φt(X) = tX

∏
06=v∈ψ[t]

(
1− v1

v X
)
∈ RSt,0[X].

By [Bre16, Thm. 5] and its proof, there is an isomorphism

(5) θ : Spec(RSt,0)
∼−→Mr

t,B ,

and φ is the pullback via θ of the universal Drinfeld module described in Section 5.
Now consider the reduced Drinfeld modules ψ and φ over RSt⊗Bκp and RSt,0⊗B

κp, respectively.

Again, for every positive integer n, we have ψpn(X) = ψ
ét

pn(X |p|
n

), where ψ
ét

pn(X) ∈
RSt ⊗B κp[X] is a separable Fq-linear polynomial of degree |p|n(r−1), and

ψ[pn]ét = Spec
(
RSt ⊗B κp[X]/〈ψét

pn(X)〉
)
.

Analoguous statements hold for φ.
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We define the A-field ` = κp(g1, g2, . . . , gr−1), equipped with the homomorphism

A −→ A/p ⊂ κp ⊂ `. The Drinfeld module ψ is defined over `. Denote by `(ψ[pn]ét)

the splitting field of ψ
ét

pn(X) over `. We have

Theorem 6.1. Gal
(
`(ψ[pn]ét)/`

) ∼= GLr−1(A/pn).

Proof. We define the following fields.

`t,0 = κp(φ[t]) = Frac
(
RSt,0 ⊗B κp

)
,

`t = `(ψ[t]) = `t,0(v1) = Frac
(
RSt ⊗B κp

)
,

and consider the following field extensions.

`t(ψ[pn]ét)

`t,0(φ[pn]ét) `(ψ[pn]ét)

`t

`t,0

GLr−1(A/pn)

`

The field `t,0 is (isomorphic via θ to) the function field of Mr
t,p = Mr

t,B ×SpecB

Specκp over κp. It follows from (4) that Gal
(
`t,0(φ[pn]ét)/`t,0

) ∼= GLr−1(A/pn),
and our goal is to show that the other two vertical extensions have this same Galois
group.

We write

φt(X) = tX + c1X
q + · · ·+ crX

qr ∈ RSt,0 ⊗B κp[X],

where t̄ denotes the image of t in A −→ A/p ⊂ κp, ci = vq
i−1

1 gi for i = 1, . . . , r − 1

and cr = vq
r−1

1 . Because 1 is a t-torsion point, we have the algebraic relation

0 = φt(1) = t+c1 +c2 + · · ·+cr. Observe also that κp ⊂ `t,0 contains roots of unity
of all orders prime to p. It follows that `t = `t,0(v1) = `t,0( qr−1

√
cr) is a Kummer

extension of `t,0.
Let ξ ∈Mr

t,p(κp) correspond to a supersingular Drinfeld module

φξt (X) = tX + s1X
q + · · ·+ srX

qr ∈ κp[X].

Then the completion ̂̀
t,0 of `t,0 at ξ contains the ring of formal power series

κp[[c2 − s2, · · · , cr − sr]].
This ring, in turn, contains

v1 = qr−1
√
cr = qr−1

√
(cr − sr) + sr = qr−1

√
sr

∞∑
i=0

( 1
qr−1

i

)(
cr − sr
sr

)i
since sr ∈ κ×p and qr − 1 is not divisible by the characteristic p.

This implies that ψ and φ are isomorphic over ̂̀t,0. Also, ̂̀t,0 contains `t and̂̀
t,0(φ[pn]ét) = ̂̀

t,0(ψ[pn]ét).
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Theorem 4.1 implies that the Galois representation

Gal
( ̂̀
t,0

sep
/ ̂̀t,0) −→ Tap φ

is surjective. Since φ and ψ are isomorphic over ̂̀t,0, the same holds for Tap ψ, and
in particular the Galois representation

Gal
(
`sep
t /`t

)
−→ Tap ψ

is surjective. This implies that

Gal
(
`t(ψ[pn]ét)/`t

) ∼= GLr−1(A/pn).

Finally, we have

[`(ψ[pn]ét) : `] ≥ [`t(ψ[pn]ét) : `t] = # GLr−1(A/pn).

Since Gal
(
`(ψ[pn]ét)/`

)
is isomorphic to a subgroup of GLr−1(A/pn), it must be

isomorphic to the whole group. This completes the proof of Theorem 6.1. �

Finally, we address [BR16, Question 4.5]. For this, we must first recall the
construction of Drinfeld modular polynomials from [BR16].

Denote by C the subring of A[g1, . . . , gr−1] ⊂ L generated by monomials of the

form age11 · · · g
er−1

r−1 satisfying a ∈ A and
∑r−1
k=1 ek(qk − 1) ≡ 0 mod qr − 1. Then

the elements of C are the isomorphism invariants of rank r Drinfeld A-modules,
i.e. SpecC is the coarse moduli scheme of Drinfeld modules of rank r and no level
structure, see [BR16, Prop. 1.1].

Let 1 ≤ s ≤ r − 1. An isogeny f : ψ −→ ψ(f) is said to have type (A/p)s if
ker f(L) ∼= (A/p)s, and such an isogeny is called special if ker f contains U0 :=
ker
(
ψ[p](L) −→ ψ[p](`)

)
. Because ψ has ordinary reduction ψ̄, and so U0

∼= A/p, f
is special if and only if its reduction is inseparable.

To each invariant J ∈ C we associate the Drinfeld modular polynomial of type
(A/p)s, defined by

ΦJ,(A/p)s(X) =
∏

f : ψ −→ ψ(f) of type (A/p)s

(
X − J(ψ(f))

)
∈ C[X].

This is irreducible over L if its roots in L are distinct (there always exist J ∈ C for
which the roots are distinct).

Modulo p, we have the Kronecker congruence relation [BR16, Thm. 4.4]:

(6) ΦJ,(A/p)s(X) ≡ Φspec
J,(A/p)s(X) ·

(
Φspec
J,(A/p)s+1(X |p|)

)|p|s−1

mod p,

where

Φspec
J,(A/p)s(X) :=

∏
f : ψ −→ ψ(f) special of type (A/p)s

(
X − (J(ψ(f)) mod p)

)
∈ `[X].

We answer [BR16, Question 4.5] in the affirmative, as follows.

Proposition 6.2. Suppose J ∈ C is such that the roots of Φspec
J,(A/p)s(X) in ` are

distinct. Then Φspec
J,(A/p)s(X) ∈ `[X] is irreducible.

Proof. If s = 1, then Φspec
J,(A/p)(X) = X − J |p| by [BR16, Example 5.1], and we are

done.
Now suppose that s > 1. Let R be the integral closure of A[g1, g2, . . . , gr−1] in

L(ψ[p]), then ψ[p] ⊂ R. Let f : φ −→ φ(f) be a special isogeny of type (A/p)s.
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Then f(X) ∈ R[X] is an Fq-linear polynomial, and f(X) ≡ f ét(X |p|) mod p, where

f ét(X) ∈ R⊗Aκp[X] is separable and ker f ét is an A-submodule of ψ[p]ét isomorphic
to (A/p)s−1.

By Theorem 6.1 Gal(`sep/`) acts transitively on the set of such submodules of

ψ[p]ét, and thus also on the set of Drinfeld modules ψ
(f)

. Because J maps different

ψ
(f)

to different elements of `, the group Gal(`sep/`), in turn, acts transitively on
the roots of Φspec

J,(A/p)s(X). �

Remark 6.3. Equation (6) thus describes the decomposition of the Hecke corre-
spondence associated to (A/p)s-isogenies on Mr

I,p into irreducible components with

multiplicities.
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