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1. Introduction

Modular curves play a central role in modern arithmetic questions. They are a key feature in
the solution of famous diophantine equations, in the study of the Mordell-Weil group of elliptic
curves (both for the torsion subgroup and for the Birch and Swinnerton-Dyer conjecture) and
in isogeny-based cryptography. It is thus useful to be able to represent explicitly these curves
and to estimate how complicated their models are.

A classical way to estimate complexity of models is via height theory. For any non-zero
polynomial P in one or more variables and complex coefficients we define its height to be

h(P ) := logmax |c|, where c ranges over all coefficients of P .

Let N be a positive integer and denote by ΦN = ΦN (X,Y ) ∈ Z[X,Y ] the modular poly-
nomial for the elliptic j-function. It vanishes at pairs of j-invariants of elliptic curves linked
by a cyclic N -isogeny, see [La87, Chapter 5]. The equation ΦN (X,Y ) = 0 is a plane affine
integral model for the modular curve X0(N) (but not in general a smooth model).

Paula Cohen Tretkoff [Coh84] proved that when N tends to +∞

(1) h(ΦN ) = 6ψ(N)
[
logN − 2κN +O(1)

]
,

where

ψ(N) = N
∏
p|N

(
1 +

1

p

)
and κN =

∑
p|N

log p

p
.
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Work of Autissier [Aut03] and Breuer-Pazuki [BP23] show that one may profitably replace
κN with λN , where

λN :=
∑
pn∥N

pn − 1

pn−1(p2 − 1)
log p.

The terms κN and λN are compared in [BP23], which leads in particular to

(2) h(ΦN ) = 6ψ(N)
[
logN − 2λN +O(1)

]
.

Numerical computations as reported in [BP23] suggest that the bounded term implied by the
O(1) in (2) is smaller than the one in (1).

As modular polynomials have various cryptographic or algorithmic applications, it is useful
to obtain explicit bounds on the O(1) term. In [BrSu10], Bröker and Sutherland obtained
asymptotically optimal bounds in the case where N is prime, and Pazuki [Paz19a] provided
explicit bounds in the case of general N , but these were not quite asymptotically optimal.

The most recent work providing an explicit upper bound is [BP23], where the first and third
authors proved that for any N ≥ 2,

(3) h(ΦN ) ≤ 6ψ(N)
[
logN − 2λN + log logN + 4.436

]
.

The term log logN was superfluous, an unfortunate artifact of the method used in [BP23].
A natural idea to try to remove it is via equidistribution results. However, that would be at
the cost of losing the explicit nature of the upper bound, hence jeopardizing our other efforts.
We are nevertheless now able to remove the log logN in the following theorem, where we
provide both explicit upper and lower bounds.

Theorem 1.1. Let N ≥ 1. The height of the modular polynomial ΦN (X,Y ) is bounded by

6ψ(N)
[
logN − 2λN − 0.0351

]
≤ h(ΦN ) ≤ 6ψ(N)

[
logN − 2λN + 9.5387

]
.

The main new idea to improve the upper bound comes from technical inequalities involving
Farey sequences. We use both reduced and non-reduced elements in the upper half plane in
the key equation (5), which help us obtain better estimates of the Mahler measures at play.

To obtain the lower bound, we use a specialization trick to reduce the calculations to the
Mahler measure of the one-variable polynomial ΦN (X, 0) = Φ(X, j(ρ)), where we can use
explicit complex multiplication properties.

After presenting some preliminaries in Section 2, we prove the upper bound of Theorem 1.1
in Section 3. We prove the lower bound of Theorem 1.1 in Section 4.

As a corollary to Theorem 1.1, we add the following explicit result on Hecke points in
Section 5, giving an explicit version of a result of Silverman [Sil90]. For any elliptic curve E
defined over Q, for any N ≥ 2 and any cyclic subgroup C ⊂ E(Q) of order N , denote by jE/C
the j-invariant of the isogenous elliptic curve E/C.

Theorem 1.2. Let E be an elliptic curve defined over Q with j-invariant jE. Let h∞(·)
denote the absolute logarithmic Weil height. For any N ≥ 2, one has

(a) h∞(jE)−
1

ψ(N)

∑
C cyclic
#C=N

h∞(jE/C)

≥ −h(ΦN )
ψ(N)

− 2 log(ψ(N) + 1)

ψ(N)
≥ −6 logN + 12λN − 58.34.
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(b) h∞(jE)−
1

ψ(N)

∑
C cyclic
#C=N

h∞(jE/C)

≤ 6.67 + 6min
{
0, log

(
1 + h∞(jE)

)
− logN + 2λN + 0.25

}
.

The proof is given in Section 5. It combines Silverman’s method, Mahler measure estimates,
and the explicit bounds from Theorem 1.1.

The height of ΦN is a way to measure the size of the curve X0(N). But there are other
ways of measuring the size of X0(N): the Faltings height of the curve, the Faltings height of
its jacobian J0(N), the height of a Hecke correspondence with respect to a carefully chosen
metrized line bundle, the auto-intersection of the Arakelov canonical sheaf, are all used in
the literature. One could even think of the size of classical Heegner points on the modular
jacobian as a way to measure the complexity of J0(N), hence of X0(N). So what is the
size of X0(N)? We gather in the following theorem some asymptotic results that are easy to
derive from the existing literature, and which explain that the height of ΦN , despite being
elementary, captures some of this deeper information.

Theorem 1.3. We have the following properties.
(a) Let hFalt denote the stable Faltings height as recalled in Definition 6.1. For any integer

N ≥ 1, one has the equality hFalt(X0(N)) = hFalt(J0(N)). Then when N is square-free
and coprime to 6 and tends to infinity, one has

hFalt(X0(N)) ∼ 1

63
h(ΦN ).

(b) Let TN be the Hecke correspondence in P1 × P1 and let L̂ be the associated metrized
line bundle as given by Autissier in [Aut03]. Then when N tends to infinity one has

hL̂(TN ) ∼ 2h(ΦN ).

(c) Let k be a quadratic field of discriminant Dk, of class number hk, with 2uk roots
of unity. Assume Dk < 0, Dk = 1(mod 4), and consider xDk

∈ X0(N) the related
Heegner point for each compatible N . It gives rise to a cycle cDk

= (xDk
) − (∞) ∈

J0(N). Then when N tends to infinity, one has

ĥJ0(N)(cDk
) ∼ hkuk

6ψ(N)
h(ΦN ).

(d) Let ω2 denote the auto-intersection of the Arakelov canonical sheaf of the minimal
regular model of X0(N), for any N ≥ 2 coprime to 6. Then when N tends to infinity,
one has

ω2 ∼ 1

24
h(ΦN ).

We prove Theorem 1.3 in Section 6.

2. Preliminaries

Denote by H = {τ ∈ C : Im(τ) > 0} the upper half-plane, on which SL2(Z) acts via
fractional linear transformations. A fundamental domain for this action is

F =

{
τ ∈ H : |τ | ≥ 1, −1

2
< Re τ ≤ 1

2
and Re τ ≥ 0 if |τ | = 1

}
.
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For any τ ∈ H, we denote by τ̃ ∈ F the unique representative in this fundamental domain
of the SL2(Z)-orbit of τ .

The j-function j : H → C is SL2(Z)-invariant, and satisfies a q-expansion of the form

j(τ) = q−1 + 744 + 196884q + · · · , where q = e2πiτ .

We will also consider the modular discriminant function ∆ : H → C, which is a cusp form of
weight 12 for SL2(Z), and we choose to normalise it such that its q-expansion is

(4) ∆(τ) = q
∞∏
n=1

(1− qn)24 = q − 24q2 + 252q3 + · · · .

This modular form plays a key role in this paper. Let us start by computing in the next
lemma two special values which will be used in the sequel.

Lemma 2.1. Let ∆ be the discriminant modular form, normalized as in (4). We have

(a) ∆(ρ) = − 33

(2π)24
Γ

(
1

3

)36

, where ρ = e
iπ
3 and Γ stands for Euler’s Gamma function,

and

(b) ∆(i) =
1

224π18
Γ

(
1

4

)24

.

Proof. Let us start with (a). We have classically (2π)12∆(ρ) = g2(ρ)
3 − 27g3(ρ)

2, with g2, g3
the normalized Eisenstein series, and g2(ρ) = 0 is a direct computation. For the value g3(ρ),
we work with the elliptic curve in complex Weierstrass form y2 = 4x3 − 4, which has period
lattice Λ = ωZ+ ρωZ, with period

ω = 2

∫ +∞

1

dt√
4t3 − 4

=

∫ +∞

1

dt√
t3 − 1

=
1

3
B

(
1

6
,
1

2

)
=

Γ(13)
3

2
4
3π

,

where B(., .) is the Euler B function, as classically defined for any complex numbers z1, z2
with positive real part by

B(z1, z2) :=

∫ 1

0
tz1−1(1− t)z2−1dt =

Γ(z1)Γ(z2)

Γ(z1 + z2)
.

Writing in generic Weierstrass form 4x3−4 = 4x3−g2x−g3, we simply read off g2(Λ) = 0 and
g3(Λ) = 4. We can now compute g3(Λ) = ω−6g3(Z + ρZ) = ω−6g3(ρ), hence g3(ρ)2 = 42ω12,
which gives the claim for ∆(ρ).

We treat part (b) similarly: (2π)12∆(i) = g2(i)
3 − 27g3(i)

2, and g3(i) = 0 is a direct
computation. For the value g2(i), we work with the elliptic curve in complex Weierstrass form
y2 = 4x3 − 4x, which has period lattice Λ = ω0Z+ iω0Z, with period

ω0 = 2

∫ +∞

1

dt√
4t3 − 4t

=

∫ +∞

1

dt√
t3 − t

=
1

2
B

(
1

4
,
1

2

)
=

Γ(14)
2

2
3
2π

1
2

.

Writing in generic Weierstrass form 4x3 − 4x = 4x3 − g2x − g3, we read off g3(Λ) = 0 and
g2(Λ) = 4. We can now compute g2(Λ) = ω−4

0 g2(Z + iZ) = ω−4
0 g2(i), hence g2(i)3 = 43ω12

0 ,
which gives the claim for ∆(i). □
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Figure 1. (Left) The fundamental domain F . (Right) Plot of f(τ) for τ ∈
C ∪ L ∪ ∂D and Re(τ) ≥ 0.

Remark 2.2. From old work of Hurwitz, one can also derive another expression of ∆(i) using
another period. From equation (7) page 201 of [Hur98] we get

∆(i) =
218

(2π)12

(∫ 1

0

dt√
1− t4

)12

.

Our first analytical tool is the following result, which is a refinement of (3.18) of [Paz19a].

Lemma 2.3. Let f(τ) = logmax
{
|∆(τ)|, |j(τ)∆(τ)|

}
. Then for all τ ∈ F ,

−5.5335 < f(τ) ≤ f(i) = log

(
33

218π18
Γ

(
1

4

)24
)
< 1.1266.

Proof. We have

j(τ) =
g2(τ)

3

(2π)12∆(τ)
,

where g2(τ) is again the normalized Eisenstein series of weight 4. Thus

f(τ) =

{
log |∆(τ)| if |j(τ)| < 1
3 log |g2(τ)| − 12 log(2π) if |j(τ)| ≥ 1.

The boundary of F consists of a circular arc C from ρ to ρ2, where ρ = e
iπ
3 , as well as the

two vertical half-lines L from ρ to i∞ and L′ from ρ2 to i∞.
Since j(τ) has simple zeros at ρ and ρ2, and no other zeroes near F , one finds that |j(τ)| ≤

1 in small neighbourhoods of these two points. Their intersection with F consists of two
connected components, D ∪D′ = {τ ∈ F : |j(τ)| ≤ 1}, where ρ ∈ D and ρ2 ∈ D′.

By the Maximum Modulus Principle, f(τ) attains its extrema either at the cusp i∞ or on
the boundary components L′, C, L, ∂D and ∂D′.

Using SageMath [Sage], we computed f restricted to these boundary components. The
results are symmetric around the imaginary axis, so Figure 1 shows the plot of f(τ) for τ on
the contour from i via ρ to i∞, as well as on ∂D.

We find that f attains its maximum at f(i) < 1.1266 and its minimum > −5.5335 where
∂D meets L. At the cusp, f(i∞) = 0, which lies between these two extreme values. The
formula for f(i) comes directly from Lemma 2.1.

□
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Remark 2.4. Repeating the computations in [BP23] using the upper bound in Lemma 2.3
instead of [BP23, (13)], we obtain in the following corollary a slight improvement on the
constant in (3).

Corollary 2.5. Let N ≥ 2. the height of the modular polynomial ΦN (X,Y ) is bounded by

h(ΦN ) ≤ 6ψ(N)
[
logN − 2λN + log logN + 4.238

]
.

□

3. Proof of the upper bound in Theorem 1.1

3.1. Strategy of proof. Let us start by denoting, for N ≥ 1,

CN =

{(
a b
0 d

)
: a, b, d ∈ Z, ad = N, a ≥ 1, 0 ≤ b ≤ d− 1, gcd(a, b, d) = 1

}
.

We have
#CN =

∑
d|N

∑
0≤b<d
(b,r)=1

1 =
∑
d|N

dφ(r)

r
= ψ(N),

where we denote the gcd r = (d, Nd ) for each d.
The relevance of the matrices in CN is the following. For each γ ∈ CN and τ ∈ H, define

τγ := γ(τ) =
aγτ + bγ

dγ
.

Then the elliptic curves C/τZ+ Z and C/τγZ+ Z are linked by a cyclic isogeny of degree N .
Conversely, up to isomorphism, all cyclic N -isogenies from C/τZ + Z are obtained this way.
In particular, the modular polynomial ΦN (X,Y ) satisfies

ΦN (X, j(τ)) =
∏
γ∈CN

(X − j(τγ)) .

An interpolation argument (see Lemma 3.6) allows us to estimate the height of ΦN (X,Y )
in terms of the heights of the specialised polynomials ΦN (X, j(τ)) for suitable values of τ ∈ H.
These, in turn, are related to their logarithmic Mahler measures:

SN (τ) := m
(
ΦN (X, j(τ))

)
=
∑
γ∈CN

logmax
{
1, |j(τγ)|

}
.

This Mahler measure is now our top priority. Let us work on the formula defining SN (τ)
and start with equation (14) from [BP23], valid for any N ≥ 1 and τ ∈ H:
(5)
SN (τ) =

∑
γ∈CN

logmax{|∆(τ̃γ)|, |j(τγ)∆(τ̃γ)|}+6
∑
γ∈CN

[
log Im τ̃γ−log Im τγ

]
−ψ(N) log |∆(τ)|.

Recall that here τ̃γ ∈ F denotes the representative of τγ in the fundamental domain F . We
invoke [Aut03, Lemme 2.3]:

(6)
∑
γ∈CN

log
dγ
aγ

= ψ(N)(logN − 2λN ),

which combined with
Im τγ = Im

(
aγτ + bγ

dγ

)
=
aγ
dγ

Im τ
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gives

(7) −
∑
γ∈CN

log Im τγ = ψ(N)
(
logN − 2λN − log Im τ

)
.

Inject equality (7) in equation (5) and use the upper bound from Lemma 2.3 (note that
j(τγ) = j(τ̃γ)) to get:

SN (τ) =
∑
γ∈CN

logmax{|∆(τ̃γ)|, |j(τ̃γ)∆(τ̃γ)|}+ 6ψ(N)
[
logN − 2λN

]
(8)

+ 6
∑
γ∈CN

log Im τ̃γ − ψ(N) log
[
|∆(τ)|(Im τ)6

]
≤ 6ψ(N)

[
logN − 2λN + 0.1878

]
+ 6

∑
γ∈CN

log Im τ̃γ − ψ(N) log
[
|∆(τ)|(Im τ)6

]
.(9)

Our strategy is to set τ = iy with y ≥ 1 and obtain an explicit upper bound for the sum∑
γ∈CN

log Im τ̃γ , which we will decompose into a sum with large d and a sum with small d:

(10)
∑
γ∈CN

log Im τ̃γ =
∑
γ∈CN

dγ≥
√
Ny

log Im τ̃γ +
∑
γ∈CN

dγ<
√
Ny

log Im τ̃γ .

Our strategy is inspired by [Coh84], where the author uses a similar decomposition.

3.2. Large d. Consider γ ∈ CN for which d = dγ ≥
√
Ny. As in [Coh84], we will approximate

τ̃γ with a representative τ̂γ ∈ SL2(Z)τγ satisfying Im τ̂γ ≥ 1
2 .

We start with the following lemma, which relies on the Farey sequence of order M .

Lemma 3.1. Let M ≥ 1 be an integer. Then one can express the interval

IM =

[
1

M + 1
,
M + 2

M + 1

)
=

M⋃
k=1

k⋃
h=1

(h,k)=1

IM

(
h

k

)
,

as a disjoint union of intervals IM
(
h
k

)
of the form [ρ1, ρ2) containing h

k and such that

1

2Mk
≤ h

k
− ρ1 ≤

1

(M + 1)k
,

1

2Mk
≤ ρ2 −

h

k
≤ 1

(M + 1)k
.

Proof. This is [Coh84, Lemma 3]. □

Recall that τ = iy with y ≥ 1 and d ≥
√
Ny. Then we set

M :=

⌊
d√
Ny

⌋
≥ 1.

Let γ =

(
a b
0 d

)
∈ CN . If b

d ∈ [0, 1
M+1) then we replace b by b + d; this merely has the

effect of replacing τγ by τγ + 1, which is in the same SL2(Z)-orbit.
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Next, choose a matrix δ =
(
s r
k −h

)
∈ SL2(Z) for which b

d ∈ IM (hk ) and define

τ̂γ := δ(γ(τ)).

The entries s and r may be chosen in such a way (multiplying δ by a suitable translation
matrix) that −1

2 < Re(τ̂γ) ≤ 1
2 .

Lemma 3.2. The elements τ̂γ constructed above satisfy the following estimates.

(a) Im τ̂γ ≥ 1

2
,

(b) log Im τ̂γ ≤ log
d2

Nyk2
, and

(c) log Im τ̃γ ≤ log Im τ̂γ + log 4.

Proof. We compute

Im τ̂γ =
Ny

d2k2
· 1(

Ny
d2

)2
+
(
b
d −

h
k

)2
=

d2

Nyk2
· 1

1 +
( b
d
−h

k )
2(

Ny

d2

)2

=
x

1 + t

and so

log Im τ̂γ = log
d2

Nyk2︸ ︷︷ ︸
x

− log

1 +

(
b
d −

h
k

)2(
Ny
d2

)2
︸ ︷︷ ︸

t

 .

It follows that

log Im τ̂γ ≤ log
d2

Nyk2
.

We also have | bd −
h
k | ≤

√
Ny
dk , so

0 ≤ t ≤ Ny

d2k2
· d4

N2y2
=

d2

Nyk2
= x.

Furthermore, as x ≥ M2

k2
≥ 1, we also find

Im τ̂γ ≥ 1

2
.

Finally, combining this with −1
2 < Re τ̂γ <

1
2 it follows that

τ̂γ ∈ F ∪ SF ∪ ST−1F ∪ STF ,
where

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
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are the standard generators of SL2(Z). In particular, we find

log Im τ̃γ ≤ log Im τ̂γ + log 4.

□

Now we estimate the sum in (10) for those γ ∈ CN with d ≥
√
Ny. We note that

2 logM ≤ 2 log d− log(Ny).

Lemma 3.3. Suppose τ = iy with y ≥ 1 and N ≥ 1. Then∑
γ∈CN

dγ≥
√
Ny

log Im τ̃γ ≤
(
4.75 + 3.5 log 2 +

0.5 + log 2

2
√
N

)
ψ(N).

Proof. Let us start with

∑
γ∈CN

dγ≥
√
Ny

log Im τ̃γ ≤
∑
d|N

d≥
√
Ny

∑
0≤b<d
(b,r)=1

(
log Im τ̂γ + log 4

)
(11)

≤

 ∑
d|N

d≥
√
Ny

∑
0≤b<d
(b,r)=1

log Im τ̂γ

+ log(4)ψ(N),

as the number of terms in the sum is bounded by #CN = ψ(N). By Lemma 3.2,∑
d|N

d≥
√
Ny

∑
0≤b<d
(b,r)=1

log Im τ̂γ ≤
∑
d

∑
b

log
d2

Nyk2
(12)

=
∑
d

M∑
k=1

k∑
h=1

∑
b
d
∈IM (h

k
)︸ ︷︷ ︸

(i)

[
2 log

d

k
− log(Ny)

]
.

Let us bound the number of terms in the sum (i) above. By Lemma 3.1, the length of
IM (hk ) is bounded by 2

(M+1)k , hence the number of terms in the inner sum is bounded by the
number of integers b with (b, r) = 1 in dIM (hk ), for fixed k and h = 1, . . . k. For an interval of
length r, we have φ(r) integers coprime with r. Therefore, for fixed d and k,
(13)

#

{
b

d
∈ IM (

h

k
), 0 ≤ b < d, (b, r) = 1

}
≤ φ(r)

⌈
1

r

2d

(M + 1)k

⌉
≤ φ(r)

(
2d

(M + 1)kr
+ 1

)
.

Summing over 1 ≤ h ≤ k, we bound the number of terms in the sum (i) by

2dφ(r)

(M + 1)r
+ kφ(r).

Hence we split the sum in Equation (12) in two:
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∑
d|N

d≥
√
Ny

∑
0≤b<d
(b,r)=1

log Im τ̂γ(14)

≤
∑
d

M∑
k=1

2dφ(r)

(M + 1)r

[
2 log

d

k
− log(Ny)

]
+
∑
d

M∑
k=1

kφ(r)

[
2 log

d

k
− log(Ny)

]
We deal with the first sum in the right hand side of inequality (14).

∑
d

M∑
k=1

2dφ(r)

(M + 1)r

[
2 log

d

k
− log(Ny)

]
(15)

=
∑
d

2dφ(r)

(M + 1)r

[
2M log d− 2

M∑
k=1

log k −M log(Ny)

]

≤
∑
d

2dφ(r)

r

M

M + 1

[
2 + log

d2

M2Ny
− 1

6M(M + 1)
− 2

log(
√
2πM)

M

]
(ii)

≤
∑
d

2dφ(r)

r

M

M + 1

[
2 + 2 log

M + 1

M
− 1

6M(M + 1)
− log(2πM)

M

]
(iii)

≤
∑
d|N

2dφ(r)

r
2 (iv)

= 4ψ(N),

where to reach (ii) we used
M∑
k=1

log k = log(M !) and by [Rob55] we have for any integer M ≥ 1:

√
2πM

(
M

e

)M
e

1
12(M+1) ≤M ! ≤

√
2πM

(
M

e

)M
e

1
12M

so in particular

M logM −M + log
√
2πM +

1

12(M + 1)
≤

M∑
k=1

log k,

and in (iii) we used the fact that M ≤ d√
Ny

≤M + 1 implies

1 ≤ d2

M2Ny
≤
(
M + 1

M

)2

,

and the inequality (iv) holds because for any M ≥ 1 we have

M

M + 1

[
2 + 2 log

M + 1

M
− 1

6M(M + 1)
− log(2πM)

M

]
≤ 2,

which can be verified through direct computation.
Let us bound the second sum in the right hand side of inequality (14).
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∑
d|N,

d≥
√
Ny

M∑
k=1

kφ(r)

(
2 log

d√
Ny

− 2 log k

)

=
∑
d|N,

d≥
√
Ny

(
φ(r)M(M + 1) log

d√
Ny

− 2φ(r)
M∑
k=1

k log k

)
.

We bound −
M∑
k=1

k log k as follows. By Abel’s summation formula,

M∑
k=1

k log k =
M(M + 1)

2
logM −

∫ M

1

⌊u⌋(⌊u⌋+ 1)

2

1

u
du,

hence, as ⌊u⌋
u ≤ 1,

−2

M∑
k=1

k log k = −M(M + 1) logM +

∫ M

1

⌊u⌋(⌊u⌋+ 1)

u
du

≤ −M(M + 1) logM +
M(M + 1)

2
− 1.

We set M̃ := d√
Ny

, so M ≤ M̃ ≤M + 1. Therefore,

∑
d|N, d≥

√
Ny

(
φ(r)M(M + 1) log

d√
Ny

− 2φ(r)
M∑
k=1

k log k

)

≤
∑

d|N, d≥
√
Ny

φ(r)

(
M(M + 1) log

(
M + 1

M

)
+
M(M + 1)

2
− 1

)

≤
∑

d|N, d≥
√
Ny

φ(r)

(
M̃(M̃ + 1) log 2 +

M̃(M̃ + 1)

2

)

=
∑

d|N, d≥
√
Ny

φ(r)

((
log 2 +

1

2

)
M̃(M̃ + 1)

)
(16)

≤
(
log 2 +

1

2

)∑
d|N

φ(r)
d2

Ny
+

∑
d|N, d≥

√
N

φ(r)
d√
Ny

(17)

≤
(
log 2 +

1

2

)(
3

2
+

1

2
√
N

)
ψ(N).(18)

For the first sum in (17), remark that a = N
d also runs through the divisors of N and that

r = (d, a), hence a ≥ r, and∑
d|N

φ(r)
d2

Ny
=

1

y

∑
a|N

φ(r)
N

a2
≤ 1

y

∑
a|N

φ(r)

r

N

a
=

1

y

∑
d|N

φ(r)

r
d =

1

y
ψ(N) ≤ ψ(N).
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For the second sum in (17),

(19)
∑

d|N, d≥
√
N

φ(r)
d√
Ny

=
1
√
y

∑
a|N, a≤

√
N

φ(r)

√
N

a
≤

√
N
∑
a≤

√
N

φ(r)

r
≤ ψ(N) + φ(

√
N)

2
.

The last inequality in (19) comes from

ψ(N) =
∑
d>

√
N

φ(r)

r
d+

∑
d<

√
N

φ(r)

r
d+

φ(
√
N)√
N

√
N

=
∑
d≤

√
N

φ(r)

r

(
d+

N

d

)
− φ(

√
N) ≥ 2

√
N
∑
d≤

√
N

φ(r)

r
− φ(

√
N)

as (d + N
d ) ≥ 2

√
N for any 1 ≤ d ≤ N . We also set φ(x) = 0 if x ̸∈ N. Notice also that

φ(
√
N)

ψ(N) ≤ 1√
N

, because φ(
√
N) ≤

√
N and ψ(N) ≥ N. Equation (18) now follows.

This finishes the proof. □

Remark 3.4. We remark that we can obtain the slightly worse bound (8 + 2 log 2)ψ(N) in
Lemma 3.3 with a simpler argument. With the notations in (13), it can be checked that the
following inequality is true,

2d

(M + 1)kr
≥ 1

for any 1 ≤ k ≤ M . This implies that the second sum in (14) is bounded by the first, so we
could use the bound of Equation (15) for both of them.

3.3. Small d. Now we consider the sum over γ ∈ CN with dγ <
√
Ny.

Lemma 3.5. Let τ = iy with y ≥ 1 and N ≥ 1. Then we have∑
γ∈CN

dγ<
√
Ny

log Im τ̃γ ≤ ψ(N)

(
1

e
+ log Im τ

)
.

Proof. In this case Im τγ > 1, so Im τ̃γ = Im τγ . We write a = N
d and compute

∑
γ∈CN

dγ<
√
Ny

log Im τγ =
∑
d|N

d<
√
Ny

∑
b<d

(b,r)=1

log
ay

d

=
∑
d|N

d<
√
Ny

dφ(r)

r

[
log

a

d
+ log y

]

≤ ψ(N) log y +
∑
d|N

d<
√
Ny

dφ(r)

r
log

a

d
.
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The crude estimate log a
d ≤ 1

e
a
d (which holds as log x

x has a maximum at x = e for x > 0)
gives us

(20)
∑
d|N

d<
√
Ny

dφ(r)

r
log

a

d
≤ 1

e

∑
a|N

aφ(r)

r
=

1

e
ψ(N).

As y = Im τ , this concludes the proof. □

3.4. Final steps of the proof. As shown in [BP23], computations by Andrew Sutherland
confirm Theorem 1.1 for N ≤ 400, so we may assume N ≥ 401. In this case, the coefficient in
Lemma 3.3 is

4.75 + 3.5 log 2 +
0.5 + log 2

2
√
N

< 7.2059.

Adding the bounds in Lemma 3.3 and Lemma 3.5, we obtain∑
γ∈CN

log Im τ̃γ ≤ ψ(N)(7.5737 + log Im τ).

We choose τ = iy such that j(τ) ∈ [1728, 3456], so 1 ≤ y < 1.2536, for which we compute
(using SageMath [Sage])

− log
[
|∆(τ)|(Im τ)6

]
≤ 6.5296,

and so in equation (9) we have

SN (τ) ≤ 6ψ(N)
[
logN − 2λN + 0.1878

]
+ 6

∑
γ∈CN

log Im τ̃γ − ψ(N) log
[
|∆(τ)|(Im τ)6

]
≤ 6ψ(N)

[
logN − 2λN + 9.0756

]
.

We add a classical interpolation lemma.

Lemma 3.6. Let N ≥ 1. For any real L > 1,

h(ΦN ) ≤ max
L≤j(τ)≤2L

SN (τ) + ψ(N)

(
1 + logL

L
+ 4 log 2

)
.

Proof. This is obtained in [BP23] equation (19), and comes from Lemma 10 in [BrSu10]. □

We can finally use Lemma 3.6 with L = 1728 (corresponding to the smallest permissible
value of y, which gives the best constants), and obtain

h(ΦN ) ≤ max
1728≤j(τ)≤3456

SN (τ) + ψ(N)

(
1 + log 1728

1728
+ 4 log 2

)
≤ 6ψ(N)

[
logN − 2λN + 9.5387

]
.

This concludes the proof of the upper bound in Theorem 1.1.

4. Proof of the lower bound in Theorem 1.1

We now turn to the lower bound in Theorem 1.1. For any τ in the complex upper half
plane, recall that the logarithmic Mahler measure of ΦN (X, j(τ)) is equal to

m
(
ΦN (X, j(τ))

)
= SN (τ) =

∑
γ∈CN

logmax{1, |j(τγ)|}.

We start with an upper bound that will be used later in the proof.
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Lemma 4.1. For every N ≥ 1 we have
(a) SN (τ) ≤ 2 log(ψ(N) + 1) + ψ(N) logmax{1, |j(τ)|}+ h(ΦN ).

(b) SN (ρ) ≤ log(ψ(N) + 1) + h(ΦN ), where ρ = e
iπ
3 .

Proof. Write ΦN (X,Y ) =
∑ψ(N)

k=0 Pk(Y )Xk, where each Pk(Y ) ∈ Z[Y ] has degree ≤ ψ(N).
Denoting H(Pk) = eh(Pk) the maximum absolute value of the coefficients of Pk, we have∣∣Pk(j(τ))∣∣ ≤ (ψ(N) + 1)max{1, |j(τ)|}ψ(N)H(Pk) ≤ (ψ(N) + 1)max{1, |j(τ)|}ψ(N)H(ΦN ).

Comparing the Mahler measure to the length of a polynomial [BrZu20, Lemma 1.7], we get

SN (τ) = m
(
ΦN (X, j(τ))

)
≤ log

ψ(N)∑
k=0

∣∣Pk(j(τ))∣∣
(21)

≤ log
[
(ψ(N) + 1)2max{1, |j(τ)|}ψ(N)H(ΦN )

]
.

This proves part (a).
Since Pk(0) is the constant coefficient of Pk(Y ), we see that

log |Pk(0)| ≤ h(Pk) ≤ h(ΦN ).

As j(ρ) = 0, in this case (21) gives

SN (ρ) ≤ log

ψ(N)∑
k=0

|Pk(0)|

 ≤ log(ψ(N) + 1) + h(ΦN ).

Part (b) follows. □

To obtain a lower bound on h(ΦN ), it is thus enough to bound SN (ρ) from below, which is
the goal of the next lemma.

Lemma 4.2. Let ρ = e
iπ
3 . Then for for any N ≥ 1,

SN (ρ) ≥ 6ψ(N)

(
logN − 2λN − 1

6
log

∣∣∣∣∣ 33

(2π)24
Γ

(
1

3

)36
∣∣∣∣∣− 5.5335

6

)
.

Proof. We bound the two sums in equation (8) for SN (τ) from below, starting with Lemma
2.3 which gives us

(22)
∑
γ∈CN

logmax{|∆(τ̃γ)|, |j(τγ)∆(τ̃γ)|} ≥ −5.5335ψ(N).

Also, for any γ ∈ CN , we have Im τ̃γ ≥
√
3
2 . We thus obtain

(23) SN (τ) ≥ −5.5335ψ(N)+6ψ(N)(logN−2λN )+6ψ(N) log

√
3

2
−ψ(N) log |∆(τ)(Im τ)6|.

We will now specialize τ = ρ. We obtain via Lemma 2.1 and equation (23):

(24) SN (ρ) ≥ −5.5335ψ(N) + 6ψ(N)(logN − 2λN )− ψ(N) log

∣∣∣∣∣ 33

(2π)24
Γ

(
1

3

)36
∣∣∣∣∣ ,

which leads to the claim. □
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By combining Lemma 4.1(b) and Lemma 4.2, we finally obtain

h(ΦN ) ≥ −5.5335ψ(N) + 6ψ(N)(logN − 2λN )− ψ(N) log

∣∣∣∣∣ 33

(2π)24
Γ

(
1

3

)36
∣∣∣∣∣− log(ψ(N) + 1),

and
1

6

(
log

∣∣∣∣∣ 33

(2π)24
Γ

(
1

3

)36
∣∣∣∣∣+ log(ψ(N) + 1)

ψ(N)
+ 5.5335

)
≤ 0.0351

when N ≥ 401. This proves the lower bound from Theorem 1.1 in the case N ≥ 401, whereas
the numerical computations by Andrew Sutherland (see [BP23]) show that the Theorem also
holds when N ≤ 400.

5. Explicit Hecke points estimates

So far, we have only obtained bounds on
∑

γ∈CN
log Im τ̃γ for the special values τ = iy.

One can deduce a general bound from Theorem 1.1, which we record in the following result.

Proposition 5.1. Let τ ∈ F . Then

(a) max
{
log

√
3

2
, log Im τ − logN + 2λN

}
≤ 1

ψ(N)

∑
γ∈CN

log Im τ̃γ ≤ 10.832 + log Im τ.

(b) If Im τ ≥ N , then
1

ψ(N)

∑
γ∈CN

log Im τ̃γ = log Im τ − logN + 2λN .

Proof. For each γ ∈ CN we have Im τ̃γ ≥ Im τγ , and also Im τ̃γ ≥
√
3
2 . Thus

log Im τ̃γ ≥ max

{
log Im τγ , log

√
3

2

}
.

Now (7) implies the lower bound in part (a).
Furthermore, if Im τ ≥ N , then Im τ̃γ = Im τγ for all γ ∈ CN , and so (7) implies part (b).
We now prove the upper bound in part (a). From Lemma 4.1(a) we obtain

SN (τ) ≤ 2 log(ψ(N) + 1) + ψ(N) logmax{1, |j(τ)|}+ h(ΦN ).

Next, we replace the left hand side by (8) and extract
1

ψ(N)

∑
γ∈CN

log Im τ̃γ(25)

≤
[

1

6ψ(N)
h(ΦN )− logN + 2λN

]

+
1

6

logmax
{
|∆(τ)|, |j(τ)∆(τ)|

}
− 1

ψ(N)

∑
γ∈CN

logmax
{
|∆(τ̃γ)|, |j(τ̃γ)∆(τ̃γ)|

}
+ log Im τ +

log(ψ(N) + 1)

3ψ(N)
.

Now Theorem 1.1 and Lemma 2.3 give us
1

ψ(N)

∑
γ∈CN

log Im τ̃γ ≤ 9.5387 +
1

6
[1.1266 + 5.5335] +

log 3

6
+ log Im τ.
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The result follows. □

We now prove Theorem 1.2, which is an explicit version of Silverman’s Theorem 5.1 page
417 of [Sil90].

Proof. (of Theorem 1.2) Fix N and E, and let K be a sufficiently large number field that E
and every E/C as well as the isogenies linking them are defined over K.

It follows from [Sil90, Prop. 2] that only the infinite places contribute to the difference, so

h∞(jE)−
1

ψ(N)

∑
C cyclic
#C=N

h∞(jE/C)(26)

=
1

[K : Q]

∑
σ:K↪→C

logmax
{
1, |σ(jE)|

}
− 1

ψ(N)

∑
C cyclic
#C=N

logmax
{
1, |σ(jE/C)|

} .
Notice that the Hecke sum in [Sil90] is over all subgroups C ⊂ E of order N , not just the
cyclic ones, but the argument in [Sil90, Prop. 2] gives the same result in our situation.

Let τσ ∈ F be such that σ(jE) = j(τσ), then∑
C cyclic
#C=N

logmax
{
1, |σ(jE/C)|

}
= SN (τσ) = m

(
ΦN (X,σ(jE)

)
is the Mahler measure of ΦN (X, j(τσ)). Now Lemma 4.1(a) gives

m
(
ΦN (X,σ(jE))

)
≤ 2 log(ψ(N) + 1) + ψ(N) logmax{1, |jE |}+ h(ΦN ).

Part (a) now follows from Theorem 1.1 and the estimate
log(ψ(N) + 1)

ψ(N)
≤ log 3

2
.

To show part (b), we write τ = τσ ∈ F and combine (8), Lemma 2.3 and Proposition 5.1:

logmax
{
1, |σ(jE)|

}
− 1

ψ(N)

∑
C cyclic
#C=N

logmax
{
1, |σ(jE/C)|

}
(27)

= logmax
{
1, |j(τ)|

}
− 1

ψ(N)
SN (τ)

=

logmax{|∆(τ)|, |j(τ)∆(τ)|} − 1

ψ(N)

∑
γ∈CN

logmax{|∆(τ̃γ)|, |j(τ̃γ)∆(τ̃γ)|}


− 6

ψ(N)

∑
γ∈CN

log Im τ̃γ + 6
[
log Im τ − logN + 2λN

]
≤ [1.1266 + 5.5335]

− 6max{log
√
3

2
, log Im τ − logN + 2λN}+ 6

[
log Im τ − logN + 2λN

]
≤ 6.6601 + 6min{− log

√
3

2
+ log Im τσ − logN + 2λN , 0}.
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We now insert this into (26) and invoke [Paz19a, Lemma 2.6], which gives us

h∞(jE)−
1

ψ(N)

∑
C cyclic
#C=N

h∞(jE/C)

≤ 6.6601 + 6min
{
0,− log

√
3

2
+ log

(
1 + h∞(jE)

)
+ 1.94− log 2π − logN + 2λN

}
.

This proves part (b) of Theorem 1.2.
□

Remark 5.2. The inequalities (27) and (21) imply the following lower bound on the height
of the specialised polynomial ΦN (X, j), which can be seen as a measure of non-cancellation:

h(ΦN (X, j)) ≥ SN (τ)− log(ψ(N) + 1)

≥ ψ(N) [logmax{1, |j(τ)|} − 6.6601]− log(ψ(N) + 1)

≥ ψ(N) [logmax{1, |j(τ)|} − 7.2095] .(28)

Remark 5.3. If N ≤ Im τσ for every σ : K ↪→ C, then the above proof, together with
Proposition 5.1(b) gives ∣∣∣∣∣∣∣∣h∞(jE)−

1

ψ(N)

∑
C cyclic
#C=N

h∞(jE/C)

∣∣∣∣∣∣∣∣ ≤ 6.6601.

Remark 5.4. Theorem 1.2 may be regarded as a “Hecke-averaged” version of [Paz19a, Thm
1.1], with improved bounds.

If we replace the Weil height of the j-invariant with the stable Faltings height (see Definition
6.1) of elliptic curves in Theorem 1.2, Autissier [Aut03, Cor. 3.3] obtained the even neater
result:

1

ψ(N)

∑
C cyclic
#C=N

hFalt(E/C) = hFalt(E) +
1

2
logN − λN .

6. What is the size of X0(N)?

In this final section we give a proof of Theorem 1.3. We start with the first item and recall
the definition of the Faltings height of an abelian variety and of a curve.

6.1. Faltings height and modular polynomials. Let A be a semi-stable abelian variety
defined over a number field k, of dimension g ≥ 1. Let π : A −→ Spec(Ok) be the Néron
model of A over Spec(Ok), where Ok is the ring of integers of k. Let ε : Spec(Ok) −→ A be
the zero section of π and let ωA/Ok

be the maximal exterior power of the sheaf of relative
differentials

ωA/Ok
:= ε⋆ΩgA/Ok

.

For any archimedean place v of k, let σ be an embedding of k in C associated to v. The
associated line bundle

ωA/Ok,σ = ωA/Ok
⊗Ok,σ C ≃ H0(Aσ(C),ΩgAσ

(C))
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is equipped with a natural L2-metric ∥.∥v given by

∥s∥2v =
ig

2

(2π)g

∫
Aσ(C)

s ∧ s .

The Ok-module ωA/Ok
is of rank 1 and together with the hermitian norms ∥.∥v at infinity

it defines an hermitian line bundle ωA/Ok
= (ωA/Ok

, (∥.∥v)v∈M∞
k
) over Ok.

Recall that for any hermitian line bundle L over Spec(Ok) the Arakelov degree of L is
defined as

d̂eg(L) = log# (L/sOk)−
∑

v∈M∞
k

dv log ∥s∥v ,

where s is any non zero section of L. The resulting real number does not depend on the choice
of s in view of the product formula on the number field k.

The natural idea is then to consider d̂eg(ωA/Ok
). This Arakelov degree of the metrized

bundle ωA/Ok
will give a translate (by a term of the form gc0 with c0 an absolute constant)

of the classical Faltings height.

Definition 6.1. The stable height of A is defined as

hFalt(A) :=
1

[k : Q]
d̂eg(ωA/Ok

) .

In the same spirit, we can also define the Faltings height of a stable curve.

Definition 6.2. Let k be a number field and C/k a smooth algebraic curve defined over k,
with semi-stable reduction and genus g ≥ 1. Let p : C → S be a semi-stable integral model of
C on S = Spec(Ok). The Faltings height of C/k is the quantity

hFalt(C) =
1

[k : Q]
d̂eg(det p∗ωC/S),

where the hermitian metrics are chosen as ∥α∥2v = ig
2

(2π)g

∫
α ∧ α.

This height is often referred to as the stable height, as it is stable by extension of the base
field k. The following proposition is well known to experts.

Proposition 6.3. Let k be a number field and C/k a smooth algebraic curve defined over k,
with semi-stable reduction and genus g ≥ 1. Let JC denote the jacobian of C. Then we have

hFalt(JC) = hFalt(C).

Proof. See for instance Proposition 6.5 in [Paz19b]. □

By specializing to X0(N), we get hFalt(X0(N)) = hFalt(J0(N)). We now recall a result of
Jorgenson and Kramer on the asymptotic of the Faltings height of the modular jacobian.

Theorem 6.4. (Theorem 6.2 page 36 of [JK09]) Let N be square-free and coprime to 6. Let
g(N) be the dimension of the abelian variety J0(N). When N tends to infinity, one has

hFalt(J0(N)) =
g(N)

3
logN + o(g(N) logN).

We now need an estimate on the size of g(N) as a function of N . This is done in the next
lemma.
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Lemma 6.5. Let N be square-free and coprime to 6. When N tends to infinity, we have for
any ε > 0

g(N) =
N

12

∏
p|N

(
1 +

1

p

)
+O(σ(N)) =

ψ(N)

12
+Oε(N

ε),

where σ(N) =
∑
d|N

1. For a general N ,

g(N) =
ψ(N)

12
+O(

√
N log log(2N)).

Proof. The dimension of J0(N) equals the genus of X0(N), which is given in Proposition 1.43
page 25 of [Shi94] by the formula, valid for N coprime to 6,
(29)

g(N) = 1 +
N

12

∏
p|N

(
1 +

1

p

)
− 1

4

∏
p|N

(
1 +

(
−1

p

))
− 1

3

∏
p|N

(
1 +

(
−3

p

))
− 1

2

∑
d|N

φ((d,
N

d
)),

where φ is Euler’s function and
(

·
p

)
is the quadratic residue symbol. In the general case, the

formula has the same structure, with the products vanishing according to some divisibility
conditions.

Let us solve first the square-free case. One can check that the second and third products
in the above expression either vanish or coincide with σ(N) up to the corresponding constant
factor in front of the product. With respect to the sum, if N square-free then (d, Nd ) = 1 for
any d|N , and the sum equals σ(N). The statement follows from the known growth rate of
σ(N) = Oε(N

ε) (see Theorem 315 from [HW60]).
In the general case, the products are still bounded by σ(N). Define now

ψ̃(N) :=
∑
d|N

φ

((
d,
N

d

))
,

where (a, b) denotes the greatest common divisor of the integers a and b, and φ is Euler’s totient
function. Let us study this arithmetic function. Note that ψ̃ is a multiplicative arithmetic
function, i.e. ψ̃(ab) = ψ̃(a)ψ̃(b) if (a, b) = 1.

For p a prime number, k ≥ 1 odd,

ψ̃(pk) =
k∑
i=0

φ((pi, pk−i)) = 2

⌊ k
2
⌋∑

i=0

φ(pi) = 2(1 +

⌊ k
2
⌋∑

i=1

(pi − pi−1)) = 2p⌊
k
2
⌋

= 2p
k
2
− 1

2 =
2
√
p

√
pk ≤

(
1 +

1

p

)√
pk,

since 2√
p <

(
1 + 1

p

)
for any prime.

Likewise, if k ≥ 1 is even,

ψ̃(pk) =
k∑
i=0

φ((pi, pk−i)) = 2

k
2
−1∑
i=0

φ(pi) + φ(p
k
2 ) = p

k
2
−1 + p

k
2 =

=

(
1 +

1

p

)√
pk,
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Therefore, as ψ̃ is multiplicative,

ψ̃(N) ≤
√
N
∏
p|N

(
1 +

1

p

)
.

As ψ(N) = N
∏
p|N (1 +

1
p),

(30) ψ̃(N) ≤ ψ(N)√
N

,

and it is known that ψ(N) = O(N log(log(2N))) (see [BD+96][Lemme 2 (i)]). This finishes
the proof. □

Remark 6.6. It follows further from the proof of Lemma 6.5 that for any ε > 0, ψ̃(N) =

Oε(N
1
2
+ε) with explicit constant

(31) Cε =
∏

1>pε− 1
p

p−ε
(
1 +

1

p

)
.

We can therefore give an explicit (but worse) error term in the genus formula (29). In partic-
ular, from (30), ψ(N) ≥ N and σ(N) ≤ 2

√
N we can deduce:∣∣∣∣g(N)−

(
1 +

ψ(N)

12

)∣∣∣∣ ≤ 1

2
CεN

1
2
+ε +

7

12
σ(N) ≤

√
N

(
Cε
2
N ε +

7

6

)
, and∣∣∣g(N)−

(
1 + ψ(N)

12

)∣∣∣
ψ(N)

≤ 1

2

ψ̃(N)

ψ(N)
+

7

12

σ(N)

ψ(N)
≤ 5

3

1√
N
.

It can also be shown, by inspecting how many primes verify the condition under the product
in (31), that the constant Cε verifies:

• Cε < 1, for ε > 0.585 (as the product is empty),
• Cε < 1.2527 for ε > 0.26 (as the product only has the prime 2),
• Cε < 1.5788 for ε > 0.132 (as the product only has the primes 2 and 3).

We can now conclude on the first item of Theorem 1.3: by Proposition 6.3, hFalt(X0(N)) =

hFalt(J0(N)). By Theorem 6.4, hFalt(J0(N)) ∼ g(N)
3 logN when N tends to infinity and is

square-free, coprime to 6. By Lemma 6.5, g(N) ∼ ψ(N)
12 . Use the Corollary page 390 of [Coh84]

which gives h(ΦN ) ∼ 6ψ(N) logN to conclude that

(32) hFalt(X0(N)) ∼ 1

63
h(ΦN ).

6.2. Hecke correspondences and modular polynomials. Let us move to the second item
of Theorem 1.3. In [Aut03], Autissier uses a morphism iN : X0(N) −→ P1 × P1, which for
two elliptic curves E1, E2 and a cyclic isogeny α : E1 → E2 is defined by iN ((E1, E2, α)) =

(j(E1), j(E2)). He denotes by TN the image of X0(N) by iN , and by L̂ a natural metrized
lined bundle on P1 × P1. Theorem 3.2 page 427 of [Aut03] gives

hL̂(TN ) = 12ψ(N)(logN − 2λN + 4κ1),

where κ1 = 12ζ ′(−1) − log π − 1
2 , which implies that for any N ≥ 1, |hL̂(TN ) − 2h(ΦN )| is

bounded by a quantity linear in ψ(N), which in turn implies, as the main term is of order of



Coefficients of modular polynomials 21

magnitude bigger than ψ(N), the fact that when N tends to infinity

hL̂(TN ) ∼ 2h(ΦN ).

6.3. Heegner points and modular polynomials. The third item in Theorem 1.3 comes
from an asymptotic estimate computed in [Paz10] and heavily based on the Gross-Zagier com-
putations [GZ86]. Corollaire 1 page 164 in [Paz10] provides us, when N tends to infinity and
satisfies the Heegner conditions (there are infinitely many such N for each fixed discriminant
Dk), with

ĥJ0(N)(cDk
) ∼ 3hkuk

g(N)
hFalt(J0(N)),

where ĥJ0(N) is the Néron-Tate height on the jacobian J0(N) as defined in [GZ86]. Use
hFalt(J0(N)) = hFalt(X0(N)) and (32) to obtain this third item. This concludes the proof of
Theorem 1.3.

6.4. Arakelov canonical sheaf of X0(N). The fourth item in Theorem 1.3 comes from the
following asymptotic estimate, first computed in Théorème 1.1 page 646 of [MU98] in the case
where N is coprime to 6 and square-free, and recently generalised to any N coprime to 6 in
Theorem 1.1 of [DM23]:

(33) ω2 ∼ 3g(N) logN.

As we have g(N) ∼ ψ(N)
12 by Lemma 6.5 and by Corollary page 390 of [Coh84] we have

h(ΦN ) ∼ 6ψ(N) logN , hence we get the result.
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