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Abstract. We obtain divisibility conditions on the multiplicative
orders of elements of the form ζ+ζ−1 in a finite field by exploiting
a link to the arithmetic of real quadratic fields.

1. Introduction

Let q be a prime number and n a positive integer. We denote by
Fqn the finite field of qn elements. Suppose p = 2n+ 1 is an odd prime
number and let ζ ∈ Fq2n be a primitive pth root of unity. We set

α = ζ + ζ−1.

Then α ∈ Fqn is known as a Gauss period of type (n, 2) over Fq, and
has many desirable properties. For example, when α is a primitive
element, then it generates a normal basis for Fqn . As a result, one is
interested in the multiplicative order ord(α) of α in F∗qn . See [ASV10,
GS98, GV95, Pop12, Pop14] and the references therein, where amongst
other things lower bounds on ord(α) are obtained.

In this paper, we will look at divisibility conditions, which imply
upper bounds. The trivial upper bound ord(α) 6 qn− 1 is often sharp
when q = 2 or 3, and in general the index ind(α) := (qn − 1)/ ord(α)
tends to be small. The goal of this paper is to show how certain small
prime factors of this index can be detected in the arithmetic of the real
quadratic field Q(

√
p).

More precisely, denote by εp and hp the fundamental unit and class
number of K = Q(

√
p), respectively. Denote by OK the ring of inte-

gers of K. When q is inert in K/Q, we denote by ind(εp mod q) the
multiplicative index of (εp mod qOK) in (OK/qOK)∗ ∼= F∗q2 .

Our main result is the following.
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Theorem 1.1. Let p ≡ 5 mod 8 be a prime number, suppose that
(Z/pZ)∗ = 〈−1, q〉 and let ζ ∈ Fqp−1 be a primitive pth root of unity.
Then

gcd
(

ind(ζ + ζ−1), q2 − 1
)

= ind(εhpp mod q).

Related elements of interest are β = ζ + 1 ∈ Fq2n , whose multiplica-
tive orders (when q = 2) determine periods of Ducci sequences, see
[BLM07, Bre19, BS19]. When q is a primitive root modulo p, then
p - (qn − 1) so p - ord(ζ + ζ−1) and we get

ord(ζ + 1) = ord(ζ2 + 1) = ord
(
ζ(ζ + ζ−1)

)
= p ord(ζ + ζ−1),

where we have used the fact that ζ and ζ2 are conjugate.
Now, when q = 2 and p ≡ 1 mod 4, we find that (Z/pZ)∗ = 〈−1, 2〉

is equivalent to (Z/pZ)∗ = 〈2〉. Theorem 1.1 implies

Corollary 1.2. Suppose that p ≡ 5 mod 8 is prime and that 2 is a
primitive root modulo p. Let ζ ∈ F2p−1 be a primitive pth root of unity.
Then the following are equivalent:

(1) ind(ζ + 1) is divisible by 3.
(2) ind(ζ + ζ−1) is divisible by 3.
(3) The eventual period P of any Ducci sequence in Zp formed by

iterating the map

D : Zp → Zp; (x1, x2, . . . , xp) 7→ (|x1 − x2|, |x2 − x3|, . . . , |xn − x1|),

satisfies P |1
3
p(2(p−1)/2 − 1).

(4) (i) εp ≡ 1 mod 2OK or (ii) 3|hp.

This strengthens the main result of [Bre19], in which only the impli-
cation 4(i) ⇒ (3) was shown. The equivalence (1) ⇔ (3) is shown in
[BLM07].

2. Orders of fundamental units

We first record the following result, see for example [FT91, Cor. 2
to Thm. 39, p.182]

Lemma 2.1. If p ≡ 1 mod 4 is prime, then NK/Q(εp) = −1 and hp is
odd.

The following result is due to Ishikawa and Kitaoka.

Proposition 2.2. Let p ≡ 1 mod 4 be a prime and suppose q - 2p is
an inert prime in K/Q. Then

(1) (q − 1)/2 divides ind(εp mod q)
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(2) ord(εp mod q) ≡
{

4 mod 8 if q ≡ 1 mod 4
0 mod 8 if q ≡ 3 mod 4.

In particular, ord(εp mod q) = ord(−εp mod q).

Proof. Since NK/Q(εp) = −1 by Lemma 2.1, (1) follows from [IK98,
Theorem 1.1], and (2) follows from [IK98, Corollary 1.4]. The final
claim follows from the fact that ord(εp mod q) is divisible by 4. �

Proposition 2.2 and Theorem 1.1 imply that, if q > 3, then ind(α)
is divisible by (q − 1)/2.

The possible values of the indices ind(εp mod q) for q 6 19 inert in
Q(
√
p)/Q and p ≡ 1 mod 4 are listed in Table 1. These values are

computed as follows.
Since p ≡ 1 mod 4 we have

OK = Z
[

1 +
√
p

2

]
∼=

Z[X]

〈X2 −X + 1−p
4
〉
,

and under this isomorphism,

εp =
x+ y

√
p

2
=

1

2
(x− y) +

(
1 +
√
p

2

)
y 7→ 1

2
(x− y) +Xy,

where x and y satisfy the Pellian equation

(2.1) x2 − py2 = −4,

since NK/Q(εp) = −1 by Lemma 2.1.
Next, we consider the finite fields

OK/qOK ∼=
Fq[X]

〈X2 −X + 1−p
4
〉
,

one for each residue class p mod q such that q is inert in K/Q. For
odd q, we let p range through the quadratic non-residues mod q, by
quadratic reciprocity, and when q = 2 we set p = 5.

For each a+bX in such a field, we check whether a+bX = 1
2
(x−y)+

Xy holds with x, y satisfying (2.1). If so, we compute its multiplicative
index and we have found a candidate value for ind(εp mod q). The pro-
portion of candidate residue classes for each multiplicative index gives
a näıve prediction for the density of primes p for which ind(εp mod q)
equals that index. These predictions, together with the observed den-
sity for primes p ≡ 1 mod 4, p < 108 are shown in Table 1. (Restricting
to primes p ≡ 5 mod 8 produces similar results).

Lastly, the consequences for ind(α) from Theorem 1.1 are also listed,
using the fact that hp is odd.
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q i(εp mod q) Freq. pred. Freq. obs. Consequences of Theorem 1.1

2 1 2
3 0.67497 3| ind(α) iff 3|hp

3 1
3 0.32503 3| ind(α)

3 1 1 1.0 2 - ind(α)

5 2 2
3 0.67359 2‖ ind(α), and 3| ind(α) iff

3|hp
6 1

3 0.32641 2‖ ind(α) and 3| ind(α)

7 3 1 1.0 2 - ind(α), and 3| ind(α)

11 5 2
3 0.67325 2 - ind(α), 5| ind(α), and

3| ind(α) iff 3|hp
15 1

3 0.32675 2 - ind(α) and 15| ind(α)

13 6 6
7 0.85795 2‖ ind(α), 3| ind(α), and

7| ind(α) iff 7|hp
42 1

7 0.14205 2‖ ind(α) and 21| ind(α)

17 8 2
3 0.67236 23‖ ind(α), 3‖ ind(α) iff 3‖hp,

and 9| ind(α) iff 9|hp
24 2

9 0.21849 23‖ ind(α), 3‖ ind(α) iff 3 - hp,
and 9| ind(α) iff 3|hp

72 1
9 0.10914 23‖ ind(α) and 9| ind(α)

19 9 4
5 0.80082 2 - ind(α), 9| ind(α) and

5| ind(α) iff 5|hp
45 1

5 0.19918 2 - ind(α) and 45| ind(α)

Table 1. Possible values of ind(εp mod q) for small q
and various p. The third and fourth columns list the
predicted and observed frequency, respectively, of each
given value of ind(εp mod q) for primes p ≡ 1 mod 4, p <
108.

We illustrate this with the example q = 5. We consider the finite
fields F2 = F5[X]/〈X2 − X − 4〉 and F3 = F5[X]/〈X2 − X − 3〉, cor-
responding to the residue classes p ≡ 2 and 3 mod 5, respectively. In
F2 there are 6 elements aX + b satisfying (2a+ b)2 − 2b2 ≡ −4 mod q,
which thus might represent εp mod 5OK . Four of them, 2X, 3X, 2X+3
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and 3X + 2, have multiplicative index 2 while the elements 2 and 3 in
F2 have multiplicative index 6. The situation is similar in F3. Thus we
predict that ind(εp mod 5) equals 2 with probability 2/3 and equals 6
with probability 1/3.

Theorem 1.1 says that gcd
(

ind(α), 24
)

= ind(ε
hp
p mod 5). It follows

that 2‖ ind(α), since hp is odd. Furthermore, 3| ind(α) if and only if
3|hp or ind(εp mod 5) = 6.

It would be interesting to prove that the predicted densities in Ta-
ble 1 are indeed correct, but nothing seems to be known rigorously.
Even the question of whether there are infinitely many primes p ≡
5 mod 8 for which ind(εp mod 2) = 3 is still open, although there are
some known results if we relax the condition p prime to p squarefree,
see [Ste96].

On the other hand, in the related situation in which p is fixed and q
varies, more is known. In particular, densities of q for which ind(εp mod
q) equals a given value are obtained in [CKY00, Kat03] under the
assumption of the generalized Riemann Hypothesis.

3. Proof of the main result

From now on, we fix a prime number p ≡ 5 mod 8.
Let ζp = exp(2πi/p) ∈ C be a primitive pth root of unity, L = Q(ζp)

the corresponding cyclotomic number field and L+ = Q(ζp + ζ−1p ) its
maximal totally real subfield. Now K = Q(

√
p) is the unique quadratic

subfield of L+.
We denote by OL and OL+ the rings of integers of L and L+, respec-

tively. Our elements α ∈ Fqn are the reductions of the unit ζp + ζ−1p ∈
O∗L+ modulo primes lying above q.

The following result determines the normsNL/K(ζp+1) andNL+/K(ζp+
ζ−1p ) in K. It is one of many consequences of Dirichlet’s Class Number
Formula for K; we prove it here for lack of a suitable reference.

Proposition 3.1. Suppose p ≡ 5 mod 8. Then

(1) NL/K(ζp + 1) =

(p−1)/2∏
k=1

(
ζk

2

p + 1
)

= ε−2hpp .

(2) NL+/K(ζp + ζ−1p ) =
∏

0<r6 p−1
2
,( r

p)=1

(
ζrp + ζ−rp

)
= (−1)mεhpp ,
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where

m = #{r | p+ 3

4
6 r 6

p− 1

2
,

(
r

p

)
= 1}

=
1

4

[
p− 1

2
− h(−p)

]
and h(−p) is the class number of the imaginary quadratic field
Q(
√
−p).

Proof. First note that

NL/K(ζp + 1) =
∏

σ∈Gal(L/K)

(
σ(ζ) + 1

)
=

∏
0<r6p−1,( r

p)=1

(
ζr + 1

)
=

(p−1)/2∏
k=1

(
ζk

2

p + 1
)

and

NL+/K(ζp+ζ
−1
p ) =

∏
σ∈Gal(L+/K)

(
σ(ζp)+σ(ζ−1p )

)
=

∏
0<r6 p−1

2
,( r

p)=1

(ζrp+ζ−rp ).

A particularly elegant form of Dirichlet’s analytic class number for-
mula for K is [FT91, Thm. 71, p.309]

(p−1)/2∏
k=1

(
ζkp − ζ−kp

)−( k
p)

= εhpp .

Set R = {r ∈ Z | 0 < r 6 p−1
2
,
(
r
p

)
= 1} and N = {n ∈ Z | 0 < n 6

p−1
2
,
(
n
p

)
= −1}. Since

(
2
p

)
= −1, we have

εhpp =

∏
n∈N

(
ζnp − ζ−np

)∏
r∈R
(
ζrp − ζ−rp

) =

∏
r∈R∗

(
ζ2rp − ζ−2rp

)∏
r∈R
(
ζrp − ζ−rp

)
=

∏
r∈R∗

(
ζrp − ζ−rp

)∏
r∈R
(
ζrp − ζ−rp

) · ∏
r∈R∗

(
ζrp + ζ−rp

)
= ±

∏
r∈R

(
ζrp + ζ−rp

)
,

where R∗ is another set of representatives of quadratic residues modulo
p up to ±1. This proves (2) up to a sign, which we determine next.
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We have ε
hp
p > 0, whereas the number of negative factors in

∏
(ζrp +

ζ−rp ) =
∏

2 cos(2πir/p) equals

m = #{r | p
4
< r <

p

2
,

(
r

p

)
= 1}

=
p− 1

4
−#{r | 0 < r <

p

4
,

(
r

p

)
= 1}

=
p− 1

4
− 1

2

(p−1)/4∑
r=1

[
1 +

(
r

p

)]

=
p− 1

4
− 1

2

p− 1

4
+

(p−1)/4∑
r=1

(
r

p

)
=

1

4

[
p− 1

2
− h(−p)

]
,

by Dirichlet’s class number formula for h(−p), [Dir99, §106].
To show (1), we note that ζp and ζ2p are non-conjugates over K, so

NL/K(ζp + 1) = NL/K(ζ2p + 1) = NL/K(ζp)NL/K(ζp + ζ−1p )

= 1 ·
(
NL+/K(ζp + ζ−1p )

)2
= ε

2hp
p = ε−2hpp .

�

Remark 3.2. The above considerations are quite similar to those in
[Cho68].

Now suppose that (Z/pZ)∗ = 〈−1, q〉. Then q is inert in L+/Q and
so the following diagram commutes, where the horizontal arrows are
reduction modulo q and the vertical arrows are norms.

(3.1) ζp + ζ−1p_

��

∈ O∗L+
//

NL+/K

��

(
OL+/qOL+

)∗
N
����

±εhpp ∈ O∗K //
(
OK/qOK)∗

Here, N(α) = ±εhpp mod qOK , where the sign is irrelevant for the mul-
tiplicative index by Proposition 2.2.

Theorem 1.1 now follows from the following lemma, where for an
element g of a finite group G, we denote by ordG(g) its order and by
indG(g) = #G/ ordG(g) its index.
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Lemma 3.3. Let f : G� H be an epimorphism of finite cyclic groups
and g ∈ G. Then indH(f(g)) = gcd(indG(g), |H|)

Proof. For every divisor d of |H|, denote by Hd < H and Gd < G
the unique subgroup of index d. Let ` be a prime number dividing
|H| and let n = v`(|H|) be the `-adic valuation of |H|. Then for every
0 6 i 6 n, the map f restricts to an epimorphism f : G`i � H`i . Now

v`(indG(g)) = m ⇐⇒ g ∈ G`m rG`m+1

⇐⇒ f(g) ∈ H`m rH`m+1

⇐⇒ v`(indH(f(g))) = m.

The result follows. �

4. Some heuristics

How often does a given prime divide ord(α)?
Suppose d|qn − 1. Then a randomly chosen element β ∈ F∗qn satis-

fies d| ind(β) with probability 1/d, since F∗qn has a unique subgroup of
index d.

In the case q = 2 and p ≡ 5 mod 8, a näıve heuristic (e.g. [Bre19,
§4]) suggests that εp ≡ 1 mod 2 occurs with probability 1/3, whereas
the Cohen-Lenstra heuristics [CL84, §9.II] predict that 3|hp with prob-
ability 1−

∏
k>2(1− 3−k) ≈ 0.159811. Assuming that these conditions

are independent, we thus expect the index ind(ζ + ζ−1) to be divisi-
ble by 3 for about 43.9874% of primes p ≡ 5 mod 8 for which 2 is a
primitive root.

This suggests that the Gauss period α = ζ + ζ−1 ∈ F∗2n is at least
10% less likely to be a primitive root than a randomly chosen element,
due to the potential 3-divisibility of the class number hp.

Lastly, we consider the case where p = 2r+ 1 and r is also prime, in
which case r is called a Sophie Germain prime. Since [Q(ζp+ζ

−1
p ) : Q] =

r is prime, there are no intermediate fields K for which a phenomenon
like Theorem 1.1 might occur. In this case, a conjecture of Gao and
Vanstone [GV95] states that the Gauss period α ∈ F∗2r is always a
primitive root. The conjecture is verified in [GV95] for r < 593.

We give some heuristic arguments supporting this conjecture.
Assuming the Gauss period α behaves like a random element of F∗2r ,

any prime divisor ` of 2r − 1 will divide ind(α) with probability 1/`.
What is the probability that ` divides 2r − 1? Näıvely, we expect 1/`
also. Less Näıvely, we may argue as follows (see e.g. [Wag83]).

Every prime divisor `|2r − 1 (where r is prime) must be of the form
` = 2kr + 1, where k ≡ 0 or −r mod 4. The proportion of primes of
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this form is 1
2

1
ϕ(2r)

≈ 1
2r

. By a heuristic argument from [SK67], each

such prime has probability 1/k ≈ 2r/` of dividing 2r − 1. Combining
these, we again find that a prime ` > 2r divides 2r−1 with probability
1/`.

The expected number of counter-examples to the conjecture of Gao
and Vanstone is thus less than∑

r > 593
r Sophie Germain prime

∑
` > 2r
` prime

1

`2
≈

∞∑
r=593

2C

log2 r

∞∑
l=2r+1

1

l2 log l

≈
∫ ∞
593

2C

log2 r

(∫ ∞
2r+1

1

l2 log l
dl

)
dr ≈ 0.007.

Here we have used the heuristic that r is a Sophie Germain prime
with probability 2C/ log2 r, where C ≈ 0.66 is the Hardy-Littlewood
twin prime constant.
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