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Introduction to Sloane’s on-and-off line encyclopedia

I shall describe five encounters over nearly 30 years with Sloane’s
(Online) Encylopedia of Integer Sequences:

1973 published book (Sloane) with
2,372 entries

1995 published book (Sloane & Plouffe) with
5,488 entries (See SIAM Review at
https://carma.newcastle.edu.au/jon/

sloane/sloane.html.)

1994–1996 went on line with approximately
16,000 entries

Nov 15 21:28 EST 2015 has 263,957 entries
– all sequences used accessed Nov 15–22
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OEIS in action https://oeis.org/
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Stefan Banach (1892–1945) ... the OEIS notices analogies

A mathematician is a person who
can find analogies between theorems;
a better mathematician is one who
can see analogies between proofs
and the best mathematician can
notice analogies between theories.

See www-history.mcs.st-andrews.ac.uk/Quotations/Banach.html

OEIS also now recognises numbers: 1.4331274267223117583...

Answer

A060997 Decimal representation of continued fraction
1, 2, 3, 4, 5, 6, 7, ... (I0(2)/I1(2)).
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James Gregory (1638–1885) & Leonard Euler (1707–1783)

The sequence (A000364 (1/2))

2,−2, 10,−122, 2770 . . .

Answer

A011248 Twice A000364. Euler (or secant or “Zig”)
numbers: e.g.f. (even powers only) sech(x) = 1/ cosh(x).
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James Gregory (1638–1885) & Leonard Euler (1707–1783)

The story

In 1988 Roy North observed that Gregory’s series for π,

π = 4
∞∑
k=1

(−1)k+1

2k − 1
= 4

(
1− 1

3
+

1

5
− 1

7
+ · · ·

)
, (1)

when truncated to 5,000,000 terms, gives a value differing
strangely from the true value of π. Here is the truncated Gregory
value and the true value of π:

3.14159245358979323846464338327950278419716939938730582097494182230781640...
3.14159265358979323846264338327950288419716939937510582097494459230781640...

Errors: 2 − 2 10 − 122 2770
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James Gregory (1638–1885) & Leonard Euler (1707–1783)

The story

The series value differs, as one might expect from a series
truncated to 5,000,000 terms, in the seventh decimal place—a “4”
where there should be a “6.” But the next 13 digits are correct!

Then, following another erroneous digit, the sequence is once again
correct for an additional 12 digits. In fact, of the first 46 digits,
only four differ from the corresponding decimal digits of π.

Further, the “error” digits appear to occur in positions that have a
period of 14, as shown above.
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James Gregory (1638–1885) & Leonard Euler (1707–1783)

The story

We note that each integer is even; dividing by two, we obtain
(1,−1, 5,−122, 1385). Sloane has told us we have the Euler
numbers defined in terms of Taylor’s series for sec x:

sec x =
∞∑
k=0

(−1)kE2kx
2k

(2k)!
. (2)

Indeed, we see the asymptotic expansion base 10 on the screen:

π

2
− 2

N/2∑
k=1

(−1)k+1

2k − 1
≈

∞∑
m=0

E2m

N2m+1
(3)

This works in hex (!!) and log 2 yields the tangent numbers.
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James Gregory (1638–1885) & Leonard Euler (1707–1783)

Nico Temme’s 1995 Wiley book Special Functions: An
Introduction to the Classical Functions of Mathematical Physics
starts with this example.

References

J.M. Borwein, P.B. Borwein, and K. Dilcher, “Euler numbers,
asymptotic expansions and pi,” MAA Monthly, 96 (1989),
681–687.

See also Mathematics by Experiment §2.10 and “I prefer Pi”
in MAA Monthly, March 2015.

12 / 47



1988: Gregory & Euler
1999: Poisson & Bell

2000: Madelung & Crandall
2015: Domb & Pearson

2015: Poisson & Crandall

Siméon Poisson (1781–1840) & ET Bell (1883–1960)

The sequence (A000110 (1/10))

1, 1, 2, 5, 15, 52, 203, 877, 4140 . . .

Answer

Bell or exponential numbers: number of ways to partition a
set of n labeled elements.
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Siméon Poisson (1781–1840) & ET Bell (1883–1960)

The story

MAA Unsolved Problem: For t > 0, let

mn(t) =
∞∑
k=0

kn exp(−t)
tk

k!

be the n-th moment of a Poisson distribution with parameter t.
Let cn(t) = mn(t)/n! . Show

(a) {mn(t)}∞n=0 is log-convex for all t > 0.

(b) {cn(t)}∞n=0 is not log-concave for t < 1.

(c∗) {cn(t)}∞n=0 is log-concave for t ≥ 1.
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Siméon Poisson (1781–1840) & ET Bell (1883–1960)

The story

(b) As

mn+1(t) = t
∞∑
k=0

(k + 1)n exp(−t)
tk

k!
,

on applying the binomial theorem to (k + 1)n, we see that

mn+1(t) = t
n∑

k=0

(
n

k

)
mk(t), m0(t) = 1.

In particular for t = 1, we obtain the sequence

1, 1, 2, 5, 15, 52, 203, 877, 4140, . . .

These we have learned are the Bell numbers.
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Siméon Poisson (1781–1840) & ET Bell (1883–1960)

The story

OEIS A001861 also tell us that for t = 2, we have generalized Bell
numbers, and gives us the exponential generating functions.
The Bell numbers were known earlier to Ramanujan.

Now an explicit computation shows that

t
1 + t

2
= c0(t) c2(t) ≤ c1(t)2 = t2

exactly if t ≥ 1. Also, preparatory to the next part, a simple
calculation shows that∑

n≥0
cnu

n = exp (t(eu − 1)) . (4)
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Siméon Poisson (1781–1840) & ET Bell (1883–1960)

The story

(c∗) (The * indicates this was unsolved.) We appeal to a then
recent theorem due to Canfield. A search in 2001 on MathSciNet
for “Bell numbers” since 1995 turned up 18 items. Canfield showed
up as paper #10. Later, Google found the paper immediately!

Theorem (Canfield)

If a sequence 1, b1, b2, · · · is non-negative and log-concave, then so
is 1, c1, c2, · · · determined by the generating function equation

∑
n≥0

cnu
n = exp

∑
j≥1

bj
uj

j

 .
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Siméon Poisson (1781–1840) & ET Bell (1883–1960)

References

Experimentation in Mathematics §1.11.

E.A. Bender and R.E. Canfield, “Log-concavity and related
properties of the cycle index polynomials,” J. Combin.
Theory Ser. A 74 (1996), 57–70.

Solution to Unsolved Problem 10738, posed by Radu
Theodorescu in the 1999 American Mathematical Monthly.
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Erwin Madelung (1881–1972) & Richard Crandall (1947–2012)

The sequence (A055745 (1/3))

1, 2, 6, 10, 22, 30, 42, 58, 70, 78, 102, 130
190, 210, 330, 462 . . .

Answer

Squarefree numbers not of form ab + bc + ca for
1 ≤ a ≤ b ≤ c (probably the list is complete).

A034168 Disjoint discriminants (one form per genus) of type
2 (doubled).
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Erwin Madelung (1881–1972) & Richard Crandall (1947–2012)

The story

A lovely 1986 formula for θ34(q) due to Andrews is

θ34(q) = 1 + 4
∞∑
n=1

(−1)nqn

1 + qn
− 2

∞∑
n=1,|j |<n

(−1)jqn
2−j2 1− qn

1 + qn
. (5)

From (5) Crandall obtains

∞∑
n,m,p>0

(−1)n+m+p

(n2 + m2 + p2)s
= −4

∞∑
n,m,p>0

(−1)n+m+p

(nm + mp + pn)s
− 6α2(s).

(6)

Here α(s) =
(
1− 21−s

)
ζ(s) is the alternating zeta function.
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Erwin Madelung (1881–1972) & Richard Crandall (1947–2012)

The story

Crandall used Andrew’s formula (6) to find a new representation
for Madelung’s constant

M3(2s) :=
∞∑

n,m,p>0

(−1)n+m+p

(n2 + m2 + p2)s
.

He then asked me what numbers were not of the form

ab + bc + ca.

It was bed-time in Vancouver so I asked my ex-PDF Roland
Girgensohn in Munich.
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Erwin Madelung (1881–1972) & Richard Crandall (1947–2012)

The story

When I woke up, Roland had used matlab to send all 18
solutions up to 50, 000.

Also 4, 18 are the only non-square free solutions.

I recognised the square-free numbers as singular values of type
II (Dickson)

One more 19-th solution s > 1011 might exist but only
without GRH.
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Erwin Madelung (1881–1972) & Richard Crandall (1947–2012)

The story (The Newcastle connection)

. . . Born decided to investigate the simple ionic crystal-rock

salt (sodium chloride) – using a ring model. He asked Lande to

collaborate with him in calculating the forces between the

lattice points that would determine the structure and stability

of the crystal. Try as they might, the mathematical expression

that Born and Lande derived contained a summation of terms

that would not converge. Sitting across from Born and

watching his frustration, Madelung offered a solution. His

interest in the problem stemmed from his own research in

Goettingen on lattice energies that, six years earlier, had been

a catalyst for Born and von Karman’s article on specific heat.
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Erwin Madelung (1881–1972) & Richard Crandall (1947–2012)

The story (The Newcastle connection)

The new mathematical method he provided for convergence
allowed Born and Lande to calculate the electrostatic energy
between neighboring atoms (a value now known as the
Madelung constant). Their result for lattice constants of ionic
solids made up of light metal halides (such as sodium and
potassium chloride), and the compressibility of these crystals
agreed with experimental results.

Max Born was singer and actress Olivia Newton-John’s

maternal grandfather. Actually, soon after they discovered

they had forgotten to divide by two in the compressibility

analysis. This ultimately led to the abandonment of the

Bohr-Sommerfeld planar model of the atom.
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Erwin Madelung (1881–1972) & Richard Crandall (1947–2012)

Ignorance can be bliss

Luckily, we only looked at the OEIS after the paper was written.

References

Jonathan Borwein and Kwok-Kwong Stephen Choi, “On the
representations of xy + yz + zx ,” Experimental Mathematics,
9 (2000), 153–158.

J. Borwein, L. Glasser, R. McPhedran, J. Wan, and J. Zucker,
Lattice Sums: Then and Now. Encyclopedia of Mathematics
and its Applications, 150, Cambridge University Press, 2013.
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Cyril Domb (1920–2012) & Karl Pearson (1857–1936)

The sequence (A002895 & A253095)

1, 4, 28, 256, 2716, 31504, 387136, 4951552 . . .
and

1, 4, 22, 148, 1144, 9784, 90346, 885868, 9115276 . . .

Answers

Domb numbers: number of 2n-step polygons on diamond
lattice.

Moments of 4-step random walk in 2 and 4 dimensions.
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Cyril Domb (1920–2012) & Karl Pearson (1857–1936)

The story

We developed the following expression for the even moments. It is
only entirely integer for d = 2, 4.
In two dimensions it counts abelian squares.
What does it count in four space?

Theorem (Multinomial sum for the moments)

The even moments of an n-step random walk in dimension
d = 2ν + 2 are given by

Wn(ν; 2k) =
(k + ν)!ν!n−1

(k + nν)!

∑
k1+···+kn=k

(
k

k1, . . . , kn

)(
k + nν

k1 + ν, . . . , kn + ν

)
.
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Cyril Domb (1920–2012) & Karl Pearson (1857–1936)

The story (Generating function for 3 steps in 4 dimensions)

For d = 4, so ν = 1, the moments are sequence A103370. The
OEIS also records a hypergeometric form of the generating
function (as the linear combination of a hypergeometric function
and its derivative), added by Mark van Hoeij.

On using linear transformations of hypergeometric functions, we
have more simply that

∞∑
k=0

W3(1; 2k)xk =
1

2x2
−1

x
− (1− x)2

2x2(1 + 3x)
2F1

( 1
3 ,

2
3

2

∣∣∣∣27x(1− x)2

(1 + 3x)3

)
,

which we are able to generalise (the planar o.g.f has the same
“form”) – note the Laurent polynomial.
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Cyril Domb (1920–2012) & Karl Pearson (1857–1936)

Theorem (Generating function for even moments with three steps)

For integers ν ≥ 0 and |x | < 1/9, we have

∞∑
k=0

W3(ν; 2k)xk =
(−1)ν(2ν

ν

) (1− 1/x)2ν

1 + 3x
2F1

( 1
3 ,

2
3

1 + ν

∣∣∣∣27x(1− x)2

(1 + 3x)3

)
− qν

(
1

x

)
, (7)

where qν(x) is a polynomial (that is, qν(1/x) is the principal part
of the hypergeometric term on the right-hand side).

∞∑
k=0

W3(0; 2k)xk =
1

1 + 3x
2F1

( 1
3 ,

2
3

1

∣∣∣∣27x(1− x)2

(1 + 3x)3

)
.
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ν
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1 + 3x
2F1
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3 ,

2
3

1 + ν

∣∣∣∣27x(1− x)2
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)
− qν

(
1

x

)
, (7)

where qν(x) is a polynomial (that is, qν(1/x) is the principal part
of the hypergeometric term on the right-hand side).

∞∑
k=0

W3(0; 2k)xk =
1

1 + 3x
2F1

( 1
3 ,

2
3

1

∣∣∣∣27x(1− x)2

(1 + 3x)3

)
.
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Cyril Domb (1920–2012) & Karl Pearson (1857–1936)

Reference

J.M. Borwein, A. Straub and C. Vignat, “Densities of short
uniform random walks in higher dimensions,” preprint, 2015.
See
http://www.carma.newcastle.edu.au/jon/dwalks.pdf.

J. Borwein, A. Straub, J. Wan and W. Zudilin, with an
Appendix by Don Zagier, “Densities of short uniform random
walks,” Canadian. J. Math. 64 (5), (2012), 961–990.
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Poisson & Crandall

The sequence (A218147)

2, 2, 4, 4, 12, 8, 18, 8, 30, 16, 36, 24, 32, 32, 64,
36, 90, 32, 96, 60, 132, 64, 100, 72 . . .

Answer

Conjectured degree of polynomial satisfied by

m(n) := exp(8πφ2(1/n, 1/n).

A079458: 4m(n) is the number of Gaussian integers in a
reduced system modulo n.

38 / 47



1988: Gregory & Euler
1999: Poisson & Bell

2000: Madelung & Crandall
2015: Domb & Pearson

2015: Poisson & Crandall

Poisson & Crandall

The sequence (A218147)

2, 2, 4, 4, 12, 8, 18, 8, 30, 16, 36, 24, 32, 32, 64,
36, 90, 32, 96, 60, 132, 64, 100, 72 . . .

Answer

Conjectured degree of polynomial satisfied by

m(n) := exp(8πφ2(1/n, 1/n).

A079458: 4m(n) is the number of Gaussian integers in a
reduced system modulo n.

39 / 47



1988: Gregory & Euler
1999: Poisson & Bell

2000: Madelung & Crandall
2015: Domb & Pearson

2015: Poisson & Crandall

Poisson & Crandall

The story

φ2(x , y) =
1

π2

∑
m,n odd

cos(mπx) cos(nπy)

m2 + n2
. (8)

Crandall conjectured and I then proved that when x , y are rational

φ2(x , y) =
1

π
logA, (9)

where A is algebraic. Both computation and proof exploited:

φ2(x , y) =
1

2π
log

∣∣∣∣θ2(z , q)θ4(z , q)

θ1(z , q)θ3(z , q)

∣∣∣∣ , (10)

where q = e−π and z = π
2 (y + ix).
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Poisson & Crandall

The story

2012 Jason Kimberley (UofN) remarkably, observed degree m(s)
of minimal polynomial for x = y = 1/s is as follows. Set
m(2) = 1/2. For primes p congruent to 1 mod 4, set
m(p) = int2(p/2), where int denotes greatest integer, and for p
congruent to 3 mod 4, set m(p) = int (p/2)(int (p/2) + 1). Then
with prime factorisation s = pe11 pe22 · · · perr ,

m(s)
?
= 4r−1

r∏
i=1

p
2(ei−1)
i m(pi ). (11)

2015 (11) holds for all tested cases where s now ranges up to
50 – save s = 41, 43, 47, 49, which are still too costly to test.

JK conjectured closed form of polynomials – proven by WL!
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Poisson & Crandall Kimberley’s conjecture

Searching for 387221579866, from P11, we learn that Gordan Savin
and David Quarfoot (2010) define a sequence of polynomials
ψs(x , y) with ψ0 = ψ1 = 1 while ψ2 = 2y , ψ3 = 3x4 + 6x2 + 1,
ψ4 = 2y(2x6 + 10x4 − 10x2 − 2) and

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1 (n ≥ 2) (12)

2yψ2n = ψn

(
ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1

)
(n ≥ 3). (13)

Conjecture (Kimberley)

(a) For each integer s ≥ 1, Ps(−x2) is a prime factor of ψs(x). In
fact, it is the unique prime factor of degree 2× A218147(s).
(b) (divisibility) m | n implies ψm | ψn (confirmed for n ≤ 120).

For primes of form 4n + 3, ψs(x) is irreducible over Q(i).
Conjecture (a) confirmed for s = 52.
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Poisson & Crandall ... visualising big data

Table: 192-degree minimal polynomial with 85 digit coefficients found by
multipair PSLQ for the case x = y = 1/35.
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Poisson & Crandall for aberration correction
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Conclusion

OEIS is an amazing instrumental resource (See 2015 interview
in Quanta)

https://www.quantamagazine.org/

20150806-neil-sloane-oeis-interview/

A model both for curation and for moderation

with other resources such as email-based super seeker

As with all tools, the OEIS can help (very often) and it can
hinder (much less often)

Coming soon: J. Monaghan, L. Troché and JMB, Tools and
Mathematics, Springer (Mathematical Education), 2015.
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Happy Seventy, Tony

Algebra is generous; she often gives more than is
asked of her. (Jean d´Alembert, 1717–1783)

This Guy may be you in 29 years.
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