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ABSTRACT. The story I tell is of research undertaken,
with students and colleagues, in the last six or so years
on short random walks. As the research progressed, my
criteria for ‘beauty’ changed.

Things seemingly remarkable became ‘simple’ and other
seemingly simple things became more remarkable as our
analytic and computational tools were refined, and under-
standing improved.
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1 Introduction

Mathematics, rightly viewed, possesses not only
truth, but supreme beauty—a beauty cold and aus-
tere, like that of sculpture, without appeal to any
part of our weaker nature, without the gorgeous
trappings of painting or music, yet sublimely pure,
and capable of a stern perfection such as only the
greatest art can show.
– Bertrand Russell (1872-1970)a

aQuoted from A History of Western Philosophy, 1945
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Beauty in mathematics is frequently discussed and rarely
captured precisely.

• Terms like ‘economy’, ‘elegance’, and ‘unexpectedness’,
abound but mostly a researcher will say “I know it
when I see it”

– US Justice Potter Stewart on pornography (1964) [BD08]

• As Russell writes mathematics is the most austere and
least accessible of the arts.

– No one alive understands more than a small fraction
of the ever growing corpus.
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A century ago von Neumann is supposed to have claimed
familiarity with a quarter of the subject.

• A peek at Tim Gowers’ Companion to Pure Mathemat-
ics will show how impossible that now is.

– Clearly — except pictorially — one can only find
beautiful what one can in some sense apprehend.

• I am a pretty broadly trained and experienced researcher,
but large swathes of, say, modern algebraic geometry
or non commutative topology are too far from my ken
for me to ever find them beautiful.
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• Aesthetics also change and old questions become both
unfashionable and seemingly arid (useless and/or ugly)

– often because progress becomes too difficult as Felix Klein

wrote a century ago about elliptic functions [BB87].

• Modern packages like Maple and Mathematica or the
open source SAGE have made it possible to go further.

• This is both exciting and unexpected in that we tend to
view century-old well studied topics as largely barren.

– But the new tools are game changers.1

1This is a topic we follow up on in [MTB15].
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See Springer Mathematics Education http://www.springer.com/in/book/9783319023953
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2 Background on walks

When the facts change, I change my mind. What
do you do, sir?
– John Maynard Keynes (1883-1946)a

aQuoted in “Keynes, the Man”, The Economist, December 18 1996, page 47.

• An n-step uniform random walk in Rd starts at the
origin and makes n independent steps of length 1, each
taken in a uniformly random direction.

– Thence, each step corresponds to a random vector
uniformly distributed on the unit sphere.
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The study of such walks originates with Pearson [Pea05].

• Pearson’s interest was in planar walks, which he looked
at [Pea06] as migrations of, for instance, mosquitos
moving a step after each breeding cycle.

• Random walks in three dimensions (‘random flights’)
seem first to have been studied in extenso by Rayleigh
[Ray19], and higher dimensions were mentioned in [Wat41,
§13.48].

• Self-avoiding random walks are now much in vogue as
they model polymers and much else.
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While for both random walks and their self-avoiding cousins,
it is often the case that we should like to allow variable step
lengths, it is only for two or three steps that we can give a
closed form to the general density [Wat41].

• Thence, as often in mathematics we simplify, and in
simplifying hope that we also abstract, refine, and en-
hance.

While we tend to think of classical areas as somehow fully
understood, the truth is that we often move on because, as
Klein said, progress becomes too difficult.
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• Not necessarily because there is nothing important left
to say.

– New tools like new theorems can change the playing
field and it is important that we teach such flexibil-
ity as suggested by Keynes.

– Teaching students to read mathematical formulas
is crucial.
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Learning to read formulas
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I now describe a small part of [BNSW11, BSW13, BSWZ12],
which studied analytic and number theoretic behaviour of
short uniform planar random walks (6 steps or less). In
[BSV15] we revisited the issues in higher dimensions.

• To our surprise (pleasure), in [BSV15] we could provide
complete extensions for most of the central results in
the culminating paper [BSWZ12].

• The underlying mathematics is taken nearly verbatim
from [BSV15] so that the interested reader finds it easy
to pursue the subject in moderate detail.
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Throughout n and d will denote the number of steps and
dimension of the walk we are considering. We denote by ν
the half-integer

ν =
d

2
− 1. (1)

Most results are more naturally expressed in terms ν,
and so we denote, for instance, by

pn(ν;x)

the probability density function of the distance to the origin
after n random unit steps in Rd.
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• We first develop basic Bessel integral representations
for these densities beginning with Theorem 1.

• In Section 3 we look at the density, and in Section 4,
we turn to the associated moment function

Wn(ν; s) :=

∫ ∞
0

xspn(ν;x)dx. (2)

• In particular, we derive in Theorem 5 a formula for the
even moments Wn(ν; 2k)

– as a multiple sum over products of multinomial co-
efficients.
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• This gives yet another interpretation of the ubiquitous
Catalan numbers as the even moments of the distance
after two random steps in four dimensions

– and realize, more generally, in Example 8, the mo-
ments in four dimensions in terms of powers of the
Narayana triangular matrix.

• We shall see that dimensions two and four are priv-
ileged in that all even moments are integral only in
those two dimensions.

• In Section 5 we give an illustration of finding beauty in
less trammelled places (five steps).
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We recall that the general hypergeometric function— is
given by

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣x) :=
∞∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

xn

n!

and its analytic continuations.

• Here
(c)n := c(c+ 1) · · · (c+ n− 1)

is the rising factorial.
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The hypergeometric functions and the Bessel functions
defined below are two of the most significant special func-
tions of mathematical physics [DLMF].

• They are ‘special’ in that they are not elementary – and
arise as solutions of second order algebraic differential
equations.

• They are ubiquitous in our mathematical description
of the physical universe.

– Like precious stones each has its own best features
and occasional flaws.

18



Old questions are solved by disappearing,
evaporating, while new questions correspond-
ing to the changed attitude of endeavor and
preference take their place. Doubtless the
greatest dissolvent in contemporary thought
of old questions, the greatest precipitant of
new methods, new intentions, new problems,
is the one effected by the scientific revolu-
tion that found its climax in the “Origin of
Species.” – John Dewey (1859-1952)a

aIn his 1910 essay The influence of Darwin on Philosophy.
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3 The probability density

• [Hug95, Chapter 2.2] shows how to write the proba-
bility density pn(ν;x) of an n-step random walk in d
dimensions.

Below, the normalized Bessel function of the first kind is

jν(x) = ν!

(
2

x

)ν
Jν(x) = ν!

∑
m>0

(−x2/4)m

m!(m+ ν)!
. (3)
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• With this normalization, we have jν(0) = 1 and

jν(x) ∼ ν!√
π

(
2

x

)ν+1/2

cos

(
x− π

2

(
ν +

1

2

))
(4)

as x→∞ on the real line.

The Bessel function is a natural generalization of exp:

j0(2
√
x) =

∑
n>0

xn

n!2
while exp(x) =

∑
n>0

xn

n!
.

• Note also that j1/2(x) = sinc(x) = sin(x)/x, which in
part explains why analysis in 3-space is so simple.
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Figure 1: j(ν;x) for ν = 0, 12 , 1

– All half-integer order jν(x) are elementary and so
the odd dimensional theory is much simpler.
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• While only 2 and 3 dimensions arise easily in physically
meaningful settings, we discovered that four and higher
dimensional information is needed to explain two di-
mensional behaviour.

– This elegant discovery is reminiscent of how one
needs complex numbers to understand real polyno-
mials.
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Theorem 1. (Bessel integrals for the densities) The
probability density function of the distance to the origin in
d > 2(ν > 0) dimensions after n > 2 steps is, for x > 0,

pn(ν;x) =
2−ν

ν!

∫ ∞
0

(tx)ν+1Jν(tx)jnν (t)dt. (5)

More generally, for integer k > 0, and x > 0,

pn(ν;x) =
2−ν

ν!

1

x2k

∫ ∞
0

(tx)ν+k+1Jν+k(tx)

(
−1

t

d

dt

)k
jnν (t)dt.

(6)

We shall see that (6) is more tractable. It is also com-
putationally useful.
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• The densities p3(ν;x) in dimensions 2, 3, . . . , 9 are shown
to the left in Figure 2. In the plane, there is a logarith-
mic singularity at x = 1, otherwise the functions are at
least continuous in the interval of support [0, 3].

• The densities of four-step walks are shown on the right
of Figure 2, and corresponding plots for five steps are
shown in Figure 4.
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Figure 2: p3(ν;x) and p4(ν;x) for ν = 0, 12 , 1, . . . ,
7
2

The densities center and spike as d increases: pn(ν;x)
approaches a Dirac distribution centered at

√
n. The intu-

ition is that as d increases, the directions tend to be close
to orthogonal. Pythagoras’ theorem now applies.
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• These simple pictures are only easy to draw given a
good computer implementation of the Bessel function

– and reasonable plotting software!

• The striking 4-step planar density has been named “the
shark-fin curve” by the late Richard Crandall.

– This naming itself is a subversive aesthetic act —
after attaching the name one can never look at the
graph in the same way again

– as is discussed in John Berger’s seminal 1972 TV
series and subsequent book “Ways of Seeing” http:

//en.wikipedia.org/wiki/Ways_of_Seeing.
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Integrating (5), yields a Bessel integral representation for
the cumulative distribution functions,

Pn(ν;x) =

∫ x

0

pn(ν; y)dy, (7)

of the distance to the origin after n steps in d dimensions.

Corollary 2. (Cumulative distribution) Suppose d >
2 and n > 2. Then, for x > 0,

Pn(ν;x) =
2−ν

ν!

∫ ∞
0

(tx)ν+1Jν+1(tx)jnν (t)
dt

t
. (8)
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• So we see the Bessel function is not just computation-
ally necessary but it is also theoretically unavoidable.

• Just as the Airy function is needed to understand rain-
bows [DLMF], these functions are often the preferred
way to capture the natural universe.
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Example 3. (Kluyver’s Theorem) A justifiably famous
result of Kluyver [Klu06] is that,

Pn(0; 1) =
1

n+ 1
, (9)

for n > 2. That is, after n unit steps in the plane, the
probability of being within one unit of home is 1/(n+ 1).

• (9) is immediate from (8) on appealing to the Funda-
mental theorem of calculus since J1 = j′0. Amazing!

• How simple, how unexpected, how beautiful! An ele-
mentary proof of was given only recently [Ber13].

�
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4 The moment functions

To see a World in a Grain of Sand
And a Heaven in a Wild Flower,
Hold Infinity in the palm of your hand
And Eternity in an hour. – William Blake (1757–
1827) in Songs of Innocence.

Theorem 1 gives the moment function

Wn(ν; s) =

∫ ∞
0

xspn(ν;x)dx

of the distance to the origin after n random steps as follows:
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Theorem 4. (Bessel integral for the moments) Let
n > 2 and d > 2. For any k > 0,

Wn(ν; s) =
2s−k+1Γ

(
s
2

+ ν + 1
)

Γ(ν + 1)Γ
(
k − s

2

) ∫ ∞
0

x2k−s−1

(
−1

x

d

dx

)k
jnν (x)dx,

(10)

if k − n(ν + 1/2) < s < 2k. In particular, for n > 2, the
first pole of Wn(ν; s) occurs at s = −(2ν + 2) = −d.
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Figure 3: W3(ν; s) on [−9, 2] for ν = 0, 1, 2.

32



33



• We next obtain from Theorem 1 an explicit combina-
torial expression for the even moments.

Theorem 5. (Multinomial sum for moments) The
even moments of an n-step walk in dimension d are given
by

Wn(ν; 2k) =
(k + ν)!ν!n−1

(k + nν)!

∑
k1+···+kn=k

(
k

k1, . . . , kn

)(
k + nν

k1 + ν, . . . , kn + ν

)
.
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Example 6. With k = 1, Theorem 5 implies the second
moment of an n-step random walk is Wn(ν; 2) = n. Simi-
larly, we find that

Wn(ν; 4) =
n(n(ν + 2)− 1)

ν + 1
. (11)

More generally, Wn(ν; 2k) is a polynomial of degree k in n,
with coefficients that are rational in ν. For instance,

Wn(ν; 6) =
n(n2(ν + 2)(ν + 3)− 3n(ν + 3) + 4)

(ν + 1)2
(12)

and so on. Equation (12) shows that only in two or four
dimensions can all the moments be integers. �
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• Using the explicit expression for the even moments we
derive the following convolution.

Corollary 7. (Moment recursion) For positive integers
n1, n2, half-integer ν and nonnegative integer k we have

Wn1+n2(ν; 2k) =
k∑
j=0

(
k

j

)
(k + ν)!ν!

(k − j + ν)!(j + ν)!
Wn1(ν; 2j)Wn2(ν; 2(k−j)).

(13)

• The case n2 = 1, relates moments of an n-step walk to
those of an (n− 1)-step walk.
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Example 8. (Integrality of two and four dimensional
even moments) Corollary 7 is an efficient way to com-
pute even moments in any dimension and so to data-mine.
For illustration, because they are integral, we record the
moments in two and four dimensions for n = 2, 3, . . . , 6.

W2(0; 2k) : 1, 2, 6, 20, 70, 252, 924, 3432, 12870, . . .

W3(0; 2k) : 1, 3, 15, 93, 639, 4653, 35169, 272835, 2157759, . . .

W4(0; 2k) : 1, 4, 28, 256, 2716, 31504, 387136, 4951552, 65218204, . . .

W5(0; 2k) : 1, 5, 45, 545, 7885, 127905, 2241225, 41467725, 798562125, . . .

W6(0; 2k) : 1, 6, 66, 996, 18306, 384156, 8848236, 218040696, 5651108226, . . .

• For n = 2, these are central binomial coefficients, while,
for n = 3, 4, these are Apéry-like sequences.
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In general they are sums of squares of multinomial coef-
ficients and so integers. Likewise, the initial even moments
in four dimensions are as follows.

W2(1; 2k) : 1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . .

W3(1; 2k) : 1, 3, 12, 57, 303, 1743, 10629, 67791, 448023, . . .

W4(1; 2k) : 1, 4, 22, 148, 1144, 9784, 90346, 885868, 9115276, . . .

W5(1; 2k) : 1, 5, 35, 305, 3105, 35505, 444225, 5970725, 85068365, . . .

W6(1; 2k) : 1, 6, 51, 546, 6906, 99156, 1573011, 27045906, 496875786, . . .

Observe that the first three terms in each case are as de-
termined in Example 6.
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In the two-step case in four dimensions, we find that the
even moments are the Catalan numbers Ck, that is

W2(1; 2k) =
(2k + 2)!

(k + 1)!(k + 2)!
= Ck+1, Ck :=

1

k + 1

(
2k

k

)
.

(14)
In 2 and 4 dim only, all even moments are integers.

• This is obvious for d = 2 in Theorem 5 which gives

Wn(0; 2k) =
∑

k1+···+kn=k

(
k

k1, . . . , kn

)2

and counts abelian squares [RS09].
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On the other hand, to show that Wn(1; 2k) is always
integral,we recursively apply (13) and note that it is known
(see Example 9) that the factors(

k

j

)
(k + 1)!

(k − j + 1)!(j + 1)!
=

1

j + 1

(
k

j

)(
k + 1

j

)
(15)

are integers for all nonnegative j and k. The numbers
(15) are known as Narayana numbers and occur in various
counting problems; see, [Sta99, Problem 6.36]. �

• Integrality of 4-dimensional moments is a deeper – and
so arguably more beautiful – fact we first discovered
numerically before being led to the Narayana triangle:
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Example 9. (Narayana numbers and triangle) The
recursion for Wn(ν; 2k) is equivalent to: for given ν, let
A(ν) be the infinite lower triangular matrix with entries

Ak,j(ν) =

(
k

j

)
(k + ν)!ν!

(k − j + ν)!(j + ν)!
(16)

for row indices k = 0, 1, 2, . . . and columns j = 0, 1, 2, . . ..
Then the row sums of A(ν)n are given by the moments

Wn+1(ν; 2k), k = 0, 1, 2, . . ..

• For instance, in the case ν = 1:
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A(1) =


1 0 0 0 · · ·
1 1 0 0
1 3 1 0
1 6 6 1
...

. . .

 , A(1)3 =


1 0 0 0 · · ·
3 1 0 0
12 9 1 0
57 72 18 1
...

. . .

 ,
The row sums 1, 2, 5, 14, . . . and 1, 4, 22, 148, . . . correspond
to W2(1; 2k) and W4(1; 2k) of Ex. 8.

The first column of A(ν) is all 1’s, so Wn(ν; 2k) also
give first column of A(ν)n. A(1) is known as the Narayana
triangle or Catalan triangle [Slo14, A001263].2 �

2The OEIS is a mathematical bird guide. We see/hear something striking and our guide points
out the species.
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• What is beautiful is that we completely describe the
even moments in four dimensions in terms of powers
of one known combinatorial matrix and the ubiquitous
Catalan numbers.

• We have reduced probabilistic and analytic objects to
purely combinatorial roots.

• We have illustrated another source of beauty in maths.

– As we peal away parts of the onion we often un-
cover unexpected complexity in seemingly simple
or unexplored settings.
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• Further study is rewarded by a level of simplicity yet
to be found below. We are offered a glimpse of infinity
in Blake’s grain of sand.

• I am reminded that fame in art and in mathematics
can be changeable.

– Consider Blake before Northrop Frye’s 1947 book
A fearful symmetry.

– Consider also the impact of performances by Mendel-
sohn (1829) and Gould (1955) on our reception of
Bach who died in 1750.
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The difficulty lies, not in the new ideas, but in
escaping the old ones, which ramify, for those
brought up as most of us have been, into every
corner of our minds. – John Maynard Keynesa

aKE Drexler, Engines of Creation: The Coming Era of Nanotechnology, New York, 1987.

The next equation

W3(ν; 2k) = 3F2

(
−k,−k − ν, ν + 1/2

ν + 1, 2ν + 1

∣∣∣∣4). (17)

gives a hypergeometric expression for the even moments of
a 3-step random walk.
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• We discovered numerically that, in the plane, the real
part of (17) still evaluates odd moments [BNSW11].
(e.g., W3(0; 1) = Re(1.5745972± 0.12602652i).

Odd moments are much harder to obtain; it was first
proved based on this observation, that the average distance
of a planar 3-step random walk is

W3(0; 1) = A+
6

π2
1

A
≈ 1.5746, (18)

where

W3(0;−1) =
3

16

21/3

π4
Γ6
(
1
3

)
=: A. (19)
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• This discovery for me felt precisely like Keats’ descrip-
tion of “On first looking into Chapman’s Homer.”3

We then proved the transcendental nature of odd moments
of 3-step walks in all even dimensions by showing they are
rational linear combinations of A and 1/(π2A).

• We first met planar moments in the symbolically ac-
cessible form

Wn(0; s) =

∫ 2π

0

∫ 2π

0

· · ·
∫ 2π

0

∣∣eθ1i + eθ2i + · · ·+ eθni
∣∣s dθnd · · · θ2dθ1.

(20)

3“Then felt I like some watcher of the skies
When a new planet swims into his ken;” see http://www.poetryfoundation.org/poem/173746.
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5 Densities of 5-step walks

The mathematician’s patterns, like the painter’s
or the poet’s must be beautiful; the ideas like the
colours or the words, must fit together in a har-
monious way. Beauty is the first test: there is
no permanent place in the world for ugly math-
ematics. – G.H. Hardy (1887-1977)a

aIn his delightful A Mathematician’s Apology, 1941.

Almost all mathematicians agree with Hardy – until asked
to put flesh on the bones of his endorsement of beauty.
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• Beauty may be the first test but it is the eye of the
beholder.

• Hardy, in the twelfth of his twelve lectures given as a eu-
logy for the singular Indian genius Srinivasa Ramanu-
jan (1887–1921), described a result of Ramanujan, now
viewed as one his finest, somewhat dismissively as

a remarkable formula with many parameters.4

4See Ole Warnaar’s 2013 contribution in “Srinivasa Ramanujan Going Strong at 125, Part II,”
available at http://www.ams.org/notices/201301/rnoti-p10.pdf.
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The 5-step densities for dimensions up to 9 are shown
in Figure 4. A peculiar feature in the plane is the striking
(approximate) linearity on the initial interval [0, 1]:

0 1 2 5 3 4 5

1

2

Figure 4: p5(ν;x) for ν = 0, 12 , 1, . . . ,
7
2
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As Pearson [Pea06] commented:

The graphical construction, however carefully
reinvestigated, did not permit of our considering
the curve to be anything but a straight line. . .
Even if it is not absolutely true, it exemplifies
the extraordinary power of such integrals of J
products [that is, (5)] to give extremely close ap-
proximations to such simple forms as horizontal
lines.

• In 1963 Fettis [Fet63] established nonlinearity (via nu-
merical estimation).
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Rigorously, we proved that

p5(0;x) = 0.329934 x+ 0.00661673 x3 + 0.000262333 x5 + ...,

which illustrates the near linearity of p5(0;x) for values of
x < 1.

• Is this result beautiful because it entirely resolves the
issue of whether the density is linear on [0, 1] or is it
ugly because it demolishes the apparent linearity?
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6 Conclusions

Mathematics is not a careful march down
a well-cleared highway, but a journey into a
strange wilderness, where the explorers often
get lost. Rigour should be a signal to the his-
torian that the maps have been made, and the
real explorers have gone elsewhere.
–W.S. (Bill) Angelin.a

aFrom his article “Mathematics and History”, Mathematical Intelligencer, vol. 14,
no. 4, (1992), 6-12.

53



• The tidy ex post facto beauty of a well written math-
ematics textbook or Bourbaki monograph is quite dif-
ferent from the beauty of still wild parts of maths.

Remark 10. (Meditation on beauty, II) Bessel func-
tions like some other special functions (e.g., the Gamma
function, hypergeometric functions and elliptic integrals)
are extraordinary in both their theoretical ubiquity and
applicability.

Because of my (pure) maths training, I knew them only
peripherally until my research moved into mathematical
physics, random walk theory and other “boundary” fields.
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They can even be used to produce immensely complicate
standing water waves, spelling out corporate names! 5

• To me now, they are a mathematical gem, every facet
of which rewards further examination.

• To me as a student, they were only the solution to a
second-order algebraic definition which I had to look
up each time.

• Moreover, looking them up is now easy and fun thanks
to sources like [DLMF].

5See http://www.openscience.org/blog/?p=193. (See also Pearson’s comment in Section 5.)
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I could make similar remarks about combinatorial ob-
jects, such as the Catalan numbers and the Narayana tri-
angle.

• In this case familiarity breeds content not contempt.

• Moreover, computer algebra packages make it wonder-
fully easy to become familiar with the objects.
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Remark 11. (Meditation on beauty, III) We have
shown that quite delicate results are possible for densities
and moments of walks in arbitrary dimensions, especially
for two, three and four steps.

(a) We find it interesting that induction between dimen-
sions provided methods to show results in the plane
that we previously could not establish [BSWZ12].

(b) We also should emphasize the crucial role played by
intensive computer experimentation and by computer
algebra (‘big data’ meets modern computation).
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(c) One stumbling block is that currently Mathematica,
and to a lesser degree Maple, struggle with comput-
ing various Bessel integrals to more than a few digits
— thus requiring considerable computational effort or
ingenuity.

(d) The seemingly necessary interplay from combinatorial
to analytic to probabilistic tools and back, is ultimately
one of the greatest sources of pleasure and beauty of
the work.
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