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Abstract
This work builds on tools developed in

1. D. H. Bailey, J. M. Borwein, and R. E. Crandall. Computation and
theory of extended Mordell-Tornheim-Witten sums. Mathematics of
Computationn, 83:1795–1821, 2014. See
http://carma.newcastle.edu.au/jon/MTW1.pdf

2. D. H. Bailey and J. M. Borwein. Computation and theory of
extended Mordell-Tornheim-Witten sums II. Journal of
Approximation Theory, In press. at
http://carma.newcastle.edu.au/jon/MTW2.pdf

to study character polylogarithms.

• These objects are then used to compute MTW character sums
and to explore connections with multiple-zeta values (MZVs)
and their character analogues.

• I intend to show off the interplay between numeric and
symbolic computing while exploring the topics in my title.
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Dedication from JB&AS in J. AustMS

Remark

It is fitting that Alf van der Poorten [1942–2010] wrote the
foreword to Lewin’s “bible” and highlights the [log-sine] evaluation

−
∫ π/3

0
θ log

(
2 sin

θ

2

)
dθ = −Ls

(1)
4

(π
3

)
=

17

6480
π4

and its relation with inverse central binomial sums.

This work would be impossible without very extensive symbolic and numeric computations, and makes frequent use

of the NIST Handbook of Mathematical Functions (DLMF).
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Contents. We will cover some of the following:

1 4. Preliminaries
6. Multiple polylogarithms
7. Mordell–Tornheim–Witten sums
11. Generalized MTW sums
12. Character L-series and polylogarithms

2 21. Character polylogarithms
22. Character polylogarithms and Lerch’s formula
27. L-series derivatives at negative integers
33. Multisectioning character polylogarithms

3 45. Applications to character MTW sums
45. Basics of character MTW sums
48. First order sum computations
54. Second order sum computations

4 57. Values of character sums including order zero
59. Efficient computation
62. Integral free evaluation
65. Alternating character sums
67. Character sums with 3 ≤ |d| ≤ 5
68. Character sums with d = −4

5 74. Conclusion

J.M. Borwein Character Polylogarithms



4. Preliminaries
21. Character polylogarithms

45. Applications to character MTW sums
57. Values of character sums including order zero

74. Conclusion

7. Multiple polylogarithms
8. Mordell–Tornheim–Witten sums
12. Generalized MTW sums
13. Character L-series and polylogarithms

Other References

1 Joint with:David Bailey (LBNL) Armin Straub (Tulane) and
James Wan (UofN)

- and variously with: David Borwein (UWO), Dirk Nuyens
(Leuven), Wadim Zudilin (UofN).

2 Most related results are published in FPSAC 2010, ISSAC
2011 (JB-AS: best student paper),RAMA, Exp. Math, J.
AustMS, Can. Math J. (best paper?), Theoretical CS. See:

• www.carma.newcastle.edu.au/~jb616/walks.pdf
• www.carma.newcastle.edu.au/~jb616/walks2.pdf
• www.carma.newcastle.edu.au/~jb616/densities.pdf
• www.carma.newcastle.edu.au/~jb616/logsin.pdf
• www.carma.newcastle.edu.au/~jb616/logsin2.pdf.
• http://carma.newcastle.edu.au/jon/logsin3.pdf

3 This and related talks are housed at www.carma.newcastle.
edu.au/~jb616/papers.html#TALKS

J.M. Borwein Character Polylogarithms

www.carma.newcastle.edu.au/~jb616/walks.pdf
www.carma.newcastle.edu.au/~jb616/walks2.pdf
www.carma.newcastle.edu.au/~jb616/densities.pdf
www.carma.newcastle.edu.au/~jb616/logsin.pdf
www.carma.newcastle.edu.au/~jb616/logsin2.pdf
http://carma.newcastle.edu.au/jon/logsin3.pdf
www.carma.newcastle.edu.au/~jb616/papers.html#TALKS
www.carma.newcastle.edu.au/~jb616/papers.html#TALKS


4. Preliminaries
21. Character polylogarithms

45. Applications to character MTW sums
57. Values of character sums including order zero

74. Conclusion

7. Multiple polylogarithms
8. Mordell–Tornheim–Witten sums
12. Generalized MTW sums
13. Character L-series and polylogarithms

Other References

1 Joint with:David Bailey (LBNL) Armin Straub (Tulane) and
James Wan (UofN)

- and variously with: David Borwein (UWO), Dirk Nuyens
(Leuven), Wadim Zudilin (UofN).

2 Most related results are published in FPSAC 2010, ISSAC
2011 (JB-AS: best student paper),RAMA, Exp. Math, J.
AustMS, Can. Math J. (best paper?), Theoretical CS. See:

• www.carma.newcastle.edu.au/~jb616/walks.pdf
• www.carma.newcastle.edu.au/~jb616/walks2.pdf
• www.carma.newcastle.edu.au/~jb616/densities.pdf
• www.carma.newcastle.edu.au/~jb616/logsin.pdf
• www.carma.newcastle.edu.au/~jb616/logsin2.pdf.
• http://carma.newcastle.edu.au/jon/logsin3.pdf

3 This and related talks are housed at www.carma.newcastle.
edu.au/~jb616/papers.html#TALKS

J.M. Borwein Character Polylogarithms

www.carma.newcastle.edu.au/~jb616/walks.pdf
www.carma.newcastle.edu.au/~jb616/walks2.pdf
www.carma.newcastle.edu.au/~jb616/densities.pdf
www.carma.newcastle.edu.au/~jb616/logsin.pdf
www.carma.newcastle.edu.au/~jb616/logsin2.pdf
http://carma.newcastle.edu.au/jon/logsin3.pdf
www.carma.newcastle.edu.au/~jb616/papers.html#TALKS
www.carma.newcastle.edu.au/~jb616/papers.html#TALKS


4. Preliminaries
21. Character polylogarithms

45. Applications to character MTW sums
57. Values of character sums including order zero

74. Conclusion

7. Multiple polylogarithms
8. Mordell–Tornheim–Witten sums
12. Generalized MTW sums
13. Character L-series and polylogarithms

Other References

1 Joint with:David Bailey (LBNL) Armin Straub (Tulane) and
James Wan (UofN)

- and variously with: David Borwein (UWO), Dirk Nuyens
(Leuven), Wadim Zudilin (UofN).

2 Most related results are published in FPSAC 2010, ISSAC
2011 (JB-AS: best student paper),RAMA, Exp. Math, J.
AustMS, Can. Math J. (best paper?), Theoretical CS. See:

• www.carma.newcastle.edu.au/~jb616/walks.pdf
• www.carma.newcastle.edu.au/~jb616/walks2.pdf
• www.carma.newcastle.edu.au/~jb616/densities.pdf
• www.carma.newcastle.edu.au/~jb616/logsin.pdf
• www.carma.newcastle.edu.au/~jb616/logsin2.pdf.
• http://carma.newcastle.edu.au/jon/logsin3.pdf

3 This and related talks are housed at www.carma.newcastle.
edu.au/~jb616/papers.html#TALKS

J.M. Borwein Character Polylogarithms

www.carma.newcastle.edu.au/~jb616/walks.pdf
www.carma.newcastle.edu.au/~jb616/walks2.pdf
www.carma.newcastle.edu.au/~jb616/densities.pdf
www.carma.newcastle.edu.au/~jb616/logsin.pdf
www.carma.newcastle.edu.au/~jb616/logsin2.pdf
http://carma.newcastle.edu.au/jon/logsin3.pdf
www.carma.newcastle.edu.au/~jb616/papers.html#TALKS
www.carma.newcastle.edu.au/~jb616/papers.html#TALKS


4. Preliminaries
21. Character polylogarithms

45. Applications to character MTW sums
57. Values of character sums including order zero

74. Conclusion

7. Multiple polylogarithms
8. Mordell–Tornheim–Witten sums
12. Generalized MTW sums
13. Character L-series and polylogarithms

My younger Collaborators

J.M. Borwein Character Polylogarithms



4. Preliminaries
21. Character polylogarithms

45. Applications to character MTW sums
57. Values of character sums including order zero

74. Conclusion

7. Multiple polylogarithms
8. Mordell–Tornheim–Witten sums
12. Generalized MTW sums
13. Character L-series and polylogarithms

Multiple Polylogarithms:

Lia1,...,ak(z) :=
∑

n1>···>nk>0

zn1

na1
1 · · ·n

ak
k

.

Thus, Li2,1(z) =
∑∞

k=1
zk

k2

∑k−1
j=1

1
j . Specializing produces:

• The polylogarithm of order k: Lik(x) =
∑∞

n=1
xn

nk
.

• Multiple zeta values:

ζ(a1, . . . , ak) := Lia1,...,ak(1).

• Multiple Clausen (Cl) and Glaisher functions (Gl) of depth k
and weight w :=

∑
aj :

Cla1,...,ak (θ) :=

{
Im Lia1,...,ak(eiθ) if w even
Re Lia1,...,ak(eiθ) if w odd

}
,

Gla1,...,ak (θ) :=

{
Re Lia1,...,ak(eiθ) if w even
Im Lia1,...,ak(eiθ) if w odd

}
.
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MTW Sums

We first recall the definitions of Mordell–Tornheim–Witten (MTW)
sums also called Mordell–Tornheim–Witten zeta function values.
The multidimensional Mordell–Tornheim–Witten (MTW) zeta
function is

ω(s1, . . . , sK+1) :=
∑

m1,...,mK > 0

1

ms1
1 · · ·m

sK
K (m1 + · · ·+mK)sK+1

(1)

• ω enjoys known relations, but remains mysterious with respect
to many combinatorial phenomena, especially when we
contemplate derivatives with respect to the si parameters

• K + 1 is the depth and
∑k+1

j=1 sj is the weight of ω.
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Tornheim, Mordell and Witten

1 Leonard Tornheim (1915–??). Paper in J. Amer. Math. Soc
(1950).

2 Louis J. Mordell (1888–1972). Two papers in J. London
Math. Soc. (1958).

3 Edward Witten (1951– ). Paper in Comm. in Math. Phys.
(1991).
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MTW Sums

The paper [1] introduced and discussed a novel generalized MTW
zeta function for positive integers M,N ( M ≥ N ≥ 1),
nonnegative integers si, tj—with a polylogarithmic-integral
representation (on the torus):

ω(s1, . . . , sM | t1, . . . , tN ) :=
∑

m1,...,mM,n1,...,nN > 0∑M
j=1

mj=
∑N
k=1

nk

M∏
j=1

1

mj
sj

N∏
k=1

1

nktk

(2)

=
1

2π

∫ 2π

0

M∏
j=1

Lisj

(
eiθ
) N∏
k=1

Litk

(
e−iθ

)
dθ.

(3)
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MTW Sums

• When some s-parameters are zero, there are convergence
issues with this integral representation.

• One may, however, use principal-value calculus, or alternative
representations given in [1] and expanded upon herein.

When N = 1 the representation (3) devolves to the classic MTW
form, in that

ω(s1, . . . , sM+1) = ω(s1, . . . , sM | sM+1). (4)
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Generalized MTW Sums

We then explored a wider MTW ensemble involving outer
derivatives—introduced to resolve log Gamma integrals—via:

ω

(
s1, . . . , sM | t1, . . . , tN
d1, . . . , dM | e1, . . . eN

)
:=

∑
m1,...,mM,n1,...,nN > 0∑M

j=1
mj=

∑N
k=1

nk

M∏
j=1

(− logmj)
dj

mj
sj

N∏
k=1

(− lognk)ek

nk
tk

(5)

=
1

2π

∫ 2π

0

M∏
j=1

Li
(dj)
sj

(
eiθ
) N∏
k=1

Li
(ek)
tk

(
e−iθ

)
dθ, (6)

=
1

π
Re

∫ π

0

M∏
j=1

Li
(dj)
sj

(
eiθ
) N∏
k=1

Li
(ek)
tk

(
e−iθ

)
dθ.

Here Li
(d)
s (z) :=

(
∂
∂s

)d
Lis(z). Thus, effective computation of (6)

requires robust and efficient methods for computing Li
(d)
s (eiθ) [1,2].
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Character L-series and polylogs

We use real character L-series (§27.8 of the DLMF), L±d, for
d ≥ 1. These are based on real multiplicative characters χ modulo
d, which we denote χ±d for χ(d− 1) = ±1. Then, χ±d(k) = ±1
when (k, d) = 1, zero otherwise (d without sign, denotes |d|).
For integer d ≥ 3:

L±d(s) :=
∑
n>0

χ±d(n)

ns
. (7)

Hence, for m = 0, 1, 2, . . ., and s 6= 1 we have

L
(m)
±d (s) =

1

ds

d−1∑
k=1

χ±d(k)

m∑
j=0

(
m

j

)
(− log d)jζ(m−j)

(
s,
k

d

)
. (8)

Here ζ(s, ν) :=
∑

n≥0 1/(n+ ν)s is Hurwitz zeta; ζ(s, 1) = ζ(s).
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Character L-series and polylogs

• This allows access to numerical methods for derivatives of the
Hurwitz zeta function for evaluation of quantities like L

(m)
±d (s),

say with s > 1.

• Packages such as Maple have a good implementation of
ζ(m)(s, ν) with respect to arbitrary complex s. [Mathematica
is less reliable.]

• For later use we set χ1(n) := 1, χ−2(n) := (−1)n−1. Then
L1 := ζ, while L−2 := η, the alternating zeta function.
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Character L-series

• A character and corresponding series are principal if χ(k) = 1
for all k relatively prime to d. For all other characters∑d−1

k=1 χ(k) = 0, and we say the character is balanced.
The character and series are primitive if not induced by a
character for a proper divisor of d.

• We focus on d = P, 4P or 8P , where P is a product of
distinct odd primes, since only such d admit primitive
characters.

• There are unique primitive series for 1 and each odd prime p,
such as L−3,L+5,L−7,L−11,L+13, . . ., with sign determined
by remainder modulo 4, and at 4, L−4, four times primes,
while two occur at 8p, e.g., L±24. [Pi&AGM, BGLMW13].
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Character L-series

We then obtain primitive sums for products of distinct odd primes
P or 4P , and again two at 8P . E.g., L−4,L+12,L−20,L+60,L−84.

• In primitive cases χ±d(n) :=
(±d
n

)
, where

(±d
n

)
the generalized

Legendre-Jacobi symbol.

• L−2 is a an imprimitive series, reducible to L1 via η.

• L+6(s) =
∑

n>0(1/(6n+ 1)s + 1/(6n+ 5)s) is imprimitive
with all positive coefficients, while
L−6(s) =

∑
n>0(1/(6n+1)s−1/(6n+5)s) = (1−1/2s) L−3(s)

is imprimitive but balanced, as is L−12(s) =∑
n>0(1/(12n+1)s+1/(12n+5)s−1/(12n+7)s−1/(12n+11)s),

which, being non-principal, has
∑11

k=1 χ−12(k) = 0.

• Recall that the sign determines that χ±d(d− 1) = ±1. So
χ+5(n) = 1 for n = 1, 4, and χ+5(n) = −1 for n = 2, 3.

J.M. Borwein Character Polylogarithms



4. Preliminaries
21. Character polylogarithms

45. Applications to character MTW sums
57. Values of character sums including order zero

74. Conclusion

7. Multiple polylogarithms
8. Mordell–Tornheim–Witten sums
12. Generalized MTW sums
13. Character L-series and polylogarithms

Character L-series

We then obtain primitive sums for products of distinct odd primes
P or 4P , and again two at 8P . E.g., L−4,L+12,L−20,L+60,L−84.

• In primitive cases χ±d(n) :=
(±d
n

)
, where

(±d
n

)
the generalized

Legendre-Jacobi symbol.

• L−2 is a an imprimitive series, reducible to L1 via η.

• L+6(s) =
∑

n>0(1/(6n+ 1)s + 1/(6n+ 5)s) is imprimitive
with all positive coefficients, while
L−6(s) =

∑
n>0(1/(6n+1)s−1/(6n+5)s) = (1−1/2s) L−3(s)

is imprimitive but balanced, as is L−12(s) =∑
n>0(1/(12n+1)s+1/(12n+5)s−1/(12n+7)s−1/(12n+11)s),

which, being non-principal, has
∑11

k=1 χ−12(k) = 0.

• Recall that the sign determines that χ±d(d− 1) = ±1. So
χ+5(n) = 1 for n = 1, 4, and χ+5(n) = −1 for n = 2, 3.

J.M. Borwein Character Polylogarithms



4. Preliminaries
21. Character polylogarithms

45. Applications to character MTW sums
57. Values of character sums including order zero

74. Conclusion

7. Multiple polylogarithms
8. Mordell–Tornheim–Witten sums
12. Generalized MTW sums
13. Character L-series and polylogarithms

Character L-series

A useful integral formula (25.11.27) in [DLMF] is

ζ(s, a) =
a1−s

s− 1
+

1

2
a−s +

1

Γ (s)

∫ ∞
0

(
1

ex − 1
− 1

x
+

1

2

)
xs−1

eax
dx,

(9)

valid for Re s > −1, s 6= 1,Re a > 0; (9) implies for d ≥ 3 that

L±d(s) :=
1

d

d−1∑
k=1

χ±d(k)
k1−s − 1

s− 1
+

1

2

d−1∑
k=1

χ±d(k)

ks
(10)

+

∫ ∞
0

(
xs−1

Γ (s)

)(
1

edx − 1
− 1

dx
+

1

2

) d−1∑
k=1

χ±d(k)

ekx
dx.
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Character L-series

• For non-principal characters, the singularity in (9) at s = 1 is

removable, and (10) can be used to confirm values of L
(m)
±d (1).

For d = −3 we have

L−3(s) =
21−s − 1

3 (1− s)
+

1

2

(
1− 1

2s

)
(11)

+
2

Γ (s)

∫ ∞
0
xs−1e−3x/2

(
1

e3x − 1
− 2

3x
+

1

2

)
sinh

(x
2

)
dx.

(12)

For d = +5 this simplifies to

L+5(s) =
1− 21−s − 31−s + 41−s

5(s− 1)
+

(
1− 2−s − 3−s + 4−s

)
2

(13)

+
2

Γ(s)

∫ ∞
0

x
s−1

e
−5x/2

(
1

e5x − 1
−

1

5x
+

1

2

)(
cosh

(
3x

2

)
− cosh

(
x

2

))
dx.
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Character L-series

Example (Primitive L-series and their derivatives at zero)

It helps to know ζ(0, a) = 1/2− a, ζ ′(0, a) = log Γ(a)− 1
2 log(2π).

With moment µ±d(1) :=
∑d−1

k=1 χ±d(k)k, it then follows that

L±d(0) =
∑d−1

k=1

(±d
k

)
ζ
(
0, kd

)
= −µ±d(1)

d , which is zero for +d. So

L−d(0) =

d−1∑
k=1

(
−d
k

)
ζ

(
0,
k

d

)
= −µ−d(1)

d
and L+d(0) = 0, (14)

since
∑d−1

k=1 χ±d(k) = 0 and
∑d−1

k=1 χ+d(k)k = 0 for primitive
characters. On differentiating in (7) we have

L
(1)
±d(0) = L±d(0) log d+

d−1∑
k=1

(
±d
k

)
log Γ

(
k

d

)
. (15)
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Character L-series

• Recall, for d > 4, Dirichlet showed the class number formula
for imaginary quadratic fields −µpd(1)

d = h(−d).

Each such primitive L-series obeys a simple functional equation of
the kind known for ζ:

L±d(s) = C(s)

{
sin (sπ/2)
cos (sπ/2)

}
L±d(1− s), (16)

where
C(s) := 2sπs−1d−s+1/2Γ(1− s).

Indeed, this is true exactly for primitive series.
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Character L-series and polylogs

Primitive series can be summed at various integer values:

L±d(1− 2m) =

{
(−1)mR(2m− 1)!/(2d)2m−1

0

L±d(−2m) =

{
0
(−1)mR′(2m)!/(2d)2m

(17)

L+d(2m) = Rd−1/2π2m, L−d(2m− 1) = R′d−1/2π2m−1,

for m a positive integer and R, R′ are rationals which depend on
m, d. For d = 1 these engage Bernoulli numbers, while for d = −4
Euler numbers appear. Also, famously,

L+p(1) = 2
h(p)
√
p

log ε0, (18)

where h(p) is the class number of the quadratic form with discriminant p
and ε0 is the fundamental unit in the real quadratic field Q(

√
p).
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Character Polylogarithms

We now introduce character polylogarithms, namely,

L±d(s; z) :=

∞∑
n=1

(
±d
n

)
zn

ns
(19)

L
(m)
±d (s; z) :=

∂m

∂sm
L±d(s; z). (20)

These are well defined for all characters, but of primary interest
for primitive ones.

• While such objects have been used before, most of the
computational tools we provide appear to be new or
inaccessible.

• In the sequel, one will lose very little on assuming all
characters are primitive.
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Character Polylogarithms

The following parametric formula holds:

∞∑
n=0

z(n+ν)

(n+ ν)s
= Γ(1− s)(− log z)s−1 +

∞∑
r=0

ζ(s− r, ν)
(log z)r

r!
.

(21)

Here ζ(s, ν) is again the Hurwitz zeta function, s 6= 1, 2, 3, . . .,
ν 6= 0.− 1,−2, . . ., and, as before, | log z| < 2π.

• Using (21) it is possible to substantially extend our prior
formulae.
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Character Polylogarithms
We derive

∞∑
n=0

z(dn+k+ε)

(dn+ k + ε)s
=

1

d
Γ(1− s)(− log z)s−1

+

∞∑
r=0

ζ

(
s− r, k + ε

d

)
dr−s(log z)r

r!
. (22)

For 1 ≤ k ≤ d− 1, s 6= 1, 2, 3, . . ., 0 < ε < 1, if
∑d−1

m=1

(±d
m

)
= 0,

∞∑
n=1

(
±d
n

)
z(n+ε)

(n+ ε)s
=

∞∑
r=0

(
1

ds−r

d−1∑
k=1

(
±d
k

)
ζ

(
s− r, k + ε

d

))
(log z)r

r!
.

(23)

This holds for all primitive and other balanced characters such as
−12; then any term independent of m vanishes.
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This holds for all primitive and other balanced characters such as
−12; then any term independent of m vanishes.
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Character Polylogarithms

• We then obtain a tractable formula for differentiation wrt the
order.

For m = 0, 1, 2, . . ., we can write

L
(m)
±d (s; z) :=

∞∑
n=1

(
±d
n

)
(log n)m

ns
zn

=

∞∑
r=0

∂m

∂sm

(
1

ds−r

d−1∑
k=1

(
±d
k

)
ζ

(
s− r, k

d

))
(log z)r

r!

(24)

We can now derive the following:
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Character Polylogarithms

Theorem (L-series sums for primitive character polylogarithms)

For primitive ±d = −3,−4, 5, . . . and all s we have

L
(m)
±d (s; z) =

∞∑
r=0

L
(m)
±d (s− r)(log z)r

r!
(25)

when | log z| < 2π/d.

• Now, however, unlike the case for ζ, this is also applicable at
s = 1, 2, 3, . . . (since the poles at s = 1, 2, . . . cancel).
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Theorem (L-series sums for primitive character polylogarithms)

For primitive ±d = −3,−4, 5, . . . and all s we have

L
(m)
±d (s; z) =

∞∑
r=0

L
(m)
±d (s− r)(log z)r

r!
(25)

when | log z| < 2π/d.

• Now, however, unlike the case for ζ, this is also applicable at
s = 1, 2, 3, . . . (since the poles at s = 1, 2, . . . cancel).
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Character Polylogarithms

• By contrast, integral (6), is less attractive since it cannot be
applied (to the real part) on the full range [0, π].

It does, however, lead to two attractive Clausen-like Fourier series

∞∑
n=1

χ±d(n)
cosnθ

ns
=

∞∑
r=0

L
(m)
±d (s− 2r)

(−1)rθ2r

(2r)!
(26a)

∞∑
n=1

χ±d(n)
sinnθ

ns
=

∞∑
r=0

L
(m)
±d (s− 2r + 1)

(−1)rθ2r−1

(2r − 1)!
(26b)

when |θ| < 2π/d.
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Character Polylogarithms

• To employ (25) for non-negative integer order s, we must

evaluate L
(m)
±d (−n) at negative integers.

• This can be achieved from the functional equation (16) by
methods of Apostol.

We begin for primitive d = 1, 2, . . . , with (16), which we write as:

√
dL±d(1−s) = Ψ±d(s) L±d(s), Ψ±d(s) :=

(
d

2π

)s{
2 Re eiπs/2

2 Im eiπs/2

}
Γ(s).

Then for real s and κd := − log 2π
d + 1

2πi write:
√
dL+d(1− s) = (Re 2esκd) Γ(s) L+d(s), (27a)√
dL−d(1− s) = (Im 2esκd) Γ(s) L−d(s). (27b)

Leibnitz’ formula for n-fold differentiation wrt to s leads to:
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Character Polylogarithms

Theorem (L-series derivatives at negative integers)

Let L±d be a primitive non-principal L-series. For all n ≥ 1,

L
(m)
+d

(1− 2n) =
(−1)m+nd2n−1/2

22n−1π2n

m∑
k=0

(
m

k

) k∑
j=0

(
k

j

)
(Re κ

j
d
)Γ

(k−j)
(2n) L

(m−k)
+d

(2n) (28a)

L
(m)
+d

(2− 2n) =
(−1)m+nd2n−3/2

22n−2π2n−1

m∑
k=0

(
m

k

) k∑
j=0

(
k

j

)
(Im κ

j
d
)Γ

(k−j)
(2n− 1) L

(m−k)
+d

(2n− 1)

(28b)

L
(m)
−d (1− 2n) =

(−1)m+nd2n−1/2

22n−1π2n

m∑
k=0

(
m

k

) k∑
j=0

(
k

j

)
(Im κ

j
d
)Γ

(k−j)
(2n) L

(m−k)
−d (2n) (28c)

L
(m)
−d (2− 2n) =

(−1)m+n+1d2n−3/2

22n−2π2n−1

m∑
k=0

(
m

k

) k∑
j=0

(
k

j

)
(Re κ

j
d
)Γ

(k−j)
(2n− 1) L

(m−k)
−d (2n− 1),

(28d)

(κd = − log 2π
d + 1

2πi)
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Character Polylogarithms

Since j > 0 is integer, Re κjd and Im κjd can be expanded. As
Γ(m)(n) ≈ logm(n)Γ(n), for L±d a primitive non-principal L-series:

Corollary (Positive L-series derivative asymptotics)

For all integers m ≥ 0, as n→ +∞ we have

L
(m)
+d (1− 2n)

(2n− 1)!
≈ 2

(−1)m+nd2n−1/2

(2π)2n
Re

(
πi

2
+ log

(
(2n)d

2π

))m
(29a)

L
(m)
+d (2− 2n)

(2n− 2)!
≈ 2

(−1)m+nd2n−3/2

(2π)2n−1
Im

(
πi

2
+ log

(
(2n− 1)d

2π

))m
(29b)
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Character Polylogarithms

Corollary (Negative L-series derivative asymptotics)

L
(m)
−d (1− 2n)

(2n− 1)!
≈ 2

(−1)m+nd2n−1/2

(2π)2n
Im

(
πi

2
+ log

(
(2n)d

2π

))m
(30a)

L
(m)
−d (2− 2n)

(2n− 2)!
≈ 2

(−1)m+n+1d2n−3/2

(2π)2n−1
Re

(
πi

2
+ log

(
(2n− 1)d

2π

))m
.

(30b)
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Character Polylogarithms

• One may use Stirling’s approximation to remove the factorial.
• For modest n this asymptotic allows an excellent estimate of

the size of derivative. For instance,

L
(3)
5 (−98)

98!
= −1.157053952 · 10−8...

— while the asymptotic gives −1.159214401 · 10−8....
Similarly

L
(5)
−3(−38)

38!
− 1.078874094 · 10−10...,

— while the asymptotic gives −1.092285447 · 10−8....
• These are the type of terms we need to compute below.

• Taking n-th roots in Corollary 4 shows that the radius of
convergence in Theorem 2 is as given.
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Character Polylogarithms

• We also observe that
(
π2

4 + log2
(
nd
π

))m/2
provides a useful

upper bound for each real and imaginary part in Corollary 4.
• For example,

√√√√√L
(m)
−d (1− 2n)

(2n− 1)!

2

+

L
(m)
+d

(1− 2n)

(2n− 1)!

2

≈
2
√
d

(
π2

4
+ log

2
(
nd

π

))m/2 (
d

2π

)2n

.

All physicists and a good many quite respectable
mathematicians are contemptuous about proof. (G. H.
Hardy, 1877-1947)

J.M. Borwein Character Polylogarithms



4. Preliminaries
21. Character polylogarithms

45. Applications to character MTW sums
57. Values of character sums including order zero

74. Conclusion

23. Character polylogarithms and Lerch’s formula
28. L-series derivatives at negative integers
34. Multisectioning character polylogarithms

Character Polylogarithms

• We also observe that
(
π2

4 + log2
(
nd
π

))m/2
provides a useful

upper bound for each real and imaginary part in Corollary 4.
• For example,

√√√√√L
(m)
−d (1− 2n)

(2n− 1)!

2

+

L
(m)
+d

(1− 2n)

(2n− 1)!

2

≈
2
√
d

(
π2

4
+ log

2
(
nd

π

))m/2 (
d

2π

)2n

.

All physicists and a good many quite respectable
mathematicians are contemptuous about proof. (G. H.
Hardy, 1877-1947)

J.M. Borwein Character Polylogarithms



4. Preliminaries
21. Character polylogarithms

45. Applications to character MTW sums
57. Values of character sums including order zero

74. Conclusion

23. Character polylogarithms and Lerch’s formula
28. L-series derivatives at negative integers
34. Multisectioning character polylogarithms

Multisectioning Character Polylogarithms

• All character polylogarithms obey the general rule

L±d(s;x) =

∫ x

0

L±d(s− 1; y)

y
dy,

and, in particular, Lin(1) = ζ(n), Lin(−1) = −η(n), and
Tin(1) = β(n).

Moreover, as is sometimes advantageous, ‘multi-sectioning’
(demideation) allows us to write all of our character polylogarithms
in terms of the classical one.
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Multisectioning Character Polylogarithms

Recall that for integer d > 0, given a formal power series

g(z) =
∑
n≥0

anz
n,

one may algebraically extract the function

gd,q(z) :=
∑
n≥0

and+qz
nd+q,

for 0 ≤ q ≤ d− 1 by by the multi-sectioning formula

gd,q(z) =
1

d

d−1∑
m=0

ω−mqd g(ωmd z), ωd = e2πi/d.

Applying this to the polylogarithm of order t, we arrive at:
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Multisectioning Character Polylogarithms

Theorem (Multi-sectioning for Hurwitz zeta and char. polylog)

For order t and integers q, d with 0 ≤ q ≤ d− 1, set ωd = e2πi/d.
Then

∞∑
k=1

xdk+q

(dk + q)t
=

1

d

d−1∑
m=0

ω−mqd Lit(ω
m
d x), (31)

and so with a Gauss sum γ±d(m) := 1
d

∑d−1
q=1 χ±d(q)ω

−mq
d ,

L±d(t;x) =

d−1∑
m=0

γ±d(m) Lit(ω
m
d x). (32)
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Multisectioning Character Polylogarithms

Example (Examples of multi-sectioning)

We directly computed γ±d, in (32), for d = −3, d = +5, d = ±8,
and d = +12.
We get

√
−3γ3(m) = χ−3(m),

√
5γ+5(m) = χ+5(m).

For d = +8, we have
√

8γ+8(m) = χ+8(m) and for d = −8 we
obtain

√
−8γ−8(m) = χ+8(m). Finally for d = +12 we again have√

12γ+12(m) = χ+12(m).

• From this we rediscover the closed form γ±d(m) =
χ±d(m)√
±d for

primitive characters. In Apostol—explicitly for primes and
implicitly generally—we find the requisite proof.

• Of course, for any given small ±d we can verify it directly.
The formula fails for imprimitive forms.

J.M. Borwein Character Polylogarithms



4. Preliminaries
21. Character polylogarithms

45. Applications to character MTW sums
57. Values of character sums including order zero

74. Conclusion

23. Character polylogarithms and Lerch’s formula
28. L-series derivatives at negative integers
34. Multisectioning character polylogarithms

Multisectioning Character Polylogarithms

Example (Examples of multi-sectioning)

We directly computed γ±d, in (32), for d = −3, d = +5, d = ±8,
and d = +12.
We get

√
−3γ3(m) = χ−3(m),

√
5γ+5(m) = χ+5(m).

For d = +8, we have
√

8γ+8(m) = χ+8(m) and for d = −8 we
obtain

√
−8γ−8(m) = χ+8(m). Finally for d = +12 we again have√

12γ+12(m) = χ+12(m).

• From this we rediscover the closed form γ±d(m) =
χ±d(m)√
±d for

primitive characters. In Apostol—explicitly for primes and
implicitly generally—we find the requisite proof.

• Of course, for any given small ±d we can verify it directly.
The formula fails for imprimitive forms.

J.M. Borwein Character Polylogarithms



4. Preliminaries
21. Character polylogarithms

45. Applications to character MTW sums
57. Values of character sums including order zero

74. Conclusion

23. Character polylogarithms and Lerch’s formula
28. L-series derivatives at negative integers
34. Multisectioning character polylogarithms

Multisectioning Character Polylogarithms

Example (Examples of multi-sectioning)

We directly computed γ±d, in (32), for d = −3, d = +5, d = ±8,
and d = +12.
We get

√
−3γ3(m) = χ−3(m),

√
5γ+5(m) = χ+5(m).

For d = +8, we have
√

8γ+8(m) = χ+8(m) and for d = −8 we
obtain

√
−8γ−8(m) = χ+8(m). Finally for d = +12 we again have√

12γ+12(m) = χ+12(m).

• From this we rediscover the closed form γ±d(m) =
χ±d(m)√
±d for

primitive characters. In Apostol—explicitly for primes and
implicitly generally—we find the requisite proof.

• Of course, for any given small ±d we can verify it directly.
The formula fails for imprimitive forms.

J.M. Borwein Character Polylogarithms



4. Preliminaries
21. Character polylogarithms

45. Applications to character MTW sums
57. Values of character sums including order zero

74. Conclusion

23. Character polylogarithms and Lerch’s formula
28. L-series derivatives at negative integers
34. Multisectioning character polylogarithms

Multisectioning Character Polylogarithms
Thus,with ωd = e2πi/d we have:

Corollary (Primitive character polylogarithms)

For a primitive character χ±d, non-negative m, and all s, we have

L
(m)
±d (s;x) =

√
±d
d

d−1∑
k=1

χ±d(k) Li(m)
s (ωkdx), (33)

valid for maxk | log(xωkd)| < 2π. On the unit disk we obtain

L
(m)
±d

(
s; eiθ

)
=

√
±d
d

d−1∑
k=1

χ±d(k) Li(m)
s

(
ei(θ+2kπ/d)

)
, (34)

valid for all θ not equal to 2kπ/d for any k = 1, ..., d− 1.
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Multisectioning Character Polylogarithms

Example (Explicit polylogarithms for small d (d = −2))

For d = −2, and t arbitrary we write

∞∑
m=1

(−1)m−1xm

mt
=: L−2(t;x) := η(t;x) = −L+1(t;−x)

= −Lit(−x), (35)

since (25) of Theorem 2 holds for any balanced character.

More significantly:
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Multisectioning Character Polylogarithms

Example (Explicit polylogarithms for small d (d = −3,−4))

For d = −3 with τ := (−1 + i
√

3)/2, we have

∞∑
m=1

x3m−2

(3m− 2)t
−
∞∑
m=1

x3m−1

(3m− 1)t
= L−3(t;x) =

2√
3

Im Lit(τx),

(36)

while for d = −4,

∞∑
m=1

(−1)m−1x2m−1

(2m− 1)t
=: β(t;x) = L−4(t;x) = Tit(x). (37)
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Multisectioning Character Polylogarithms

• It is useful to know [DLMF] that for Re s > 0, we have

− L−4(s) = β(s) =
1

Γ(s)

∫ ∞
0

xs−1

2 cosh (x)
dx, (38)

which may be repeatedly differentiated to obtain numerical
values of β(n)(s) for integers n ≥ 1.

• Herein, Tit(x) is the inverse tangent integral of Lewin
• that he relates to Legendre’s chi-function, confusingly also

denoted as χt(x).

• Note that Li1(x) = − log(1− x), while Ti1(x) = arctan(x).
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Multisectioning Character Polylogarithms

• The equation (34) may be used to exploit character
generalizations of (5) and (6).

• Note that (28b) and (28d) for n = 1, express the derivatives
at zero in terms of the derivative and values at one.

• While the quantities are all finite, recall that the Hurwitz form
in (7) involves a cancellation of singularities, and so is hard to
use directly, while the definition is very slowly convergent at
s = 1 or near one.

• We do, however, have recourse to a useful special case of the
last Corollary.
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Multisectioning Character Polylogarithms

Now we may usefully employ the Corollary at roots of unity.

Example (L-series at unity (ωd = e2πi/d))

For any primitive character χ±d and non-negative m we have

L
(m)
±d (s) =

√
±d
d

d−1∑
k=1

χ±d(k) Li(m)
s (ωkd). (39)

• Polylogarithms, and order derivatives Li
(m)
s (exp(iθ)), were

studied [1], as they resolve Eulerian log Gamma integrals.
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Multisectioning Character Polylogarithms

Example (Symbolic recovery of values)

The Hurwitz L-series derivative with local notation
λ(m,±d, s) := L

(m)
±d (s) in (7) implements neatly in Maple. We use

the ‘identify’ function and—after a little prettification—have
evaluations given in (17):[
λ (0,−4,−3) =

1

32
π3, λ (0,−3, 5) =

4
√

3

2187
π5, λ (0,−4, 5) =

5

1536
π5

]
;

and first-derivative (algebraic unit) values at zero:

[
λ (1, 5, 0) = log

(
1

2
+

1

2

√
5

)
, λ (1, 13, 0) = log

(
3

2
+

1

2

√
13

)
, λ (1, 17, 0) = log

(
4 +
√

17
)]
,

(as per Denninger and Berndt).
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Multisectioning Character Polylogarithms

• The ease of such manipulations highlights the value of
modern numeric-symbolic experimentation.

• One may similarly use (39) when s = 1.

• Interestingly using ‘sum’ rather than ‘add’ in Maple led to
some problems with larger values of ±8P such as ±120.

I have myself always thought of a mathematician as in
the first instance an observer, a man who gazes at a
distant range of mountains and notes down his
observations. His object is simply to distinguish clearly
and notify to others as many different peaks as he can.
(G.H. Hardy)

J.M. Borwein Character Polylogarithms



4. Preliminaries
21. Character polylogarithms

45. Applications to character MTW sums
57. Values of character sums including order zero

74. Conclusion

46. Basics of character MTW sums
49. First order sum computations
55. Second order sum computations

Applications to Character Sums

• On this foundation, one may then analyse extended character
MTW sums, in which more general character polylogarithms
replace the classical one defined earlier in (6).

That is, we may consider, for real q, r, s ≥ 1,

µ±d1,±d2(q, r, s) :=
∑
n,m>0

χ±d1(m)

mq

χ±d2(n)

nr
1

(m+ n)s
(40)

=
1

Γ(s)

∫ 1

0
L±d1(q;x) L±d2(r;x)(− log x)s−1

dx

x
,

(41)

where as before for d > 2, χ±d(n) :=
(±d
n

)
, while

χ−2(n) := (−1)n−1 and χ+1(n) := 1.
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Logarithmic Character Sums

• We may now also take derivatives in (40) and (41) and so
doing is the source of much of our computational interest.

Explicitly, we write (µ±d1,±d2)a,b,c (q, r, s)

:=
∑
n,m>0

(− logm)aχ±d1(m)

mq

(− log n)bχ±d2(n)

nr
(− log(m+ n))c

(m+ n)s

(42)

=

∫ 1

0

L
(a)
±d1(q;x) L

(b)
±d2(r;x)

(
(− log x)s−1

Γ(s)

)(c)
dx

x
. (43)

• Such sums do not appear to have been studied in detail, and
never with derivatives.

• The case of χ−2(n) or χ−2(m+ n) was studied ab initio by
Tsimura.
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Examples of Character Sums

• As explained in [BZB], for Euler sums, there is an impediment
to a general integral representation if one adds a non-trivial
character to the m+ n variable other than (±1)n−1.

• In the context of MTWs, this asymmetry is better explained.
• The change of variables m 7→ m+ n does not respect the

mutiplicative structure

Mathematics is not a careful march down a well-cleared
highway, but a journey into a strange wilderness, where
the explorers often get lost. Rigour should be a signal to
the historian that the maps have been made, and the real
explorers have gone elsewhere. (W.S. (Bill) Angelin)
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Examples of Character Polylogarithms

Example (Some explicit character polylogs of order one)

L+1(1;x) = − log(1− x) (44)

L−3(1;x) =
2√
3

arctan

(√
3x

x+ 2

)
, (45)

√
5 L5(1;x) = log(x2 + ωx+ 1)− log(x2 − x/ω + 1), (46)

ω :=

√
5 + 1

2√
12 L12(1;x) = log(x2 +

√
3x+ 1)− log(x2 −

√
3x+ 1). (47)
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Further Examples of Character Polylogarithms

In general for primitive ±d, (39) of Corollary 8 implies that

L±d(1;x) = −
√
±d
d

log

∏j

(
1− ωjdx

)
: χ±d(j) = +1∏

k

(
1− ωkdx

)
: χ±d(k) = −1

 . (48)

It is instructive to verify that

√
8 L+8(1;x) = − log

(
1−
√

2x+ x2

1 +
√

2x+ x2

)
, (49a)

√
8 L−8(1;x) = arctan

(√
8x
(
1− x2

)
, 1− 4x2 + x4

)
. (49b)

Here arctan (y, x) := −i log

(
x+iy√
x2+y2

)
, so as to assure we return

a value in (π, π].
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Further Examples of Character Polylogarithms

Correspondingly

√
20 L−20(1;x) = i log

(
1− i

√
5x− 3x2 + i

√
5x3 + x4

1 + i
√

5x− 3x2 − i
√

5x3 + x4

)
. (50)

Keynes distrusted intellectual rigour of the Ricardian type
as likely to get in the way of original thinking and saw
that it was not uncommon to hit on a valid conclusion
before finding a logical path to it (Sir Alec Cairncross, in
the Economist, April 20, 1996)
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Further Examples of Character Polylogarithms

Recall the character sum definition

(µ±d1,±d2)a,b,c (q, r, s) :=

∑
n,m>0

χ±d1(m)
(− logm)a

mq
χ±d2(n)

(− log n)b

nr
(− log(m+ n))c

(m+ n)s
(51)

• q, r, s are the powers of the denominator requested.

• a, b, c are the powers of the logarithm requested.
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Further Examples of Character Polylogarithms
From various formulas above, integrals for µ sums in the notation
of (40) or (51) follow. Thence, µ−3,1(1, 1, s)

=
2/
√

3

Γ(s)

∫ 1

0
arctan

(√
3x

x+ 2

)
(− log(1− x)) (− log x)s−1

dx

x
,

(52)

and

µ−3,−3(1, 1, s) =
4/3

Γ(s)

∫ 1

0
arctan2

(√
3x

x+ 2

)
(− log x)s−1

dx

x
.

(53)

For example,

µ−3,−3(1, 1, 1) ≈ 0.259589

µ−3,−3(1, 1, 3) ≈ 0.0936667862.
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Further Examples of Character Polylogarithms

Similarly,

µ−12,−12(1, 1, 3) = − 1

72

∫ 1

0
log2

(
x2 +

√
3x+ 1

x2 −
√

3x+ 1

)
log3 (x)

dx

x

= 0.062139235322359770447911814351... (54)

and, with ω =
√
5+1
2 as above, we have

µ+5,+5(1, 1, 5) =
1

120

∫ 1

0
log2

(
x2 + ωx+ 1

x2 − x/ω + 1

)
log4 (x)

dx

x

= 0.026975379493214862581276332615... (55)

• Polylogarithms and Euler sums based primarily on mixes of the
characters χ−4 and χ1 are studied at length in [BZB]. For higher
order, less can be hoped for explicitly. That said:
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Further Examples of Character Polylogarithms

Example (Some explicit character polylogarithms of order two)

Lewin shows in terms of the Clausen function, Cl2 (θ) :=∑
n>0 sin(nθ)/n2, we have:

L−3(2;x) =
1

2
Cl2 (2w) +

1

2
Cl2

(
4π

3

)
− 1

2
Cl2

(
2w +

4π

3

)
+ w log x, where w := arctan

( √
3x

x+ 2

)
. (56)

• The paucity of results for L−4 shows the terrain we enter is
rocky.
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Further Examples of Character Polylogarithms

There is, nonetheless, a functional equation for
Ti2(x) = L−4(2;x) = Im Li2(ix):

Example (Some explicit character polylogarithms of order two)

1

3
Ti2(tan 3θ) = Ti2(tan θ) + Ti2(tan(π/6− θ)) (57)

− Ti2(tan(π/6 + θ)) +
π

6
log

(
tan(π/6 + θ)

tan(π/6− θ)

)
.

Since Ti2(π/4) = G, Catalan’s constant, (57) gives Ramanujan’s:

Ti2

( π
12

)
=

2

3
G +

π

12
log tan

( π
12

)
(used for computation); θ = π/24 yields an interesting relation.
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Further Examples of Character Polylogarithms

Example (Some explicit character polylogarithms of order two)

For d = +5 we obtain

√
5 L+5(2;x) =

∫ x

0
log

1 + r
(
1+
√
5

2

)
+ r2

1 + r
(
1−
√
5

2

)
+ r2

 dr

r
, (58)

by integration or by exploiting

Re Li2(re
iθ) = −1

2

∫ r

0
log(1− 2w cos θ + w2)

dw

w
.

For larger ±d, more cumbersome versions of some of the above
formulas can still be given.
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Applications to Character MTW Sums

• Integral representation (6) is valid only when d ≤ 2, and all
sj , tk numerator (non-logarithmic) parameters are non-zero;
so we must attend to such more general degenerate cases.

For our current three-variable sums, we may freely use formulas
such as: ωa,b,c(q, r, s) =

ω

(
q , r | s
a , b | c

)
=

∫ ∞
0

(
xs−1

Γ(s)

)(c)

Li(a)q (e−x) Li(b)r (e−x) dx.

(59)

This is valid when q ≥ 0, r ≥ 0, s > 0, with q + r + s > 2, and
a ≥ 0, b ≥ 0, c ≥ 0. Here the notation (·)(c) denotes the c-th
partial derivative of the expression in parentheses with respect to s.
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Applications to Character MTW Sums

Split the integral in two, and set u = e−x in the second integral:

ωa,b,c(q, r, s) =

∫ 1

0

(
xs−1

Γ(s)

)(c)

Li(a)q (e−x) Li(b)r (e−x) dx

+

∫ 1/e

0

(
(− log u)s−1

Γ(s)

)(c)

Li(a)q (u) Li(b)r (u)
du

u
.

(60)

We were able to use formula (60) and its predecessors—with
related machinery described in [1,2] to produce high-precision
numerical values of all the degenerate omega constants needed in
this and our earlier studies.
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Applications to Character MTW Sums

Alternatively, for ω or µ, one may directly substitute u = e−x in
the analogue of formula (59) and obtain the following result, which
provides an efficient evaluation method.

For this we require the incomplete Gamma function

Γ(s, z) :=

∫ ∞
z

ts−1e−t dt, (61)

so that Γ(s, 0) = Γ(s). Since the size of d determines the domain
of validity of (25), we replace e by a general parameter σ > 1.
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Applications to Character MTW Sums

Fix character series L1 := L±d1 and L2 := L±d2 .

Proposition (Depth three character sum computation)

For q ≥ 0, r ≥ 0, s > 0, with q+ r+ s > 2, and a ≥ 0, b ≥ 0, c ≥ 0,
in notation of (42) we have, for σ > 1 that (µd1,d2)a,b,c (q, r, s)

=

∫ 1/σ

0

(
(− log u)s−1

Γ(s)

)(c)

L1
(a)(q;u)L2

(b)(r;u)
du

u

+

∫ 1

1/σ

(
(− log u)s−1

Γ(s)

)(c)

L1
(a)(q;u)L2

(b)(r;u)
du

u
. (62)
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Applications to Character MTW Sums

Proposition (Depth three character sum computation)

Thence, (µd1,d2)a,b,c (q, r, s)

=
∑
m,n>0

(
Γ (s, (m+ n) log σ)

Γ (s) (m+ n)s

)(c)

(63)

× χ±d1(m)(− logm)a

mq

χ±d2(n)(− log n)b

nr

+

∫ 1

1/σ

(
(− log u)s−1

Γ(s)

)(c)

L1
(a)(q;u)L2

(b)(r;u)
du

u
. (64)

In (64) we express the result in terms of the incomplete Gamma
function of (61):
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Applications to Character MTW Sums

When this applies to both L1, L2 and 1/σ ≤ exp(−2π/d) for each
character, we arrive at effective integral free summations.

Theorem (Explicit character sum computation)

Suppose L1 and L2 satisfy Theorem 2. For q ≥ 0, r ≥ 0, s > 0,
with q + r + s > 2, and a ≥ 0, b ≥ 0, c ≥ 0 we have,
(µ±d1,±d2)a,b,c (q, r, s)

=
∑

m,n>0

(
Γ (s, (m + n) log σ)

Γ (s) (m + n)s

)(c)

χ±d1 (m)χ±d2 (n)
(− logm)a

mq

(− logn)b

nr

+
∑
j,k≥0

L
(a)
1 (q − j)

j!

L2
(b)(r − k)

k!

∫ 1

1/σ

(
(− log u)s−1

Γ(s)

)(c)

(log u)
j+k du

u
, (65)

where the final integral may now be evaluated symbolically, since∫ 1
1/σ

logn−1 u
u du = − (− log)nσ

n .
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Applications to Character MTW Sums

• Note that σ = e may be used when neither of d1, d2 exceeds
six.

• In general, to determine the truncation needed in the final
term (65), we have proceeded by precomputing the needed
L-series and using only those summands which are larger than
the desired error.

• Corollary 4 provides excellent estimates for these L-series
terms.

• For truncation of the first term on the right of (65), the next
remark yields an effective a priori estimate (when c = 0)
which decays exponentially in z.

J.M. Borwein Character Polylogarithms



4. Preliminaries
21. Character polylogarithms

45. Applications to character MTW sums
57. Values of character sums including order zero

74. Conclusion

60. Efficient computation
63. Integral free evaluation
66. Alternating character sums
68. Character sums with 3 ≤ |d| ≤ 5
69. Character sums with d = −4

Applications to Character MTW Sums

Remark (Error estimates for Γ(s, z))

For fixed positive integer n and real s, with

uk = (−1)k (1− a)k = (a− 1)(a− 2) · · · (a− k),

we have [DLMF] that

Γ(s, z) = zs−1e−z

(
n−1∑
k=0

uk
zk

+Rn(s, z)

)
, (66)

where for real z the error Rn(s, z) = O(z−n) , is is bounded in
absolute value by the first neglected term un/z

n and has the same
sign provided only that n ≥ s− 1.
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As Crandall observed, for L1 = L2 = L−2, some seemingly more
difficult character sums can be computed easily:

Example (Alternating MTWs)

For example, L−2(z, s) =
∑

m≥0 η(s−m) log
m z
m! and we may write

(µ−2,−2)1,1,0 (q, r, s)

=
∑
n,m>0

(
Γ (s, n+m)

Γ (s) (n+m)s

)
(−1)n log n

nq
(−1)m logm

mr

+
1

Γ(s)

∑
j,k≥0

η(1)(q − j)
j!

η(1)(r − k)

k!

(−1)j+k

j + k + s
. (67)
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For positive integer s, the incomplete Gamma function value above
is elementary. Using (65) of Theorem 17 with q = r = s = 1 and
summing say m,n, j, k ≤ 240, yields

(µ−2,−2)0,0,0 (1, 1, 1) :=
∑
m,n≥1

(−1)m+n

mn(m+ n)
(68)

= 0.3005142257898985713499345403778624976912465730851247 . . . ,

agreeing with (µ−2,−2,0)0,0,0 (1, 1, 1) = 1
4ζ(3), a known evaluation.

Likewise, using the first derivative of the η function,

(µ−2,−2)1,1,0 (1, 1, 1) :=
∑
m,n≥1

(−1)m+n logm log n

mn(m+ n)
(69)

= 0.0084654591832435660002204654836228807098258834876951 . . . .

Both evaluations are correct to the precision shown.
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Applications to Character MTW Sums

For primitive characters with 3 ≤ d1, d2 ≤ 5, we have
(µ±d1,±d2)a,b,0 (q, r, s)

=
∑
m,n≥1

χ±d1(m)χ±d2(n)
(− logm)a (− log n)b

mr nq(m+ n)s

=
∑
n,m>0

(
Γ (s, n+m)

Γ (s) (n+m)s

)
χ±d1(m)(− logm)a

mq

χ±d2n(− log n)b

nr

+
1

Γ(s)

∑
j,k≥0

L
(a)
±d1

(q − j)
j!

L
(b)
±d2

(r − k)

k!

(−1)j+k

j + k + s
, (70)

in analogy with the previous Example.
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Example (Character MTWs)

For d = −4 with β := L−4 replacing η := L−2 we get:
(µ−4,−4)1,1,0 (q, r, s)

=
∑
n,m>0

(
Γ (s, n+m)

Γ (s) (n+m)s

)
χ−4(n) log n

nq
χ−4(m) logm

mr

+
1

Γ(s)

∑
j,k≥0

β(1)(q − j)
j!

β(1)(r − k)

k!

(−1)j+k

j + k + s
. (71)
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Hence

(µ−4,−4)1,1,0 (1, 1, 1) :=
∑
m,n≥1

χ−4(n)χ−4(m)
logm log n

mn(m+ n)
(72)

= 0.00832512075015357521062197448271 . . . .

• To compute the requisite value of

β(1)(1) = 0.1929013167969124293...,

we may use (38), and for β(1)(−n) with n ≥ 0, we can use
many methods including (8).

• We also computed the same value to the precision shown
directly from the sum expressed in terms of Psi functions.
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In like vein, from Theorem 17 or (70), we compute various sums:

−
∑
m,n≥1

χ−4(m)χ−4(n)
log2m log n

mn(m+ n)5
(73)

= −0.00001237144966467 . . . .

−
∑
m,n≥1

χ−4(m)χ−4(n)
log2m log n

mn(m+ n)8
(74)

= −7.238940044699712819 · 10−8 . . . .∑
m,n≥1

χ−4(m)χ−3(n)
log2m

mn(m+ n)7
(75)

= −0.150314175 · 10−5 . . . .

(76)
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and higher-order variants such as∑
m,n≥1

χ−4(m)χ−4(n)
log2m log2 n

m2 n2(m+ n)4
(77)

= 0.921829712836 · 10−5 . . . .∑
m,n≥1

χ−4(m)χ−4(n)
log3m log3 n

m3 n3(m+ n)3
(78)

= 0.69071031171 · 10−5 . . . .

and so on.

• In each case the precision shown has been confirmed directly
from the definitional sum.

• Note that for the purpose of formula and code validation, it is
often useful to use larger values of parameters such as s.
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A Character Sums Ladder
We illustrate for σ = e, and d1, d2 = −2,−3,−4,+5. We have

1

Γ(c)

∫ 1

1/σ

(− log (− log x))
c

(− log x)
n−1

x
dx =

c

nc+1
.

We adduce (µ±d1,±d2)a,b,c (q, r, s)

=−
c−1∑
k=0

(
c

k

)
Γ(c−k)(c)

Γ(c)
(µ±d1,±d2)a,b,k (q, r, s)

+ c
∑
j,k>0

L
(a)
1 (q − j)

j!

L
(b)
2 (r − k)

k!

(−1)j+k

(j + k + s)c+1

+
∑
m,n>0

χ±d1(m)χ±d2(n)
(− logm)a

mq

(− log n)b

nr
Is,c(m+ n). (79)

Here Is,c(k) :=
∫ 1/e
0 logc(− log x)(− log x)s−1xk−1 dx.
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The c = 0 case which ‘ignites’ the ladder is also covered by the
simplest case of (65). Also,

Is,0(k) =
1

ks

∫ ∞
k
zs−1e−z dz =

Γ(s, k)

ks
(80)

and Is,c(k) = I(c)s,0(k). By (8.7.3) of [DLMF] we have

Γ(s, z)

zs
=

Γ(s)

zs
−
∞∑
j=0

(−1)jzj

j!(s+ j)
, (81)

which can easily be symbolically differentiated.
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Conclusion

1 We also undertook various studies of relations between such
sums

• computing various sums to much higher precision;
• using character sum ladders and ‘PSLQ‘;
• uncovering and proving unexpected relations;
• and ruling out many more [1,2].
• Different methods star in different settings.

2 Thank you!
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