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MoCaO: New AustMS Special Interest Group

Proposal for a
“Mathematics of computation and optimisation”
AustMS Special Interest Group

Using computational techniques to approximate solutions to physical models is common, but these
techniques are not worth much if not backed up by serious mathematical analysis — it is not rare to
see algorithms that are ill-designed or ill-used, and thus lead to unrealistic solutions. Modern
opportunities test the boundaries of old algorithms, and ask for new numerical or symbolic
techniques and analysis to be performed. This must be founded on solid mathematical theories if we
want to go beyond a trial-and-error process.

The AustMS SIG we propose revolves around the design and analysis, using mathematical rigour,
of numerical algorithms for models based on differential equations and mathematical optimisation.

At the 2006 annual meeting, a special session of the AustMS annual meeting was held around
computational mathematics and optimisation. Since then, special sessions involving these areas
have been regularly held at the AustMS annual meetings. In the last few years, a regular
Computational Maths session has been organised by B. P. Lamichhane and Q. T. Le Gia, with 20+
participants each year on average. Similarly, since 2009 the organisers of the ANZIAM SigmaOpt
group have run successful Optimisation/Control sessions at the annual AustMS meeting, with 15-30
participants each year; in 2015 the session had to refuse talks due to the lack of available slots.

Several other sessions at AustMS meetines also indicate an interest in mathematical topics stronely / 87



@ Define a canonical convexity not an axiomatic one (a family
closed under N and directed U)

o Should yield known results in a real vector space.

@ Many known results hold assuming only an additive structure.

@ Integer programming is harder than convex programming.
e More reasons why?
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Roman Kaluza

Through a reporter’s eyes

The Life of A mathematician is a person who can
Stefan Banach . .

find analogies between theorems; a
better mathematician is one who can
see analogies between proofs and the
best mathematician can notice
analogies between theories.
(Stefan Banach, 1892-1945)

See www-history.mcs.st-andrews.ac.uk/Quotations/Banach.html
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Convex sets and functions
Convex analysis on groups: Part | Divisible monoids & groups
Selected examples
Convex analysis on groups and monoids

Definition (Convex sets in vector spaces)

If X is a vector space, A C X is convex if x1,...,x, € A, aj > 0,
27:1 aj = = 27:1 X € A.
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Definition (Convex sets in vector spaces)

If X is a vector space, A C X is convex if x1,...,x, € A, aj > 0,
27:1 aj = = 27:1 X € A.

m

If i € Q, write ¢j = =, Then Y} 7 ;i =1<=>" ,m=m. J
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Definition (Convex sets in vector spaces)

If X is a vector space, A C X is convex if x1,...,x, € A, aj > 0,
27:1 aj = = 27:1 X € A.

m

If i € Q, write ¢j = =, Then Y} 7 ;i =1<=>" ,m=m. J

Monoid = additive semigroup with unit. J
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Definition (Convex sets in vector spaces)

If X is a vector space, A C X is convex if x1,...,x, € A, aj > 0,
27:1 aj = = 27:1 X € A.

m

If i € Q, write ¢j = =, Then Y} 7 ;i =1<=>" ,m=m. J

Monoid = additive semigroup with unit. J

Definition (Convex sets in monoids/groups)

If X is a monoid, A C X is convex if x1,...,x, € A,
mi,...,my,,meEN,
mx =YY" mx;, m=>Y,m—=— x€A.
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Definition (Convex sets in vector spaces)

If X is a vector space, A C X is convex if x1,...,x, € A, aj > 0,
27:1 aj = 1 — 27:1 X € A.

‘m

If i € Q, write ¢j = =, Then Y} 7 ;i =1<=>" ,m=m. J

Monoid = additive semigroup with unit. ]

Definition (Convex sets in monoids/groups)

If X is a monoid, A C X is convex if x1,...,x, € A,
mi,...,my,,meEN,
mx =YY" mx;, m=>Y,m—=— x€A.

Definition (Convex hull)

For A C X, conv(A) is the smallest convex set that contains A.
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Convex functions

Definition (Convex functions on vector spaces)

If X is a vector space, f: X — R is convex if

Fx) < Y0y aif (x)
whenever x = >, aixi, o >0, > i =1;
f is concave if —f is convex.
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Convex functions

Definition (Convex functions on vector spaces)
If X is a vector space, f: X — R is convex if

f(x) < 200 aif (%)
whenever x = >, aixi, o >0, > i =1;
f is concave if —f is convex.

Definition (Convex functions on monoids or groups)

If X is a monoid, f: X — R is convex if
mf(x) < Y0, mif (x))

whenever mx = Y"1 mix;, m=>_"_; m;;

f is concave if —f is convex.

N,

This can be done more generally for X a (semi-)module, range
[—00, +00] or an ordered group ...
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Some basic properties

Many properties extend. Some do not without 'divisibility” or other
restrictions.
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Some basic properties

Many properties extend. Some do not without 'divisibility” or other
restrictions.

If X is a monoid, f: X — R is convex, m, my, my € N,
X, x1, %2 € X are such that mx = mix; + myxo, then

Fx) = ) _ Fl) = Fx1) _ Fre) = F(x)
mo oM +my mq
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Semidivisible monoids & groups

Often we want to solve the equation
TBE = % s 5T
for x, at least for some m € N.
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Semidivisible monoids & groups

Often we want to solve the equation
TBE = % s 5T
for x, at least for some m € N.

Definition (Divisible or semidivisible monoids & groups)

A monoid/group X is p-semidivisible if pX = X. It is semidivisible
if it is p-semidivisible for some prime p, and X is divisible if it is
p-semidivisible for every p.
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Semidivisible monoids & groups

Often we want to solve the equation
TBE = % s 5T
for x, at least for some m € N.

Definition (Divisible or semidivisible monoids & groups)

A monoid/group X is p-semidivisible if pX = X. It is semidivisible
if it is p-semidivisible for some prime p, and X is divisible if it is
p-semidivisible for every p.

Equivalently, p-semidivisible iff for each x € X thereis y € X so that
X = py
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Examples

For every x € X, there is m such that mx = 0 = conv({0}) = X.
The only convex sets are X is and ().

19/87



Convex sets and functions
Convex analysis on groups: Part | Divisible monoids & groups
Selected examples
Convex analysis on groups and monoids

Examples

For every x € X, there is m such that mx = 0 = conv({0}) = X.
The only convex sets are X is and ().

If X =R/Z, conv({x}) = {x+y ‘ y € Q} = no convex
singletons in X.

20/87



Convex sets and functions
Convex analysis on groups: Part | Divisible monoids & groups
Selected examples
Convex analysis on groups and monoids

Examples

For every x € X, there is m such that mx = 0 = conv({0}) = X.
The only convex sets are X is and ().

If X =R/Z, conv({x}) = {x+y ‘ y € Q} = no convex
singletons in X.

For A C Z9 then convyq(A) = convgd(A) N Z9. Likewise for other
integer lattices.
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Examples

Let X = [0, c0) with the addition

a+b
S b= Sb=b1db=1).
2 1+ ab (o e o )
If a, b #£ 0 then
1EBE—aGEb
a b ’

Thus, if a # 1, then 1 € conv({a}), and so {0}, {1} is are the only
convex singletons. Also X is 3-semidivisible but not 2-semidivisible.
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Examples

Let X be the (commutative) matrices of the form

cosh(6) sinh(6)

e M(@) = e* [ sinh(f) cosh(#)

}, t,0 eR

with matrix multiplication. Then X is divisible since
it n 7
(eF M(e/n)) — et M(h).

23/87
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Examples

Let X be the (commutative) matrices of the form

cosh(6) sinh(6)

e M(@) = e* [ sinh(f) cosh(#)

} , t,0eR
with matrix multiplication. Then X is divisible since
it n 7
(eFM(Q/n)) — et M(h).

Let X, be the subgroup of matrices of the form s M(0) for
0eR 0</(<p—1 ThennX =X < ptn.
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Examples

Let X be the (commutative) matrices of the form

cosh(6) sinh(6)

sinh(f) cosh(#) } , LOER

e"M(6) = e" [

with matrix multiplication. Then X is divisible since
it n 7
(eFM(Q/n)) — et M(h).

Let X, be the subgroup of matrices of the form er M(0) for
0eR 0</(<p—1 ThennX =X < ptn.

If f: R — R is convex then F: X — R given by

F (e®M()) = f(6) is convex => can produce many convex
functions on X, X,.
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Interpolation of convex functions

f: X — R is subadditive if f(x+ y) < f(x) + f(y). )

Theorem (Kaufman, 1966)

Suppose X is a monoid, f,—g: X — R are subadditive, and g < f.
Then there exists an additive a: X — R such that g < a < f.

This is a monoid version of famous 1953 result by Mazur-Orlicz. )
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Interpolation of convex functions

f: X — R is subadditive if f(x+ y) < f(x) + f(y). |

Theorem (Kaufman, 1966)

Suppose X is a monoid, f,—g: X — R are subadditive, and g < f.
Then there exists an additive a: X — R such that g < a < f.

This is a monoid version of famous 1953 result by Mazur-Orlicz. )

f: X — Ris (generalised) affine if it is both convex and concave. ]
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Interpolation of convex functions

f: X — R is subadditive if f(x+ y) < f(x) + f(y). |

Theorem (Kaufman, 1966)

Suppose X is a monoid, f,—g: X — R are subadditive, and g < f.
Then there exists an additive a: X — R such that g < a < f.

This is a monoid version of famous 1953 result by Mazur-Orlicz. )

f: X — Ris (generalised) affine if it is both convex and concave. ]

Suppose X is a semidivisible monoid, f,—g: X — R convex, and
g < f. Then there exists an affine a: X — R such that g < a < f.
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Picture: interpolation of subadditive/convex functions

Convex case Subadditive case
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Interpolation theorem: idea of proof

If f =g we are done. If g(xp) < f(xp) we can replace one of the
two by a ‘better’ function.

30/87



Convex sets and functions
Convex analysis on groups: Part | Divisible monoids & groups
Selected examples

Convex analysis on groups and monoids

Interpolation theorem: idea of proof

If f =g we are done. If g(xp) < f(xp) we can replace one of the
two by a ‘better’ function.

We continue the process until f = g (might be transfinite).
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Example: nondivisible case

X =72, f(x) =5da(x) — L is and g = —5dp(x) + 1.

f,—g is are convex, g < f, but there is no affine ast. g <a<f.
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Extended real-valued functions

Sandwich holds if f,g: X — [—00, 00] with a generalised affine if
mX is divisible for some m € N or one of the functions is finite. J
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Extended real-valued functions

Sandwich holds if f,g: X — [—00, 00] with a generalised affine if
mX is divisible for some m € N or one of the functions is finite.

The condition mX is divisible for some m € N is satisfied by the
hyperbolic group, arctan semigroup...

But not every group satisfies it. For example
X =Xo X X3 x X5 x ..., X, the pth hyperbolic group.

34/87
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Extended real-valued functions

Sandwich holds if f,g: X — [—00, 00] with a generalised affine if
mX is divisible for some m € N or one of the functions is finite.

The condition mX is divisible for some m € N is satisfied by the
hyperbolic group, arctan semigroup...

But not every group satisfies it. For example
X =Xo X X3 x X5 x ..., X, the pth hyperbolic group.

If X is a group and either f or g is everywhere finite and the other
is somewhere finite, then the affine separator is finite.
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Extended real-valued functions

Vx x>0
—00 x<0'
affine separator must be 0 at 0 and +oo elsewhere.

In X =R, take g(x) = f(x) = —g(—x). Then any

36/87
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Example: separation in meet semilattice

@ (X, ) is a meet semilattice: X is divisible since x A x = x.
e This monoid does not embed in any group.

o If C C X, conv(C) is the semilattice generated by C.
@ The above interpolation theorem, or Kaufman'’s result, (via

Stone's lemma) implies that disjoint sub-semilattices lie in
partitioning sub-semilattices.
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Directional derivative and subgradient

Definition (Directional derivative)
f(h) = inf {n(f(x +g) — f(x)) | ng = h}

If £ is convex : n(f(x + g) — f(x)) is decreasing in n.
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Directional derivative and subgradient

Definition (Directional derivative)
f(h) = inf {n(f(x +g) — f(x)) | ng = h}

If £ is convex : n(f(x + g) — f(x)) is decreasing in n.
Recall, in a VS: £ (h) = inf {1 (f(x + th) — f(x) | t > 0) }.
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Directional derivative and subgradient

Definition (Directional derivative)
f(h) = inf {n(f(x +g) — f(x)) | ng = h}

If £ is convex : n(f(x + g) — f(x)) is decreasing in n.
Recall, in a VS: £ (h) = inf {1 (f(x + th) — f(x) | t > 0) }. }

Definition (Subgradient)

Of(x) = {a: X = R | f(x) + a(h) < f(x + h), a additive}
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Directional derivative and subgradient

Definition (Directional derivative)
f(h) = inf {n(f(x + g) — f(x)) | ng = h}

If £ is convex : n(f(x +g) — f(x)) is decreasing in n.
Recall, in a VS: £ (h) = inf {1 (f(x + th) — f(x) | t > 0) }.

Definition (Subgradient)
Of(x) = {a: X = R | f(x) + a(h) < f(x + h), a additive}

Theorem (Max formula)

If X is a semidivisible group and f: X — R is convex

f(h) = max{a(h) | a € 0f(x)}
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Max formula for sublinear functions and consequences

Theorem (Max formula)

If X is a semidivisible group and f: X — R convex

f(h) = max {a(h) | a € 9f(x)}
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Max formula for sublinear functions and consequences

Theorem (Max formula)

If X is a semidivisible group and f: X — R convex

f(h) = max {a(h) | a € 9f(x)}

Definition (Sublinear function)

We say f: X — R is sublinear if f is subadditive and
f(nx) = nf(x) for all n € N.
Note: sublinear = convex (‘additive’ does not).

43/87
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Max formula for sublinear functions and consequences

Theorem (Max formula)

If X is a semidivisible group and f: X — R convex

f(h) = max{a(h) | a € 0f(x)}

Definition (Sublinear function)

We say f: X — R is sublinear if f is subadditive and
f(nx) = nf(x) for all n € N.

Note: sublinear = convex (‘additive’ does not).

If f is sublinear, then the max formula holds without any
semidivisibility assumption.
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Using the extended version of our sandwich theorem we arrive at: J
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Using the extended version of our sandwich theorem we arrive at: )

Theorem (Hahn-Banach for groups)
Suppose X is a group and Y C X is a subgroup, f: X - R is
sublinear and h: Y — R is additive such that h < f on Y.

_Then there exists h: X — R is additive such that h < f is and
h=honY.

This extends when R is replaced by an order complete ordered
group.
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Additive dual group and conjugate function

Define the additive dual of a group:

X*={¢: X =R | pis additive }.
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Additive dual group and conjugate function

Define the additive dual of a group:

X*={¢: X =R | pis additive }.

Definition (Conjugate function)
Given f : X — R, define f*: X* — R be

*(p) = ity {e(x) = f(x)}.

Can define a conjugate function if we replace R by another group
Y, assuming that Y has some partial ordering.

4887
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Weak and strong Fenchel-Rockafellar duality

Theorem (Fenchel-Young inequality)
Let f : X — R. Then for every x € X and ¢ € X*,

F(x) + () = o(x).

Equality holds if and only if ¢ € Of(x).

49 /87
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Weak and strong Fenchel-Rockafellar duality

Theorem (Fenchel-Young inequality)

Let f : X — R. Then for every x € X and ¢ € X*,

F(x) + () = o(x).

Equality holds if and only if ¢ € Of(x).

Theorem (Weak and strong Fenchel duality)
Letf: Xy =R, g: Xo—>Rand T:X; — Xo additive. Let

2= in)f( {f(x)+g(Tx)}, D= sup {—Ff (T p)—g*(¢)}.
xeX1 peX*

Then P > D (weak duality). If X is semidivisible and f and g are
convex, then P = D (strong duality).
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Weak and strong Fenchel duality — remarks

Theorem (Weak and strong Fenchel duality)
Letf: X1 —> R, g: Xo =R and T : Xy — X, additive. Let

P = |nf {fx)+g Tx)}, D= seu);?*{_f* (T*0) — " ().

Then P > D (weak duality). If X is semidivisible and f and g are
convex, then P = D (strong duality).
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Convex analysis on groups: Part |

Weak and strong Fenchel duality — remarks

Theorem (Weak and strong Fenchel duality)
Letf: X1 —> R, g: Xo =R and T : Xy — X, additive. Let

P = |nf {fx)+g Tx)}, D= seu);?*{_f* (T*0) — " ().

Then P > D (weak duality). If X is semidivisible and f and g are
convex, then P = D (strong duality).

Weak duality follows from Fenchel-Young inequality. Strong duality
follows from the max principle.
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Weak and strong Fenchel duality — remarks

Theorem (Weak and strong Fenchel duality)
Letf: X1 —> R, g: Xo =R and T : Xy — X, additive. Let

P = |nf {fx)+g Tx)}, D= Seu)E*{_f* (T*0) — " ().

Then P > D (weak duality). If X is semidivisible and f and g are
convex, then P = D (strong duality).

Weak duality follows from Fenchel-Young inequality. Strong duality
follows from the max principle.

In general, can replace R by a group with some partial ordering.
Can also add a maximal element in the range. In such case, need
to deal with the core of the domain (as in the vector space setting).
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Convex optimisation, the value function

Consider the constrained problem
v(b) =inf {f(x) | g1(x) < b1,...,8k(x) < by}

The function v is the value function.

54 /87



Convex sets and functions
Convex analysis on groups: Part | Divisible monoids & groups

Selected examples
Convex analysis on groups and monoids

Convex optimisation, the value function

Consider the constrained problem

v(b) =inf {f(x) | g1(x) < b1,...,8k(x) < by}

The function v is the value function.

Proposition (Subadditive/sublinear value function)

If f,g1,...,8k are subadditive, then v is subadditive. If X is
p-semidivisible and Vx, f(px) = pf(x), gj(px) = pgj(x) = gj(px),
1 <j < k then v(pb) = pv(b). This also implies that v is convex.
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Convex optimisation, the value function

Consider the constrained problem

v(b) =inf {f(x) | g1(x) < b1,...,8k(x) < by}

The function v is the value function.

Proposition (Subadditive/sublinear value function)

If f,g1,...,8k are subadditive, then v is subadditive. If X is
p-semidivisible and Vx, f(px) = pf(x), gj(px) = pgj(x) = gj(px),
1 <j < k then v(pb) = pv(b). This also implies that v is convex.

b
=inf{ — 2x < Ziy=—|= R.
v(b) = inf { x{ x< b, x€Z} [2—‘, be
f(x) = —x, g(x) = 2x are homogeneous, but v is not.
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Subgradient of the maximum function

v(b) =inf {f(x) | g1(x) < b1,...,8k(x) < bi}.

An important special case yields: |

Theorem (Subgradient of max function)

Suppose X is a semidivisible group and f1,...,f,: X — R are
convex. Let g(x) = maxi<ij<k fi(x). Then

Gg(x):conv( U Oﬁ(x))
fi(x)=g(x)
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Convex optimisation on groups

0g(x) = conv( U 8ﬁ(x)), g = max f;
fi(x)=g(x) T
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Future Directions

@ Convexity on non-commutative groups.

@ More constructions of convex functions on groups.
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Future Directions

@ Convexity on non-commutative groups.

@ More constructions of convex functions on groups.
@ Applications in integer (non-divisible) programming.

e One of our original goals.
o Generalise role of |-] in non-divisible case.
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Convex analysis on groups: Part |

Thank you

HEY, M55 LENHART! T RRGOT
EVERYTHING ABOUT ALGEBRA THE
WOMENT T GRADUATED) AND IN
‘20 YEARS NO ONE HAS NEEDED
mmsowzmmmgxi
T oYU ID
NEVER USE. T

ITS WEIRD HOW PROUD PEDPLE ARE OF NOT
LEARNING MATH WHEN THE SAME ARGUMENTS
APPLY TO LEARNNG TO RLAY MUSIC, (00K,
OR SPEAK. A FOREIGN [ANGUAGE.
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Part Il

© Convex analysis on groups: Part II
@ Topological groups
@ Hahn-Banach in topological groups
@ Krein-Milman theorem and Milman's converse
@ Minimax theorem on monoids
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Topological groups

Definition (Topological group)

A group which is also a topological space such that the group
operations are continuous.

Topological monoid: enough that the addition is continuous. J

Definition (Local convexity)

If there is a basis for the topology that contains only convex sets.

63/87



Topological groups
Hahn-Banach in topological groups

Convex analysis on groups: Part Il Krein-Milman theorem and Milman’s converse
Minimax theorem on monoids

Rational dilation of sets

mA={a+ - +am|a,...,am € A}.
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Rational dilation of sets

mA={a+-+am|a...,am € A}.

Definition (Rational dilation)
m

EA:{XGXMXEmA}.
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Rational dilation of sets

mA={a+-+am|a...,am € A}.

Definition (Rational dilation)

m

EA:{XGXMXEmA}.

Proposition (Monotonicity of dilations)

Suppose X is a monoid, C C X convex and 0 € C. Then
q1C C q2C
whenever 0 < g1 < go.
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Gauge functional

Using monotonicity of the dilations, we can define a
group-theoretic version of the gauge functional.

Definition (Gauge function)

pc(x) =inf{g e Q1 | x € qC}.

Proposition

If X is a monoid and C C X is convex, then pc is sublinear.

@ So far we did not use topological properties of the group.

@ The gauge function will be used as a control function in the
proof of the KM theorem.
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Hahn-Banach in topological groups

@ Previous version of Hahn-Banach: used only algebraic
structure.

@ In topological groups: we want a continuous separator.
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Hahn-Banach in topological groups

@ Previous version of Hahn-Banach: used only algebraic
structure.

@ In topological groups: we want a continuous separator.

Proposition (Continuity of p¢)

If X is a topological group, C C X convex, 0 € intC, then pc is
continuous (on domain). If X is connected, pc is everywhere finite.

v
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Hahn-Banach in topological groups

@ Previous version of Hahn-Banach: used only algebraic
structure.

@ In topological groups: we want a continuous separator.

Proposition (Continuity of p¢)

If X is a topological group, C C X convex, 0 € intC, then pc is
continuous (on domain). If X is connected, pc is everywhere finite.

v

Theorem (Hahn-Banach strict separation in topological groups)

Let X be a connected locally convex topological group with C C X
closed and convex and xo ¢ C. Then there exists p: X — R
continuous and additive such that

sup ¢(c) < ¢(xo)-
ceC
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No strict separation between sets

Theorem (Hahn-Banach strict separation in topological groups)

Let X be a connected, locally convex topological group with
C C X closed and convex and xo ¢ C. Then there exists
p: X — R continuous and additive such that

sup ¢(c) < ¢(xo)-
ceC

@ In vector spaces, if D is a compact convex set with
CND=10,use0¢& C— D (closed) to obtain separation
between C and D.

@ Does not work in arbitrary groups. Take X = Z? with
Cc ={(0,1),(2,0)}, D={(0,2),(1,0)}, then C — D is not
convex (note: additive preimages are convex).
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Extreme points

Definition (Extreme point)

When X is a monoid and C C X, x € C is an extreme point of C
ifmx =" mix;, m=>",mjx€C= x=x|="=Xp.
Let £(C) be the collection of all extreme points of C.
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Extreme points

Definition (Extreme point)

When X is a monoid and C C X, x € C is an extreme point of C
ifmx =" mix;, m=>",mjx€C= x=x|="=Xp.
Let £(C) be the collection of all extreme points of C.

Theorem (Krein-Milman in topological groups)

Suppose X is a semidivisible, locally convex, connected topological
group, and C C X is convex and compact. Then

C = conv(&(C)).

Semidivisibility is needed to guarantee that £(C) # () (base case). J
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Extreme points

Definition (Extreme point)

When X is a monoid and C C X, x € C is an extreme point of C
ifmx =" mix;, m=>",mjx€C= x=x|="=Xp.
Let £(C) be the collection of all extreme points of C.

Theorem (Krein-Milman in topological groups)

Suppose X is a semidivisible, locally convex, connected topological
group, and C C X is convex and compact. Then

C = conv(&(C)).

Semidivisibility is needed to guarantee that £(C) # () (base case). J

A semilattice is a non-connected semigroup, but still KM type
results exist (Poncet '14 or via Stone's lemma). e
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Example

Let X be the collection of 2 x 2 matrices of the form

| cosh(#) sinh(0)
M) = sinh(f) cosh(6)

Previously studied e®M(#). Addition: matrix multiplication.
Topology: R* topology. X is connected, locally convex and
divisible (actually a Q-module).
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Example

Let X be the collection of 2 x 2 matrices of the form

| cosh(#) sinh(0)
M) = sinh(f) cosh(6)

Previously studied e®M(#). Addition: matrix multiplication.
Topology: R* topology. X is connected, locally convex and
divisible (actually a Q-module).

If C C X is compact and convex, £(C) = {M(«a), M(5)} where,
a =inf{0|M(8) € C}, B =sup{f|M(0) e C}.

By KM, C = conv(M(a, B)) = M([a, A]), a curve in R
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Another example

(Q, F, ) a measure space. For A, B € F, let
A+ B = AAB.

Under this operation get a (2n — 1)-semidivisible but not
2n-semidivisible group (AAA =0, AANAAA = A).
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Another example

(Q, F, ) a measure space. For A, B € F, let
A+ B = AAB.

Under this operation get a (2n — 1)-semidivisible but not
2n-semidivisible group (AAA = 0, AAAAA = A).

For example, taking 1 Lebesgue measure on [0, 1], F the Borel
sets and the psuedo-metric

du(A, B) = u(ALB),

get a connected topological group which is not locally convex: take
many small sets in a neighbourhood of () and the convex hull can
have full measure. }e /87
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Milman's converse

The converse proof needs the property that the convex hull of
finite unions of compact sets are compact.
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Milman's converse

The converse proof needs the property that the convex hull of
finite unions of compact sets are compact.

If X =Q, A= {0}, B= {1}, then conv(AU B) =[0,1]NnQ
which is not convex.
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Milman's converse

The converse proof needs the property that the convex hull of
finite unions of compact sets are compact.

If X =Q, A= {0}, B= {1}, then conv(AU B) =[0,1]NnQ
which is not convex.

Theorem (Milman's converse)

Suppose X ilocally convex group such that the convex hull of finite
unions of compact sets is always compact. Suppose also that
C C X is compact and such that conv(C) is compact. Then

E(W(C))gc.
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Minimax theorem in arbitrary spaces

Definition (Convex-like function)
Let X be any set. We say f: X — R is convex-like if Vx,y € X,
Vu € [0,1], 3z € X such that
f(z) < pf(x) + (1 — p)f(y);
f is concave-like if —f is convex-like.

f: X x Y — R is convex-concave-like if f(-,y) is convex-like
Vy € Y is and f(x, ) is concave-like Vx € X.
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Minimax theorem in arbitrary spaces

Definition (Convex-like function)

Let X be any set. We say f: X — R is convex-like if Vx,y € X,
Vu € [0,1], 3z € X such that

F(2) < uf(x) + (1= p)F(y);
f is concave-like if —f is convex-like.

f: X x Y — R is convex-concave-like if f(-,y) is convex-like
Vy € Y is and f(x, ) is concave-like Vx € X.

Theorem (Fan ‘53, Borwein-Zhuang '86)

Let X, Y be non-empty, f: X x Y — R convex-concave-like.
Suppose X is compact and f(-,y) is lower semicontinuous Vy € Y.
Then

min sup f(x,y) = sup min f(x, y).
xeX yey yey xeX
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Proposition (Convex-like on monoids)

Suppose X is a semidivisible topological monoid such that for
every x1,xp € X, conv({x1, x2}) is precompact. Assume f: X — R
is convex and lower semicontinuous. Then f is convex-like.

As a result, we immediately get: J

Theorem (Minimax theorem for monoids)

Let X be compact and convex in a semidivisible topological
monoid, and Y be a subset of semidivisible topological monoid
such that conv({y1,y»}) is precompact Vy1,y» € Y.

Suppose f: X x Y — R is such that f(-,y) is convex and lower
semicontinuous, f(x, ) is concave and upper semicontinuous
Vx € X,Vy € Y. Then

min sup f(x,y) = sup min f(x, y).
xeX yey yey xeX
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Minimax theorem: example

Choose again the positive hyperbolic group X of 2 x 2 matrices of

the form © )

cosh(6) sinh(6

i) = cosh(f) sinh(f) |’ ER,
with matrix multiplication.
If A:0— M(0), then for a, 5 € R
conv({M(a), M(8)} € A([ev, B])

which is compact = if C C X is convex and compact, every
f: Cx X — Ris as above will satisfy the minimax theorem.
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Future directions

@ More convex analysis (differentiation, variational principle,
monotone operators ...).

@ A unified approach to Krein-Milman that includes semilattices.

@ Examples of semidivisible connected locally convex topological
groups which are not divisible (if any).

@ Everything else.
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Thank you

Algebra is generous; she often gives more

than is asked of her.
(Jean d“Alembert, 1717-1783)

10 1717 D AIEMBBRTWB% Posrés
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