
High-Precision Computation:
Mathematical Physics and Dynamics

D.H. Bailey∗ J.M. Borwein† R. Barrio‡

October 8, 2009

Abstract

At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate
for most scientific applications. However, for a rapidly growing body of important
scientific computing applications, a higher level of numeric precision is required.
Such calculations are facilitated by high-precision software packages that include
high-level language translation modules to minimize the conversion effort. This pa-
per presents a survey of recent applications of these techniques and provides some
analysis of their numerical requirements. These applications include supernova sim-
ulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic
systems, studies of the fine structure constant, scattering amplitudes of quarks, glu-
ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation
of orthogonal polynomials, numerical integration of ODEs, computation of periodic
orbits, studies of the splitting of separatrices, detection of SNAs, Ising theory, quan-
tum field theory, and discrete dynamical systems. We conclude that high-precision
arithmetic facilities are now an indispensable component of a modern large-scale
scientific computing environment.
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1 Introduction

Virtually all present-day computer systems, from personal computers to the largest su-
percomputers, implement the IEEE 64-bit floating-point arithmetic standard, which pro-
vides 53 mantissa bits, or approximately 16 decimal digit accuracy. For most scientific
applications, 64-bit arithmetic is more than sufficient, but for a rapidly expanding body
of applications, it is not. In these applications, portions of the code typically involve
numerically sensitive calculations, which produce results of questionable accuracy using
conventional arithmetic. These inaccurate results may in turn induce other errors, such
as taking the wrong path in a conditional branch. At the same time, the majority of per-
sons performing numerical computations at the present time are not experts in numerical
analysis, and thus are more likely to be unaware of the potential numerical difficulties
that may exist. Thus, while some numerically sensitive calculations can be remedied by
using different algorithms or coding techniques, in practice it is usually easier, cheaper
and more reliable to employ high-precision arithmetic to overcome them.

As a simple example of such difficulties, consider the following innocuous-looking prob-
lem. Suppose we wish to fit the following data to a polynomial: 5, 2304, 118101, 1838336,
14855109, 79514880, 321537749, 1062287616, 3014530821, for integer arguments (0, ..., 8).
The usual approach is to employ polynomial least squares curve fitting, which amounts
to solving a (n+ 1× n+ 1) linear system of equations (written in matrix form):
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In a computer implementation of this algorithm, the linear equation solution is most com-
monly (and most wisely) done with library software, such as the Linpack [44] or LAPACK
[43]. But whether or not library software is used, a double-precision implementation of this
algorithm fails to find the correct underlying polynomial coefficients. However, an imple-
mentation of this scheme using “double-double” precision (i.e., roughly 31-digit precision)
correctly deduces that the original data sequence is given by the polynomial function

f(k) = 5 + 220k2 + 990k4 + 924k6 + 165k8.

Exacerbating these difficulties is the proliferation of very large-scale highly parallel
computer systems, as as exemplified by the Top500 list (see http://www.top500.org).
One inescapable consequence of the greatly increased scale of these calculations is that
numerical anomalies which heretofore have been minor nuisances are now much more
likely to have significant impact. One concrete illustration of these difficulties is provided
by the following example, for which the authors are indebted to Bastian Pentenrieder of
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ETH Zurich. Consider the very simple 1-D differential equation y′′(x) = −f(x) for some
function f(x). Discretization of this system immediately leads to the matrix

2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
· · · · · ·
0 · · · −1 2 −1 0
0 · · · 0 −1 2 −1
0 · · · 0 0 −1 2


.

The condition number of this matrix (namely the quotient of the largest eigenvalue to the
smallest eigenvalue) is readily seen to be approximated by

κ(n) ≈ 4(n+ 1)2

π2
,

where n× n is the size of the linear system above . Note that even when n = 107, which
is a fairly modest size compared to some systems currently being attempted in current
high-end computing, the condition number is sufficiently large that the system (depending
on the nature of function f(x)) cannot be reliably solved using conventional IEEE 64-bit
floating-point arithmetic.

2 High-Precision Software

Algorithms for performing high-precision arithmetic are fairly well known [28], and soft-
ware packages implementing these schemes have been available since the early days of
computing. However, many of these packages require one to rewrite a scientific application
with individual subroutine calls for each arithmetic operation. The difficulty of writing
and debugging such code has deterred all but a few scientists from using such software. But
in the past few years, high-precision software packages have been produced that include
high-level language interfaces, making such conversions relatively painless. These pack-
ages typically utilize custom datatypes and operator overloading features, which are now
available in languages such as C++ and Fortran-90, to facilitate conversion. Even more
advanced high-precision computation facilities are available in the commercial products
Mathematica and Maple, which incorporate arbitrary-precision arithmetic in a natural
way for a wide range of functions. However, these products do not provide a means to
convert existing scientific programs written in other languages.

Some examples of high-precision arithmetic software packages that are freely available
on the Internet are the following, listed in alphabetical order. The ARPREC, QD and
MPFUN90 packages are available from the first author’s website:
http://crd.lbl.gov/~dhbailey/mpdist.
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• ARPREC. This package includes routines to perform arithmetic with an arbitrarily
high level of precision, including many algebraic and transcendental functions. High-
level language interfaces are available for C++ and Fortran-90, supporting real,
integer and complex datatypes.

• GMP. This package includes an extensive library of routines to support high-precision
integer, rational and floating-point calculations. GMP has been produced by a vol-
unteer effort and is distributed under the GNU license by the Free Software Foun-
dation. It is available at http://gmplib.org.

• MPFR. The MPFR library is a C library for multiple-precision floating-point com-
putations with exact rounding, and is based on the GMP multiple-precision library.
Additional information is available at http://www.mpfr.org.

• MPFR++. This is a high-level C++ interface to MPFR. Additional information is
available at http://perso.ens-lyon.fr/nathalie.revol/software.html. A similar
package is GMPFRXX, available at http://math.berkeley.edu/~wilken/code/gmpfrxx.

• MPFUN90. This is equivalent to ARPREC in user-level functionality, but is written
entirely in Fortran-90 and provides a Fortran-90 language interface.

• QD. This package includes routines to perform “double-double” (approx. 31 digits)
and “quad-double” (approx. 62 digits) arithmetic. High-level language interfaces are
available for C++ and Fortran-90, supporting real, integer and complex datatypes.
The QD package is much faster than using arbitrary precision software when 31 or
62 digits is sufficient.

Using high-precision software increases computer run times, compared with using con-
ventional 64-bit arithmetic. For example, computations using double-double precision
arithmetic typically run five times slower than with 64-bit arithmetic. This figure rises to
25 times for the quad-double arithmetic, to more than 50 times for 100-digit arithmetic,
and to more than 1000 times for 1000-digit arithmetic.

3 Applications of High-Precision Arithmetic

Here we briefly mention a few of the growing list of scientific computations that require
high-precision arithmetic, and provide some analysis of their numerical requirements.

3.1 Supernova Simulations

Recently Edward Baron, Peter Hauschildt, and Peter Nugent used the QD package,
which provides double-double (128-bit or 31-digit) and quad-double (256-bit or 62-digit)
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datatypes, to solve for the non-local thermodynamic equilibrium populations of iron and
other atoms in the atmospheres of supernovae and other astrophysical objects [14, 38].
Iron for example may exist as Fe II in the outer parts of the atmosphere, but in the inner
parts Fe IV or Fe V could be dominant. Introducing artificial cutoffs leads to numerical
glitches, so it is necessary to solve for all of these populations simultaneously. Since the
relative population of any state from the dominant stage is proportional to the exponential
of the ionization energy, the dynamic range of these numerical values can be large.

In order to handle this potentially very large dynamic range, yet at the same time
perform the computation in reasonable time, Baron, Hauschildt and Nugent employ an
automatic scheme to determine whether to use 64-bit, 128-bit or 256-bit arithmetic in
both constructing the matrix elements and in solving the linear system.

3.2 Climate Modeling

It is well-known that climate simulations are fundamentally chaotic—if microscopic changes
are made to the present state, within a certain period of simulated time the future state
is completely different. Indeed, ensembles of these calculations are required to obtain sta-
tistical confidence in global climate trends produced from such calculations. As a result,
computational scientists involved in climate modeling applications have resigned them-
selves that their codes quickly diverge from any “baseline” calculation, even if they only
change the number of processors used to run the code. For this reason, it is not only
difficult for researchers to compare results, but it is often problematic even to determine
whether they have correctly deployed their code on a given system.

Recently Helen He and Chris Ding investigated this non-reproducibility phenomenon
in a widely-used climate modeling code. They found that almost all of the numerical
variation occurred in one inner product loop in the atmospheric data assimilation step,
and in a similar operation in a large conjugate gradient calculation. He and Ding found
that a straightforward solution was to employ double-double arithmetic for these loops.
This single change dramatically reduced the numerical variability of the entire application,
permitting computer runs to be compared for much longer run times than before [40].

3.3 Planetary Orbit Calculations

One central question of planetary theory is whether the solar system is stable over cos-
mological time frames (billions of years). Planetary orbits well known to exhibit chaotic
behavior. Indeed, as Isaac Newton once noted, “The orbit of any one planet depends on
the combined motions of all the planets, not to mention the actions of all these on each
other. To consider simultaneously all these causes of motion and to define these motions
by exact laws allowing of convenient calculation exceeds, unless I am mistaken, the forces
of the entire human intellect.” [32, pg. 121].
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Scientists have studied this question by performing very long-term simulations of plan-
etary motions. These simulations typically do fairly well for long periods, but then fail
at certain key junctures, such as when two planets pass fairly close to each other. Re-
searchers have found that double-double or quad-double arithmetic is required to avoid
severe numerical inaccuracies, even if other techniques are employed to reduce numerical
error [41]. We also mention the recent studies of W. Hayes [39], where some comparisons
of the stability of the Solar System is performed using various numerical ODE integrators
and checked via a high-precision integration done using a Taylor series integrator.

3.4 Coulomb n-Body Atomic System Simulations

Numerous computations have been performed recently using high-precision arithmetic to
study atomic-level Coulomb systems. For example, Alexei Frolov of Queen’s University
in Ontario, Canada has used high-precision software to solve the generalized eigenvalue
problem (Ĥ −EŜ)C = 0, where the matrices Ĥ and Ŝ are large (typically 5, 000× 5, 000
in size) and very nearly degenerate. Until recently, progress in this arena was severely
hampered by the numerical difficulties induced by these nearly degenerate matrices.

Frolov has done his calculations using the MPFUN90 package, with a numeric precision
level exceeding 100 digits. Frolov notes that in this way “we can consider and solve the
bound state few-body problems which have been beyond our imagination even four years
ago.” He has also used MPFUN90 to compute the matrix elements of the Hamiltonian
matrix Ĥ and the overlap matrix Ŝ in four- and five-body atomic problems. As of this
date, Frolov has written a total of 21 papers based on high-precision computations. Two
illustrative examples are [12] and [33].

3.5 Studies of the Fine Structure Constant of Physics

In the past few years, significant progress has been achieved in using high-precision arith-
metic to obtain highly accurate solutions to the Schrodinger equation for the lithium atom.
In particular, the nonrelativistic ground state energy has been calculated to an accuracy
of a few parts in a trillion, a factor of 1500 improvement over the best previous results.
With these highly accurate wavefunctions, Zong-Chao Yan and others have been able to
test the relativistic and QED effects at the 50 parts per million (ppm) level and also at
the one ppm level [49]. Along this line, a number of properties of lithium and lithium-
like ions have also been calculated, including the oscillator strengths for certain resonant
transitions, isotope shifts in some states, dispersion coefficients and Casimir-Polder effects
between two lithium atoms.

Theoretical calculations of the fine structure splittings in helium atoms have now
advanced to the stage that highly accurate experiments are now planned. When some
additional computations are completed, a unique atomic physics value of the fine structure
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constant may be obtained to an accuracy of 16 parts per billion [50].

3.6 Scattering Amplitudes of Quarks, Gluons and Bosons

An international team of physicists, in preparation for the Large Hadron Collider (LHC),
is computing scattering amplitudes involving quarks, gluons and gauge vector bosons, in
order to predict what results could be expected on the LHC. By default, these computa-
tions are performed using conventional double precision (64-bit IEEE) arithmetic. Then
if a particular phase space point is deemed numerically unstable, it is recomputed with
double-double precision. These researchers expect that further optimization of the proce-
dure for identifying unstable points may be required to arrive at an optimal compromise
between numerical accuracy and speed of the code. Thus they plan to incorporate arbi-
trary precision arithmetic, using either the MPFUN90 or ARPREC packages, into these
calculations. Their objective is to design a procedure where instead of using fixed double
or quadruple precision for unstable points, the number of digits in the higher precision
calculation is dynamically set according to the instability of the point [30].

In a related study, various checks of instabilities are employed, such as by comparing
gluon amplitudes with known analytic values whenever possible. If a given point is deemed
unstable by these tests, the researchers employ the QD package to re-evaluate the unstable
points using higher precision (double-double or quad-double as needed). Because only
a few points have to be re-computed to higher precision, they find that their average
evaluation time is not significantly increased [24].

Two other recent examples of employing high-precision arithmetic in fundamental
physics calculations of this type are [45] and [29].

3.7 Nonlinear Oscillator Theory

Quinn, Rand, and Strogatz recently described a nonlinear oscillator system by means of
the formula

0 =
N∑
i=1

(
2
√

1− s2(1− 2(i− 1)/(N − 1))2 − 1√
1− s2(1− 2(i− 1)/(N − 1))2

)
.

They noted that for large N , s ≈ 1−c/N , where c = 0.6054436... These researchers asked
the present authors and Richard Crandall to validate and extend this computation, and
challenged us to identify this limit if it exists. By means of a Richardson extrapolation
scheme, implemented on 64-CPUs of a highly parallel computer system, we computed
(using the QD software)

c = 0.6054436571967327494789228424472074752208996 . . .
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This led to a proof that the limit c exists and is the root of a Hurwitz zeta function
ζ (1/2, c/2) = 0, where ζ(s, a) :=

∑
n≥0 1/(n + a)s. As a bonus, we obtained some

asymptotic terms [7].

3.8 Experimental Mathematics

High-precision computations have proven to be an essential tool for the emerging discipline
of “experimental mathematics,” namely the utilization of modern computing technology
as an active agent of exploration in mathematical research [25][4]. One of the key tech-
niques used here is the PSLQ integer relation detection algorithm [9]. An integer relation
detection scheme is a numerical algorithm which, given an n-long vector (xi) of real num-
bers (presented as a vector of high-precision floating-point values), attempts to recover
the integer coefficients (ai), not all zero, such that

a1x1 + a2x2 + · · ·+ anxn = 0

(to available precision), or else determines that there are no such integers (ai) such that
the Euclidean norm

√
a2

1 + a2
2 + · · ·+ a2

n < M for some bound M . The PSLQ algorithm
operates by developing, iteration by iteration, an integer-valued matrix A which succes-
sively reduces the maximum absolute value of the entries of the vector y = Ax (where
x is the input vector mentioned above), until one of the entries of y is zero or within
an “epsilon” of zero. With PSLQ or any other integer relation detection scheme, if the
underlying integer relation vector of length n has entries of maximum size d digits, then
the input data must be specified to at least nd-digit precision (and the algorithm must
be performed using this precision level) or else the true relation will be lost in a sea of
spurious numerical artifacts.

Perhaps the best-known application of PSLQ in experimental mathematics is the 1996
discovery of what is now known as the “BBP” formula for π:

π =
∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
.

This formula has the remarkable property that it permits one to calculate binary or
hexadecimal digits beginning at the n-th digit, without needing to calculate any of the
first n− 1 digits, using a simple scheme that requires very little memory and no multiple-
precision arithmetic software [3][25, pg. 135-143]. Since 1996, numerous other formulas
of this type have been found, using the PSLQ-based computational approach, and then
subsequently proven [25, pg. 147–149].

In an unexpected turn of events, it has been found that these computer-discovered
formulas have implications for the age-old question of whether (and why) the digits of
constants such as π and log 2 are statistically random [10][25, pg. 163–174]. This same
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line of investigation has further led to a formal proof of normality (statistical randomness
in a specific sense) for an uncountably infinite class of explicit real numbers. The simplest
example of this class is the constant

α2,3 =
∞∑
n=1

1

3n23n
,

which is provably 2-normal: every string of m binary digits appears, in the limit, with
frequency 2−m [11][25, pg. 174–178].

3.9 Evaluating orthogonal polynomials

The use of the classical families of orthogonal polynomials has been extended to almost all
mathematical and physical disciplines, including approximation theory, spectral methods,
representation of potentials and others. In the last few years, researchers have studied
orthogonal polynomials in Sobolev spaces. One particular case of interest is when mea-
sures related to derivatives are purely atomic, with a finite number of mass points. That
is, given a set of K evaluation points {c1, . . . , cK} (the support of the discrete measure),
a set of indexes that indicate the maximum order of derivatives in each evaluation point
{r1, . . . , rK}, and a set of non-negative coefficients {λji | j = 1, . . . , K; i = 0, . . . , rj}, we
define the Sobolev inner product

〈p, q〉W =

∫
R
p(x) q(x) dµ0(x) +

K∑
j=1

rj∑
i=0

λji p
(i)(cj) q

(i)(cj), λji ≥ 0. (1)

This particular case is an important instance of the class of discrete Sobolev inner prod-
ucts. Note that the standard orthogonal polynomials are orthogonal with respect to a
“standard” inner product

〈p, q〉 =

∫
R
p(x) q(x) dµ0(x), (2)

where µ0 is a positive Borel measure on the real line with infinitely many points at the
support.

Sobolev orthogonal polynomials {qn(x)} satisfy a (2g + 1)-term recurrence relation

h(x) qn−g(x) =
n∑

k=max{0,n−2g}

bn,k qk(x), (n ≥ g). (3)

The reference [16] presents the complete set of formulas to obtain the coefficients {bij} of
(3). In order to show the complexity of the process, the proposition below presents just
one of the algorithms of [16] needed to obtain the coefficients in the general case (n ≥ gi),
respectively.
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Proposition 1 Let {q0(x), q1(x), . . . , qg−1(x)} be a monic orthogonal polynomial basis of
Pg−1 (where g := degree(h1(x)) or degree(h2(x))) with respect to (1) and {p0(x), p1(x), . . . ,
pg−1(x)} with respect to (2). Then

q0(x) = 1,

x ql−1(x) = ql(x) +
l−1∑
s=0

bl,s qs(x), 1 ≤ l < g,

where bl,s = δl,s +
1

‖qs‖2W

{
l∑

m=s+1

δl,m

K∑
j=1

rj∑
i=0

λji p
(i)
m (cj) q

(i)
s (cj)

}
being


δl,l = 1,
δl,l−1 = al−1,l−2 + βl−1,
δl,l−2 = al−1,l−3 + al−1,l−2 βl−2 + γl−1,
δl,m = al−1,m−1 + al−1,m βm + al−1,m+1 γm+1, m = s, . . . , l − 3,

with as,t given by as,t = − 1

‖pt(x)‖2
K∑
j=1

rj∑
i=0

λji q
(i)
s (cj) p

(i)
t (cj), t ≥ 0,

as,t = 0, t < 0.

(4)

The above formulas to obtain the coefficients {bij} are, in general, quite unstable
numerically. The main reasons are the appearance of ‖pi‖ in the formulas and the necessity
of computing derivatives of polynomials at the support of the discrete measures. It is well
known that the evaluation of derivatives is a highly unstable problem and can lead to
severe rounding errors. On the other hand, the L2-norms ‖pi‖ decrease very fast in the
case of Jacobi polynomials and grow in the case of Hermite and Laguerre polynomials.
As a result, terms of very different sizes can appear, which result in numerical errors due
to cancelation.

In Figure 1 we present the evaluation of the square of the L2-norm, with respect to
their own inner products, of the classical and the Sobolev polynomials of two families:
Chebyshev and Hermite. The computations have been done by using 128 and 256 bits of
precision in the mantissa (note that 53 bits is the standard double precision). Rounding
errors render the computation completely inaccurate in some cases using 128 bits. One of
the reasons is the decay of ‖pi‖2, from 1 to 10−30, which requires the use of a high precision.
In the figures we have plotted both precisions (128 and 256 bits) in the cases with three
mass points in the discrete measure. We observe that for low degrees both computations
are similar, but for degrees higher than 15 the results are completely different (cases b-c,
e-f), generating, in the case of 128 bits, inaccurate coefficients {bij}.
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Figure 1: Evaluation (degree 0 to 50) of the square of the L2-norm of four families
of Sobolev orthogonal polynomials compared with the associated classical orthogonal
polynomials. On the left, Chebyshev-Sobolev polynomials with: (a) one mass point c =
1.5 up to 1st derivative, λ = 1/10, using 128 bits, (b) three mass points cj = −1, 0, 0.5
up to 3rd derivative, λij = 1/10, using 128 bits, and (c) the same as (b) but using 256
bits. On the right, Hermite-Sobolev polynomials with: (d) one mass point c = 1.5 up to
1st derivative, λ = 1/10, using 128 bits, (e) three mass points cj = −1, 0, 0.5 up to 5th
derivative, λij = 1/10, using 128 bits, and (f) the same as (e) but using 256 bits.

From Figure 1 it is clear that in the computation of the recurrence coefficients {bij} it
is necessary to use multiple-precision software. Besides, when we want to evaluate a finite
series of Sobolev orthogonal polynomials it is necessary to control the rounding errors.

In Figure 2 we show the behavior of some theoretical error bounds [17]: T4 a backward
error bound and T5 for the running error bound, and the relative error in a multiple-
precision evaluation of a Sobolev series. Note that we present relative error bounds and
relative rounding errors, that is, for q(x) 6≈ 0 we divide by |q(x)|. We have up to degree
50 of the function f(x) = (x+ 1)2 sin(4x) in Chebyshev-Sobolev orthogonal polynomials,
considering one mass point c = 1 up to first derivative in the discrete part of the inner
product. In the figures on the left we use double precision (53 bits on the mantissa) and
on the right we use multiple precision (96 bits on the mantissa for x < −0.5 (on the
left of the vertical line) and 64 for x > −0.5). The turning point x = −0.5 is the point
where the relative running error in double precision is greater than 10−10. Therefore, from
the figures we can observe how the combined use of rounding error bounds (in this case
the running error bound) and multiple-precision libraries permits us to evaluate Sobolev
series accurately.
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Figure 2: Behavior of the theoretical error bounds (T4 a backward error bound and
T5 for the running error bound) and the relative error in the double- and multiple-
precision evaluation of the Chebyshev-Sobolev approximation of degree 50 of the function
f(x) = (x + 1)2 sin(4x), where the discrete Sobolev measure have one mass point c = 1
up to 1st derivative in the discrete part of the inner product. In the figure on the left we
use double precision and on the right multiple-precision (on the left of the vertical line we
use 96 bits on the mantissa and 64 on the right part).

3.10 High-precision solution of ODEs: Taylor method

In several applications of dynamical systems we need to integrate the relevant differential
equation, normally for a short time, with very high precision. Moreover, in the study of
the bifurcations and stability of periodic orbits (by instance) we also have to integrate
the first order variational equations using as initial conditions the identity matrix. To
reach this goal we may, obviously, use any numerical ODE method such as Runge-Kutta.
During the last few years, the Taylor method has emerged as a preferred method in the
computational dynamics community.

The Taylor method is one of the oldest numerical methods for solving ordinary dif-
ferential equations, but it is scarcely used in the numerical analysis community. The
formulation is quite simple [15, 19]. Let us consider the initial value problem ẏ = f(t, y).
Now, the value of the solution at ti (that is, y(ti)) is approximated by yi from the n-th
degree Taylor series of y(t) at t = ti (the function f has to be a smooth function). So,
denoting hi = ti − ti−1,

y(t0) =: y0,

y(ti) ' yi−1 + f(ti−1,yi−1)hi + . . .+
1

n!

dn−1f(ti−1,yi−1)

dtn−1
hni =: yi.

Therefore, the problem is reduced to the determination of the Taylor coefficients
{1/(j + 1)! djf/dtj}. This may be done quite efficiently by means of the automatic
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differentiation (AD) techniques. Note that the Taylor method has several good features
(for details see [15, 19]).

In the Table 1 we present some comparisons on the Henón-Heiles problem using the
Taylor method (TIDES) and the well established code dop853 developed by Hairer and
Wanner [36]. Both methods are only compared in double and quadruple precision using
the Lahey LF 95 compiler because the dop853 cannot be directly used in multiple preci-
sion. Note for low precision the dop853 code is faster, but when the precision demands are
increased the Taylor method is by far the fastest – indeed it is the only reliable method
for very high precision. The small figure on the bottom right shows the evolution of the
orbit.

TIDES (Taylor) dop853
CO Tol CPU RelErr CPU RelErr

dp 10−10 0.53E−02 0.201E−10 0.34E−02 0.205E−06
dp 10−15 0.12E−01 0.345E−13 0.15E−01 0.113E−11

qp 10−20 0.30E+00 0.300E−20 0.30E+01 0.102E−17
qp 10−25 0.61E+00 0.165E−26 0.12E+02 0.325E−23

mpf90 10−32 0.13E+01 0.782E−29

−0.5 0 0.5
−0.4

−0.2

0

0.2

0.4

x

y

mpf90 10−64 0.89E+01 0.144E−65
mpf90 10−128 0.74E+02 0.432E−131

Table 1: CPU time and final error using dop853 and a Taylor method (TIDES) with
VSVO formulation for the HH problem using different compiler options (CO): double
precision (dp) for tolerance levels 10−10, 10−15, quadruple precision (qp) for tolerance levels
10−20, 10−25 and multiple precision (mpf90) for tolerance levels 10−32, 10−64, 10−128. The
figure shows the computed orbit (an orbit on a KAM tori).

It is important to remark that nowadays there are excellent free-software implementa-
tions of the Taylor series method, with arbitrary high-precision, for the numerical solution
of ODEs and for the automatic determination of the solution of high-order variational
equations. The software TIDES [1] (Taylor series Integrator for Differential EquationS) is
a powerful implementation of this technology (see http://gme.unizar.es/software/tides

or send an email to tides@unizar.es).
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3.11 Computing the “skeleton” of periodic orbits

In words of H. Poincaré, periodic orbits form the “skeleton” of a dynamical system and
provide much useful information. Therefore, the search for periodic orbits is a quite
old problem and numerous numerical and analytical methods have been designed for
them. Here we mention just two methods that have been used with high-precision in the
literature: the Lindstedt-Poincaré technique [47] and one of the most simple and powerful
method to find periodic orbits, namely the systematic search method [18], where one takes
advantage of symmetries of the system to find symmetric periodic orbits.

Theorem 1 Let o(x) be an orbit of a flow of an autonomous vector field with a reversal
symmetry S. Then, an orbit o(x) intersects Fix(S) := {x |S(x) = x } in precisely two
points if and only if the orbit is periodic (and not a fixed point) and symmetric with respect
to S.

The above results were already known by Birkhoff, DeVogelaere and Strömgren (among
others) and were used to find symmetric periodic orbits.

The usage of high-precision numerical integrators in the determination of periodic
orbits is required in the search of highly unstable periodic orbits. For instance, in Figure
3 we show the computed symmetric periodic orbit for the 7+2 Ring problem using double
and quadruple precision [20]. The (n + 2)-body Ring problem describes the motion of
an infinitesimal particle attracted by the gravitational field of n + 1 primary bodies, n
in the vertices of a regular polygon that is rotating on its own plane about the center
with a constant angular velocity. Each point corresponds to the initial conditions of one
symmetric periodic orbit, and the grey area corresponds to regions of forbidden motion
(delimited by the limit curve). Note that in order to avoid “false” initial conditions it is
useful to check if the initial conditions generate a periodic orbit up to a given tolerance
level. But in the case of highly unstable periodic orbits we may lose several digits in each
period, so that double precision is not enough in many unstable cases, resulting in gaps
in the figure.

The Lindstedt-Poincaré method [47] for computing periodic orbits is based on the
Lindstedt-Poincaré technique of perturbation theory, Newton’s method for solving non-
linear systems and Fourier interpolation. Viswanath [48] uses this algorithm in combi-
nation with high-precision libraries to obtain periodic orbits for the Lorenz model at the
classical Saltzman’s parameter values. This procedure permits one to compute, to high
accuracy (more than 100 digits of precision), highly unstable periodic orbits (for instance
the orbit with symbolic dynamics ABA2B2 · · ·A15B15 has a leading characteristic multi-
plier 3.06× 1059, which means that we can expect that at each period we lose around 59
digits of precision). For these reasons, high-precision arithmetic plays a fundamental role
in the study of the fractal properties of the Lorenz attractor.
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Figure 3: Symmetric periodic orbits (m denotes the multiplicity of the periodic orbit) in the
most chaotic zone of the 7 + 2 Ring problem using double (A) and quadruple (B) precision.

3.12 Divergent asymptotic series and homoclinic phenomena

One interesting phenomena in dynamical systems is the study of the splitting of separa-
trices of area preserving maps. Numerical difficulties arise because this phenomena can
exhibit exponentially small splitting [34]. For instance, the most common paradigmatic
example is the standard map defined by (x, y) 7→ (x̂, ŷ) where

ŷ = y + ε sinx, x̂ = x+ ŷ
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and ε is a small positive constant. An asymptotic formula for the angle between the stable
and the unstable separatrices at the primary homoclinic point was given by Lazutkin [42]:

α =
π

ε
e
− π

2
√
ε
(
1118.8277059409 . . .+O(

√
ε)
)
.

As a result, the separatrices are transversal, but the angle between them is exponentially
small compared to ε. This leads to severe problems in numerical simulations. Gelfreich
and Simó [34] use a homoclinic invariant ω that gives the area of a parallelogram defined
by two vectors tangent to the stable and the unstable manifolds at the homoclinic point.
While ω in the standard map can be represented by an asymptotic series, one question
is what happens when we use several generalizations of the standard map. In [34], the
authors employed high-precision computation of the homoclinic invariant and consecu-
tive extraction of coefficients of an asymptotic expansion, in order to obtain a numerical
evidence that various different types of asymptotic expansions arise in this class of prob-
lems. These results are unachievable using standard double precision; in some numerical
simulations 1000-digit precision was required.

3.13 Detecting SNA

In the study of dynamics of dissipative systems the detection of the attractors is quite
important, because they are the visible invariant sets of the dynamics of the problem.
An attractor is defined as strange if it is not a piecewise smooth manifold and chaotic
if any orbit on it exhibits sensitive dependence on initial conditions. All the first ex-
amples of strange attractors in the literature where strange chaotic attractors, but soon
some strange nonchaotic attractors were identified. Several authors suggested that in the
transition to chaos in quasiperiodically forced dissipative systems, in particular in the so
called fractalization route in which a smooth torus seems to fractalize, strange nonchaotic
attractors appear. In [37], Haro and Simó showed that in truth these attractors are non-
strange. These authors found that multiprecision arithmetic with more than 30 digits was
needed to reliably study this behavior at very small scales.

3.14 Ising Integrals

Several recent applications of high-precision computation have attempted to recognize
definite integrals (typically arising in mathematical physics applications) using the meth-
ods of experimental mathematics. These computations have required the evaluation of
integrals to very high precision, typically 100 to 1000 digits. In our studies, we have used
either Gaussian quadrature (in cases where the function is well behaved in a closed inter-
val) or the “tanh-sinh” quadrature scheme due to Takahasi and Mori [46] (in cases where
the function has an infinite derivative or blow-up singularity at one or both endpoints).
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For many integrand functions, these schemes exhibit “quadratic” or “exponential” con-
vergence – dividing the integration interval in half (or, equivalently, doubling the number
of evaluation points) approximately doubles the number of correct digits in the result [13].

In a recent study, the present authors together with Richard Crandall applied tanh-
sinh quadrature, implemented using the ARPREC package, to study the following classes
of integrals [6]. The Dn integrals arise in the Ising theory of mathematical physics, and
the Cn have tight connections to quantum field theory.

Cn =
4

n!

∫ ∞
0

· · ·
∫ ∞

0

1(∑n
j=1(uj + 1/uj)

)2

du1

u1

· · · dun
un

Dn =
4

n!

∫ ∞
0

· · ·
∫ ∞

0

∏
i<j

(
ui−uj
ui+uj

)2

(∑n
j=1(uj + 1/uj)

)2

du1

u1

· · · dun
un

En = 2

∫ 1

0

· · ·
∫ 1

0

( ∏
1≤j<k≤n

uk − uj
uk + uj

)2

dt2 dt3 · · · dtn,

where (in the last line) uk =
∏k

i=1 ti.
Needless to say, evaluating these n-dimensional integrals to high precision presents a

daunting computational challenge. Fortunately, in the first case, we were able to show
that the Cn integrals can be written as one-dimensional integrals:

Cn =
2n

n!

∫ ∞
0

pKn
0 (p) dp,

where K0 is the modified Bessel function [2]. After computing Cn to 1000-digit accuracy
for various n, we were able to identify the first few instances of Cn in terms of well-known
constants, e.g.,

C3 = L−3(2) =
∑
n≥0

(
1

(3n+ 1)2
− 1

(3n+ 2)2

)
C4 =

7

12
ζ(3),

where ζ denotes the Riemann zeta function. When we computed Cn for fairly large n, for
instance

C1024 = 0.63047350337438679612204019271087890435458707871273234 . . . ,

we found that these values rather quickly approached a limit. By using the new edi-
tion of the Inverse Symbolic Calculator, available at http://ddrive.cs.dal.ca/~isc, this
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numerical value can be identified as

lim
n→∞

Cn = 2e−2γ,

where γ is Euler’s constant. We later were able to prove this fact—this is merely the first
term of an asymptotic expansion—and thus showed that the Cn integrals are fundamental
in this context [6].

The integrals Dn and En are much more difficult to evaluate, since they are not re-
ducible to one-dimensional integrals (as far as we can tell), but with certain symmetry
transformations and symbolic integration we were able to reduce the dimension in each
case by one or two. In the case ofD5 and E5, the resulting 3-D integrals are extremely com-
plicated, but we were nonetheless able to numerically evaluate these to at least 240-digit
precision on a highly parallel computer system. In this way, we produced the following
evaluations, all of which except the last we subsequently were able to prove:

D2 = 1/3

D3 = 8 + 4π2/3− 27 L−3(2)

D4 = 4π2/9− 1/6− 7ζ(3)/2

E2 = 6− 8 log 2

E3 = 10− 2π2 − 8 log 2 + 32 log2 2

E4 = 22− 82ζ(3)− 24 log 2 + 176 log2 2− 256(log3 2)/3 + 16π2 log 2− 22π2/3

E5
?
= 42− 1984 Li4(1/2) + 189π4/10− 74ζ(3)− 1272ζ(3) log 2 + 40π2 log2 2

−62π2/3 + 40(π2 log 2)/3 + 88 log4 2 + 464 log2 2− 40 log 2,

where Li denotes the polylogarithm function. In the case of D2, D3 and D4, these are
confirmations of known results. We tried but failed to recognize D5 in terms of similar
constants (the 500-digit numerical value is available if anyone wishes to try). The conjec-
tured identity shown here for E5 was confirmed to 240-digit accuracy, which is 180 digits
beyond the level that could reasonably be ascribed to numerical round-off error; thus we
are quite confident in this result even though we do not have a formal proof [6]. In a
follow-on study [8], we examined the following generalization of the Cn integrals:

Cn,k =
4

n!

∫ ∞
0

· · ·
∫ ∞

0

1(∑n
j=1(uj + 1/uj)

)k+1

du1

u1

· · · dun
un

.

Here we made the initially surprising discovery—now proven in [26]—that there are linear
relations in each of the rows of this array (considered as a doubly-infinite rectangular
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matrix), e.g.,

0 = C3,0 − 84C3,2 + 216C3,4

0 = 2C3,1 − 69C3,3 + 135C3,5

0 = C3,2 − 24C3,4 + 40C3,6

0 = 32C3,3 − 630C3,5 + 945C3,7

0 = 125C3,4 − 2172C3,6 + 3024C3,8.

In yet a more recent study, co-authored with physicists David Broadhurst and Larry
Glasser [5], we were able to analytically recognize many of these Cn,k integrals—because,
remarkably, these same integrals appear naturally in quantum field theory (for odd k).
We also discovered, and then proved with considerable effort, that with cn,k normalized
by Cn,k = 2n cn,k/(n! k!), we have

c3,0 =
3Γ6(1/3)

32π22/3
=

√
3π3

8
3F2

(
1/2, 1/2, 1/2

1, 1

∣∣∣∣∣14
)

c3,2 =

√
3π3

288
3F2

(
1/2, 1/2, 1/2

2, 2

∣∣∣∣∣14
)

c4,0 =
π4

4

∞∑
n=0

(
2n
n

)4
44n

=
π4

4
4F3

(
1/2, 1/2, 1/2, 1/2

1, 1, 1

∣∣∣∣∣1
)

c4,2 =
π4

64

[
4 4F3

(
1/2, 1/2, 1/2, 1/2

1, 1, 1

∣∣∣∣∣1
)

−3 4F3

(
1/2, 1/2, 1/2, 1/2

2, 1, 1

∣∣∣∣∣1
)]
− 3π2

16
,

where pFq denotes the generalized hypergeometric function [2]. The corresponding odd
values are c3,1 = 3L−3(2)/4, c3,3 = L−3(2)−2/3, c4,1 = 7ζ(3)/8 and c4,3 = 7ζ(3)/32−3/16.

Integrals in the Bessel moment study were quite challenging to evaluate numerically.
As one example, we sought to numerically verify the following identity that we had derived
analytically:

c5,0 =
π

2

∫ π/2

−π/2

∫ π/2

−π/2

K(sin θ) K(sinφ)√
cos2 θ cos2 φ+ 4 sin2(θ + φ)

dθ dφ ,

where K denotes the elliptic integral of the first kind [2]. Note that this function has blow-
up singularities on all four sides of the region of integration, with particularly troublesome
singularities at (π/2,−π/2) and (−π/2, π/2) (see Figure 1). Nonetheless, after making
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Figure 4: Plot of c5,0 integrand function.

some minor substitutions, we were able to evaluate (and confirm) this integral to 120-digit
accuracy (using 240-digit working precision) in a run of 43 minutes on 1024 cores of the
“Franklin” system at LBNL.

4 A Discrete Dynamical System: Discovery and Par-

tial Proof

Let RA(x) := 2PA(x) − x,RB(x) := 2PB(x) − x, where PA, PB denote the Euclidean
metric projections, or nearest point maps, on closed sets A and B. In our setting, the
Lions-Mercier (LM) iteration (which can be given many other names [22] such as Douglas-
Rachford or Feinup’s algorithm) is the procedure: reflect, reflect and average:

x 7→ T (x) :=
x+RA (RB(x))

2
. (5)

Note that a fixed point z of T produces precisely a point w such that w := PB(z) =
PA (RB(z)) is an element of A∩B. Moreover, if one shows that ‖T (zn)−zn‖ → 0 (known
as asymptotic regularity of zn+1 := T (zn)) then every cluster point of the corresponding
orbit produces a fixed point z.

The consequent theory of this and related iterations is well understood in the convex
case [21, 22, 23]. In the non-convex case the iteration, also called “divide-and-concur” [35],
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has been very successful in a variety of reconstruction problems (such as protein folding,
3SAT, spin glasses, giant Sudoku puzzles, etc.). As discovered very recently, “divide and
concur” works better than theory can explain [31, 35]. Even the most special case is
subtle and illustrative of general phase reconstruction problems and the like.

Let PA(x) and RA(x) := 2PA(x) − x denote respectively the projector and reflector
on a set A as shown in Figure 5 where A is the boundary of the shaded ellipse. Then
“divide and concur” is the natural geometric iteration “reflect-reflect-average”:

xn+1 =→ xn +RA (RB(xn))

2
. (6)

Figure 5: Reflector (interior) and Projector (boundary) of a point external to an ellipse.

Figure 6: The first three iterates of (7) in Cinderella.

Consider the simplest case of a line A of height α (all lines may be assumed horizontal)
and the unit circle B.With zn := (xn, yn) we obtain the explicit iteration

xn+1 := cos θn, yn+1 := yn + α− sin θn, (θn := arg zn). (7)
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For the infeasible case with α > 1 it is easy to see the iterates go to infinity vertically.
For the tangent α = 1 we provably converge to an infeasible point. For 0 < α < 1, the
pictures are lovely but proofs escape the authors. Spiraling is ubiquitous in this case.
Two representative Maple pictures follow:

Figure 7: The behavior of (7) for α = 0.95 (L) and α = 1 (R).

For α = 0 we can prove convergence to one of the two points in A ∩ B if and only
if we do not start on the vertical axis, where we provably have chaos. The iteration
is illustrated in Figure 6 starting at (4.2,−0.51) with α = 0.94. Let us sketch how
the interactive geometry Cinderella (available at http://www.cinderella.de) leads one
both to discovery and a proof in this equatorial case. Interactive applets are easily made;
the next two figures are based on material available online at, respectively:

A1. http://users.cs.dal.ca/∼jborwein/reflection.html

A2. http://users.cs.dal.ca/∼jborwein/expansion.html

Figure 8 illustrates the applet A1 at work: by dragging the trajectory (with N = 28)
one quickly discovers that

(i) as long as the iterate is outside the unit circle the next point is always closer to the
origin;

(ii) once inside the circle the iterate never leaves;

(iii) the angle now oscillates to zero and the trajectory hence converges to (1, 0).
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Figure 8: Discovery of the proof with α = 0.

All of this is quite easily made algebraic in the language of (7).
Figure 9 illustrates the applet A2, which takes up to 10, 000 starting points in the

rectangle {(x, y) : 0 ≤ x ≤ 1, |y − α‖ ≤ 1} colored by distance from the vertical axis with
red on the axis and violet at x = 1, and produces the first hundred iterations in gestalt.
Thus we see clearly, but cannot yet rigorously prove, that all points not on the y-axis are
swept into the feasible point (

√
1− α2, α).

This graphic, namely Figure 9, demonstrates in clear graphical terms the numerical
difficulty in these examples. Comparing the left-hand side (based solely on computations
done in Cinderella using ordinary 64-bit IEEE arithmetic) with the right-hand side (based
on data computing using Maple, employing higher-precision arithmetic), it is clear that
Cinderella’s double precision (14 digits) is inadequate. Indeed, the limitations of ordinary
64-bit IEEE arithmetic (approximately 15 digits) loom as a major obstacle in further
explorations of this type – the usage of higher-precision arithmetic will be mandatory.

Littlewood once wrote:

“A heavy warning used to be given [by lecturers] that pictures are not rigorous;
this has never had its bluff called and has permanently frightened its victims
into playing for safety. Some pictures, of course, are not rigorous, but I should
say most are (and I use them whenever possible myself).”—J. E. Littlewood,
(1885-1977)1

1From p. 53 of the 1953 edition of Littlewood’s Miscellany and so said long before the current fine
graphic, geometric, and other visualization tools were available.
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Figure 9: Gestalt of 400 third steps in Cinderella without (L) and with Maple data (R).

In a similar vein, we find it hard to be persuaded that the applet A2 does not constitute
a proof of sorts of what it displays in Figure 10.

We have also considered the analogous differential equation, since asymptotic tech-
niques for such differential equations are better developed. We decided that

x′(t) =
x(t)

r(t)
− x(t), y′(t) = α− y(t)

r(t)
,

where r(t) :=
√
x(t)2 + y(t)2, was a reasonable counterpart to the Cartesian formulation

of (7)—we have replaced the difference xn+1 − xn by x′(t), etc.—as shown in Figure 11.
This led to a proof of local convergence for 0 < α < 1 [27] and of the spiraling as seen in
the pictures. But we have no global result in this case and now we have a whole other
class of discoveries without explanation.

We should add that this is an ideal problem to introduce early undergraduates to
research, since it involves only school geometry notions and has many accessible extensions
in two or three dimensions. Much can be discovered and most of it will be both original
and unproven. Consider, for instance, what happens when B is a line segment or a
finite set rather than a line or when A is a more general conic section. Corresponding
algorithms, like “project-project-average,” are representative of techniques used to correct
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Figure 10: Snapshots of 10, 000 points after 0, 2, 7, 13, 16, 21, and 27 steps in Cinderella.

the Hubble telescope’s early optical aberration problems.

5 Conclusion

We have presented here a brief survey of the rapidly expanding applications of high-
precision arithmetic in modern scientific computing. It is worth noting that all of these
examples have arisen in the past ten years. Thus we may be witnessing the birth of a new
era of scientific computing, in which the numerical precision required for a computation is
as important to the program design as are the algorithms and data structures. We hope
that our survey and analysis of these computations will be useful in this process.
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