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MY TWO MAIN RESEARCH FIELDS

C 

 
 

Functional analytic optimization

Special functions and computation
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The companion paper to this talk is:

J.M. Borwein, “Maximum entropy and feasibility meth-

ods for convex and non-convex inverse problems.”

Optimization, 61 (2012), 1–33.

3



I SHALL FOLLOW BRAGG

I feel so strongly about the wrongness

of reading a lecture that my language

may seem immoderate. · · · The spoken

word and the written word are quite dif-

ferent arts.

· · ·
I feel that to collect an audience and

then read one’s material is like inviting

a friend to go for a walk and asking him

not to mind if you go alongside him in

your car.

Sir Lawrence Bragg

(1890-1971)

Nobel Crystallography

(Adelaide)
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AND SANTAYANA

If my teachers had begun by telling me that mathemat-

ics was pure play with presuppositions, and wholly in the

air, I might have become a good mathematician. But

they were overworked drudges, and I was largely inat-

tentive, and inclined lazily to attribute to incapacity in

myself or to a literary temperament that dullness which

perhaps was due simply to lack of initiation. George

Santayana

In Persons and Places, 1945, 238–239.
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FOUR ‘FINE’ BOOK REFERENCES:

BZ J.M. Borwein and Qiji Zhu, Techniques of Varia-
tional Analysis, CMS/Springer, 2005.

BL1 J.M. Borwein and A.S Lewis, Convex Analysis and
Nonlinear Optimization, CMS/Springer, 2nd expanded
edition, 2005.

BLu J.M. Borwein and R.L. Luke, “Duality and Convex
Programming,” pp. 229–270 in Handbook of Mathe-
matical Methods in Imaging, O. Scherzer (Ed.), Springer,
2010 & 2015.

BV J.M. Borwein and J.D. Vanderwerff, Convex Func-
tions: Constructions, Characterizations and Counterex-
amples, Cambridge Univ Press, 2010.
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OUTLINE

I shall discuss in “tutorial mode” the formalization of

inverse problems such as signal recovery and option

pricing: first as (convex and non-convex) optimization

problems and second as feasibility problems—each

over the infinite dimensional space of signals. I shall

touch on∗:

1. The impact of the choice of “entropy”

(e.g., Boltzmann-Shannon, Burg entropy, Fisher infor-

mation, ...) on the well-posedness of the problem and

the form of the solution.
∗More is an unrealistic task!
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2. Convex programming duality:

– what it is and what it buys you.

3. Algorithmic consequences: for both design and im-
plementation.

and as time permits (it won’t)

4. Non-convex extensions & feasibility problems: life
is hard. Entropy methods, used directly, have little to
offer:

– sometimes (Hubble, protein reconstruction, Suduko,
3SAT, ...) more works than we know why it should.

• See also http://carma.newcastle.edu.au/DRmethods/
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THE GENERAL PROBLEM

Many applied problems reduce to “best” solving (under-

determined) systems of linear (or non-linear) equa-

tions:

Find x such that A(x) = b

where b ∈ IRn, and the unknown x lies in some appro-

priate function space.

The infinite we shall do right away. The finite

may take a little longer. Stan Ulam

• In D. MacHale, Comic Sections (Dublin 1993)
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Discretisation reduces this to a finite-dimensional set-

ting where A is now a m× n matrix.

In most cases, I believe it is better to address the

problem in its function space home, discretizing

only as necessary for numerical computation.

And guided by our analysis.

• Thus, the problem often is how do we estimate x

from a finite number of its ‘moments’? This is

typically an under-determined inverse problem

(linear or nonlinear) where the unknown is most

naturally a function, not a vector in IRm.
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EXAMPLE 1. AUTOCORRELATION

• Consider, extrapolating an autocorrelation function

from given sample measurements:

R(t) :=
E
[
(Xs − μ)(Xt+s − μ)

]
σ

� (Wiener-Khintchine) Fourier moments of the power

spectrum S(σ) are samples of the autocorrelation

function, so values of R(t) computed directly from

the data yields moments of S(σ).

R(t) =
∫
R
e2πitσS(σ)dσ S(σ) =

∫
R
e−2πitσR(t)dt
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• Hence, we may compute a finite number of mo-

ments of S; use them to make estimate Ŝ of S;

• We may then estimate more moments from Ŝ by

direct numerical integration. So we dually extrapo-

late R ...

• This avoids hav-

ing to compute

R directly from

potentially noisy

(unstable) larger

data series.
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PART ONE: THE ENTROPY APPROACH

• Following [BZ] I sketch a maximum entropy ap-

proach to under-determined systems where the un-

known, x, is a function, typically living in a Hilbert

space, or more general space of functions.

This technique picks a “best” representative

from the infinite set of feasible functions (func-

tions that possess the same n moments as the

sampled function) by minimizing an (integral)

functional, f(x), of the unknown x.
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� The approach finds applications in countless fields:

Including (to my personal knowledge) Acous-

tics, actuarial science, astronomy, biochem-

istry, compressed sensing, constrained spline

fitting, engineering, finance, hydrology, im-

age reconstruction, inverse scattering, multi-

dimensional NMR (MRI), optics, option pric-

ing, philosophy, tomography, statistical mo-

ment fitting, and time series analysis, ...

(Many thousands of papers)

However, the derivations and mathematics are fraught

with subtle — and less subtle — errors.
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I will next discuss some of the difficulties inher-

ent in infinite dimensional calculus, and provide

a simple theoretical algorithm for correctly de-

riving maximum entropy-type solutions.
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WHAT is
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WHAT is ENTROPY?

Despite the narrative force that the concept of entropy
appears to evoke in everyday writing, in scientific writ-
ing entropy remains a thermodynamic quantity and a
mathematical formula that numerically quantifies dis-
order. When the American scientist Claude Shannon
found that the mathematical formula of Boltzmann de-
fined a useful quantity in information theory, he hesi-
tated to name this newly discovered quantity entropy
because of its philosophical baggage.

The mathematician John von Neumann encouraged Shan-
non to go ahead with the name entropy, however, since
“no one knows what entropy is, so in a debate you will
always have the advantage.”
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CHARACTERIZATIONS of ENTROPY

Boltzmann (1844-1906) Shannon (1916-2001)

• 19C: Ludwig Boltzmann — thermodynamic disorder

• 20C: Claude Shannon — information uncertainty

• 21C: JMB — potentials with superlinear growth

• Information theoretic characterizations abound.
A nice example is:
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Theorem. Up to a positive multiple,

H(−→p ) := −
N∑
k=1

pk log pk

is the unique continuous function on finite

probabilities such that:
[I.] Uncertainty grows:

H

⎛
⎜⎝

n︷ ︸︸ ︷
1

n
,
1

n
, · · · , 1

n

⎞
⎟⎠

increases with n.

[II.] Subordinate choices are respected: for distributions−→p1 and −→p2 and 0 < p < 1,

H
(
p−→p1, (1− p)−→p2

)
= pH(−→p1) + (1− p)H(−→p2).

19



ENTROPIES FOR US

Let X be our function space, typically Hilbert space

L2(Ω), or the function space L1(Ω) (or a Sobolev space).

� For +∞ ≥ p ≥ 1,

Lp(Ω) =
{
x measurable :

∫
Ω
|x(t)|pdt <∞

}
.

Recall that L2(Ω) is a Hilbert space with inner

product

〈x, y〉 :=
∫
Ω
x(t)y(t)dt,

(with variations in Sobolev space).
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A bounded linear map A : X → IRn is determined by

(Ax)i =
∫
x(t)ai(t) dt

for i = 1, . . . , n and ai ∈ X∗ the ‘dual’ of X(L2 in the

Hilbert case, L∞ in the L1 case).

Lebesgue’s continuous function with divergent Fourier series at 0.
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To pick a solution from the infinitude of possibilities,
we may freely define “best”.

⊗
The most common approach is to find the minimum

norm solution∗ by solving the Gram system:

Find λ such that AATλ = b .

⊕
The primal solution is then x̂ = ATλ. Elaborated,

this recaptures all of Fourier analysis, e.g., Lebesgue’s
example!

• This solved the following variational problem:

inf
{∫

Ω
x(t)2dt : Ax= b x ∈ X

}
.

∗Even in the (realistic) infeasible case.
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We generalize the norm with a strictly convex func-
tional f as in

min {f(x) : Ax= b, x ∈ X}, (P)

where f is what we call, an entropy functional, f : X →
(−∞,+∞].

• Here we suppose f is a strictly convex integral func-
tional∗ of the form

f(x) = Iφ(x) =
∫
Ω
φ(x(t))dt.

• The functional f can be used to include other con-
straints†.

∗Essentially φ′′(t) > 0.
†Including nonnegativity, by appropriate use of +∞.
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For example, the constrained L2 norm functional (‘pos-
itive energy’),

f(x) :=

{ ∫ 1
0 x(t)

2 dt if x ≥ 0
+∞ else

is used in constrained spline fitting.

• Entropy constructions abound: two useful classes fol-
low.

– Bregman (based on φ(y)− φ(x)− φ
′
(x)(y − x)); and

– Csizar distances (based on xφ(y/x))

• Both model statistical divergences.
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Two popular choices—both discrete and continuous
(differential)—for f are the (negative of) Boltzmann-
Shannon entropy (in image processing),

f(x) :=
∫
x log x (−x) dμ,

(changes dramatically with μ) and the (negative of)
Burg entropy (in time series analysis),

f(x) := −
∫

log x dμ.

� Includes the log barrier and log det functions from
interior point theory.

� Both implicitly impose a nonnegativity constraint
(positivity in Burg’s non-superlinear case).
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There has been much information-theoretic debate about

which entropy is best.

This is more theology than science !

• Use of the Csizar distance based Fisher Information

f(x, x′) :=
∫
Ω

x′(t)2

2x(t)
μ(dt)

(jointly convex) has become more usual as it penal-

izes large derivatives; and can be argued for physi-

cally (‘hot’ over past ten years).
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WHAT ‘WORKS’ BUT CAN GO WRONG?

• Consider solving Ax= b, where, b ∈ IRn and x ∈
L2[0,1]. Assume further that A is a continuous linear

map, hence represented as above.

• As L2 is infinite dimensional, so is N(A).

That is, if Ax= b is solvable, it is under-determined.

We pick our solution to minimize

f(x) =
∫
φ(x(t))μ(dt)

⊙
φ(x(t), x′(t)) in Fisher-like cases [BN1, BN2, BV10].
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• We introduce the Lagrangian

L(x, λ) :=
∫ 1

0
φ(x(t))dt+

n∑
i=1

λi (bi − 〈x, ai〉)

and the associated dual problem

max
λ∈IRn

min
x∈X{L(x, λ)}. (D)

• So we formally have a “dual pair” (BL1)

min {f(x) : Ax= b, x ∈ X} = min
x∈X max

λ∈IRn
{L(x, λ)}, (P)

and its dual

max
λ∈IRn

min
x∈X{L(x, λ)}. (D)
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• Moreover, for the solutions x̂ to (P), λ̂ to (D), the
derivative (w.r.t. x) of L(x, λ̂) should be zero, since

L(x̂, λ̂) ≤ L(x, λ̂),

∀x ∈ X. As

L(x, λ̂) =
∫ 1

0
φ(x(t))dt+

n∑
i=1

λ̂i (bi − 〈x, ai〉)

this implies

x̂(t) = (φ′)−1

⎛
⎝ n∑
i=1

λ̂iai(t)

⎞
⎠ = (φ′)−1

(
ATλ̂

)
.

• We can now reconstruct the primal solution (qual-
itatively and quantitatively) from a presumptively
easier dual computation.
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A DANTZIG (1914-2005) ANECDOTE

“The term Dual is not new. But surprisingly
the term Primal, introduced around 1954, is.
It came about this way. W. Orchard-Hays, who
is responsible for the first commercial grade L.P.
software, said to me at RAND one day around
1954: ‘We need a word that stands for the orig-
inal problem of which this is the dual.’ I, in turn,
asked my father, Tobias Dantzig, mathemati-
cian and author, well known for his books pop-
ularizing the history of mathematics. He knew
his Greek and Latin. Whenever I tried to bring
up the subject of linear programming, Toby (as
he was affectionately known) became bored and
yawned.
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But on this occasion he did give the matter

some thought and several days later suggested

Primal as the natural antonym since both primal

and dual derive from the Latin. It was Toby’s

one and only contribution to linear program-

ming: his sole contribution unless, of course,

you want to count the training he gave me in

classical mathematics or his part in my concep-

tion.”

A lovely story. I heard George recount this a few

times and, when he came to the “conception”

part, he always had a twinkle in his eyes. (Saul

Gass, 2006)

George wrote in “Reminiscences about the origins of linear programming,” 1
and 2, Oper. Res. Letters, April 1982 (p. 47):
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In a Sept 2006 SIAM book review about

dictionariesa, I asserted George assisted

his father with his dictionary — for rea-

sons I still believe but cannot recon-

struct.

I also called Lord Chesterfield, Lord

Chesterton (gulp!). Donald Coxeter

used to correct such errors in libraries.
aThe Oxford Users’ Guide to Mathematics,
Featured SIAM REVIEW, 48:3 (2006), 585–
594.
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PITFALLS ABOUND

There are 2 major problems to this approach.

1. The assumption that a solution x̂ exists. For exam-

ple, consider the problem

inf
x∈L1[0,1]

{∫ 1

0
x(t)dt :

∫ 1

0
tx(t) dt = 1, x ≥ 0

}
.

� The optimal value is not attained. As we will see,

existence can fail for the Burg entropy with three-dim

trig moments. Additional conditions on φ are needed

to insure solutions exist.∗ [BL2]

∗The solution is actually the absolutely continuous part of a mea-
sure in C(Ω)∗
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2. The assumption that the Lagrangian

is differentiable. In the above problem, f is

+∞ for every x negative on a set of positive

measure.

� Thus, for 1 ≤ p < +∞ the Lagrangian

is +∞ on a dense subset of L1, the set

of functions not nonnegative a.e.

��� ��� ���
• The Lagrangian is nowhere continuous,

much less differentiable.

3. A third problem, the existence of λ̂, is less difficult

to surmount.
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FIXING THE PROBLEM

One way to get continuity/differentiability of f , is to:

• work in L∞(Ω), or C(Ω) using essentially bounded,

or continuous, functions.

But, even with such side qualifications, solutions to

(P) may still not exist.

∇ Consider Burg entropy maximization in L1[T3]:
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μ := sup

∫
T 3

log(x)dV s.t.

∫
T 3

xdV = 1 and

∫
T 3

x cos(a)dV =

∫
T 3

x cos(b)dV

=

∫
T 3

x cos(c)dV = α.

For 1 > α > α, sol’n is measure in (L∞)∗.
For 0 < α < α sup is attained in L1.

Value of α is computable [BL2]. (Watson inte-

gral for face centered cubic lattice.)

We see continuous part of measure on screen.

Werner Fenchel (1905-1988)

• Minerbo, e.g., posed tomographic reconstruction in C(Ω),
with Shannon entropy. But, his moments are characteris-
tic functions of strips across Ω, and the solution is piecewise
constant.
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CONVEX ANALYSIS (AN ADVERT)

We will give a theorem that guarantees the form of

solution found in the above faulty derivation

x̂= (φ′)−1(ATλ̂)

is, in fact, correct. (Full derivation in [BL2, BZ].)

• We introduce the Fenchel (Legendre) conjugate [BL1]

of a function φ : IR → (−∞,+∞]:

φ∗(u) = sup
v∈IR

{uv − φ(v)}.
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• Often this can be (pre-)computed explicitly

– using Newtonian calculus. Thus,

φ(v) = v log v − v,− log v and v2/2

yield

φ∗(u) = exp(u),−1− log(−u) and u2/2

respectively. Red is the log barrier of interior point

fame!

• The Fisher case is also explicit

— via an integro-differential equation.
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PRIMALS AND DUALS

The three entropies below and their conjugates.

φ(v) := v log v − v,− log v and v2/2

and

φ∗(u) = exp(u),−1− log(−u) and u2/2.
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EXAMPLE 2. CONJUGATES & NMR

The Hoch and Stern information measure, or neg-entropy,
is defined in complex n−space by

H(z) :=
n∑

j=1

h(zj/b),

where h is convex and given (for scaling b) by:

h(z) � |z| log
(
|z|+

√
1+ |z|2

)
−
√
1+ |z|2

for quantum theoretic (NMR) reasons.

• Recall the Fenchel-Legendre conjugate

f∗(y) := sup
x

〈y, x〉 − f(x).
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Our symbolic convex analysis package (see [BH] and
Chris Hamilton’s thesis package) produced:

h∗(z) = cosh(|z|)
� Compare the Shannon entropy:

(|z| log |z| − |z|)∗ = exp(|z|).

The NMR entropy and its conjugate.

http://carma.newcastle.edu.au/ConvexFunctions/links.html
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FENCHEL DUALITY THEOREM (1951)

Theorem 1 (Utility Grade). Suppose f : X → R∪{+∞}
and g : Y → R ∪ {+∞} are convex while A : X → Y is

linear. Then

p := inf
X
f + g ◦A = max

Y ∗ −g∗(−·)− f∗ ◦A∗,

if int A(dom f) ∩ dom g �= ∅, (or if f, g are polyhedral).

• indicator function ιC(x) := 0 if x ∈ C and +∞ else.

• support function σC(x
∗) := (ιC)

∗ (x∗) = supx∈C〈x∗, x〉.
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EXAMPLES include:

(i) A := I is equivalent to Hahn-Banach theorem.

(ii) g := ι{b} yields

p := inf{f(x): Ax= b}.
– specializes to LP if f := ι

R+
n
+ c.

(iii) f := ιC, g := σD yields minimax theorem:

inf
C

sup
D

〈Ax, y〉 = sup
D

inf
C

〈Ax, y〉.
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FENCHEL DUALITY (SANDWICH)

infX f(x)− g(x) = maxY ∗ g∗(y∗)− f∗(y∗)
2

0–0.5 1 1.50.5

1

–1

Figure 2.6 Fenchel duality (Theorem 2.3.4) illustrated for x2/2+ 1 and −(x − 1)2/2− 1/2.
The minimum gap occurs at 1/2 with value 7/4.

• Using the concave conjugate: g∗ := −(−g)∗(−).

44



COERCIVITY AND PROOF OF DUALITY

• We say φ possesses regular growth if either d = ∞,

or d <∞ and k > 0, where

d := lim
u→∞φ(u)/u, k := lim

v↑d(d− v)(φ∗)′(v).

Then v → v log v, v → v2/2 and the positive energy

all have regular growth but -log does not.

• The domain of a convex function is

dom(φ) = {u : φ(u) < +∞};
and φ is proper if dom(φ) �= ∅.
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• Let ı := inf dom(φ) and σ := sup dom(φ).

Our constraint qualification,∗ (CQ), reads:

∃x ∈ L1(Ω), such that Ax= b,
f(x) ∈ IR, ı < x < σ a.e.

� In many cases, (CQ) reduces to feasibility

– e.g., spectral estimation, and trivially holds.

• The Fenchel dual problem for (P) is now:

sup
{
〈b, λ〉 −

∫
Ω
φ∗(ATλ(t))dt

}
. (D)

∗To ensure dual solutions. Standard Slater condition fails. Fenchel
missed need for a (CQ) in his 1951 Princeton Notes.
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Theorem 2 (BL2).Let Ω be a finite interval, μ Lebesgue

measure, each ak continuously differentiable (or just lo-

cally Lipschitz) and φ proper, strictly convex with reg-

ular growth.

Suppose (CQ) holds and also∗

(1) ∃ τ ∈ IRn such that
n∑
i=1

τiai(t) < d ∀t ∈ [a, b],

then the unique solution to (P) is given by

(2) x̂(t) = (φ∗)′(
n∑
i=1

λ̂iai(t))

where λ̂ is any solution to dual problem (D) (such λ̂

must exist).

∗This is trivial if d = ∞.
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♠ We have obtained a powerful functional reconstruc-

tion for all t ∈ Ω.

• This generalises to cover Ω ⊂ IRn, and more elabo-

rately in Fisher-like cases [BL2], [BN1], etc.

‘Bogus’ differentiation of a discontinuous function be-

comes the delicate conjugacy formula:

(
∫
Ω φ)

∗ (x∗) =
∫
Ω φ

∗(x∗).

Thus, the form of the maxent solution can be legit-

imated by validating the easily checked conditions of

Thm. 2.
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♠ Also, any solution to Ax = b of the form in (2) is
automatically a solution to (P).

So solving (P) is equivalent to finding λ ∈ IRn with

(3) 〈ai, (φ∗)′(ATλ)〉 = bi, i = 1, . . . , n

which is a finite dimensional set of non-linear equations.
When φ(t) = t2/2 this is the Gram system.

One can then apply a standard ‘industrial strength’
nonlinear equation solver, based say on New-
ton’s method, to this system, to find the opti-
mal λ.
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Often (φ′)−1 = (φ∗)′

• So the ‘dubious’ solution and ‘honest’ solution agree.

• Importantly, we may tailor (φ′)−1 to our needs:

– For Shannon entropy, the solution is strictly positive (φ′)−1 = exp.

– For positive energy, we can fit zero intervals (φ′)−1(t) = t+.

– For Burg, we can locate the support well (φ′)−1(t) = 1/t.

• These are excellent methods with relatively few mo-

ments (say 5 to 50 ...).
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Note that discretization is only needed to compute
terms in evaluation of (3).

Indeed, these integrals can sometimes be computed ex-
actly (e.g., in some tomography and option estimation
problems). This is the gain of not discretizing early.

By waiting to see the form of dual, one can cus-
tomize one’s integration scheme to the problem
at hand.

• Even when this is not the case one can often use
the shape of the dual solution to fashion very effi-
cient heuristic reconstructions that avoid any iter-
ative steps (see [BN2] and Huang’s 1993 thesis).
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EXAMPLE 3. OPTION PRICING

For European option portfolio pricing the constraints

are based on ‘hockey-sticks’ of the form:

ai(x) := max{0, x− ti}

• In this case the dual can be computed exactly and

leads to a relatively small and explicit nonlinear

equation to solve the problem (see [BCM]).

The more nonlinear the optimization problem the more

dangerous it is to treat it purely formally.
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EXAMPLE 4. MODELLING RAINFALL

In PHB, PHBH, 2012-2013 checkerboard copulas of
maximum entropy were constructed to simulate monthly
spring (and fall) rainfall at Sydney (and Kempsey)

• while preserving monthly correlations without back-
fitting

– and so to produce realistic variance in accumu-
lated rainfall totals.

• Incomplete Gamma distributions were used for marginals

– again justified by MaxEnt.
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Accumulated rainfall totals over months Oct-Nov
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Comparison of mean and variance for observed accumulated

totals; generated accumulated totals using independent random

variables (Independent Model) and copula of maximum entropy

(Correlated Model)

Mean (mm) Variance
Observed Data 160.488 10830.299
Independent Model 161.705 8732.117
Correlated Model (Max Ent) 160.451 10769.729

– P-values for Kolmogorov-Smirnov goodness of fit: Observed

versus generated 0.7637.

• Normal copulas give similar (slightly worse?) results
but are more costly computationally.
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FROM FENCHEL’S ACORN . . .

• in Canad. J. Math, volume 1, #1.
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. . . a MODERN OAK

Theorem 2 works by relaxing the problem to
(
L1
)∗∗

— where solutions always exist — and using Lebesgue

decomposition.

• Regular growth rules out a non-trivial singular part

via analysis with the formula:

Iφ∗∗ =
(
Iφ
)∗∗ |X.

More generally, for Ω an interval, we can work with

Iφ(x) :=
∫
Ω
φ(x) dμ

as a function on L1(Ω).
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We say Iφ is strongly rotund (very well posed) if it is

(i) strictly convex with (ii) weakly compact lower level

sets (Dunford-Pettis) and (iii) Kadec-Klee:

Iφ(xn) → Iφ(x), xn ⇀ x⇒ xn →1 x.

Theorem 3 (BV). Iφ is strongly rotund as soon as φ∗ is

everywhere finite and differentiable on R; and conversely

when μ is not purely atomic.

• Easy to check (holds for Shannon and energy but

not Burg) and is the best surrogate for the proper-

ties of a reflexive norm on L1.
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MomEnt+

An old interface: MomEnt+ (www.cecm.sfu.ca/interfaces/)

provided code for entropic reconstructions as above.

Moments (including wavelets), entropies and dimen-

sion are easily varied. It also allows for adding noise

and relaxation of the constraints.

Several methods of solving the dual are possi-

ble, including Newton and quasi-Newton meth-

ods (BFGS, DFP), conjugate gradients, and the

suddenly sexy Barzilai-Borwein line-search free

method.
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COMPARISON OF ENTROPIES

We compare the positive L2, Boltzmann-Shannon and
Burg entropy reconstruction of the characteristic func-
tion χ[0,1/2] using 10 algebraic moments

bi =
∫ 1/2

0
ti−1 dt

on Ω = [0,1].

Burg over-oscillates since (φ∗)′(t) = 1/t. But is still
often the ‘best’ solution (with a closed form for Fourier
moments)!

• Relaxation adds stability but degrades the recon-
struction: a dance with ill-posedness.
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Solution: x̂(t) = (φ∗)′(∑ni=1 λ̂it
i−1).
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PART TWO: THE NON-CONVEX CASE

For iterative methods as below, I recommend:

BaB H.H. Bauschke and J.M. Borwein, “On projec-

tion algorithms for solving convex feasibility problems,”

SIAM Review, 38 (1996), 367–426 (aging well with

nearly 500 ISI cites).

BaC H.H. Bauschke and P.L. Combettes, Convex Anal-

ysis and Monotone Operator Theory in Hilbert Spaces,

CMS-Springer Books, 2012.
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• In general, non-convex optimization is a much less satisfactory
pursuit.

• We can usually hope only to find critical points (f ′(x) = 0)
or local minima.

– Thus, problem-specific heuristics dominate:

Douglas–Rachford method reconstruction:

500 steps, -25 dB. 1,000 steps, -30 dB. 2,000 steps, -51 dB. 5,000 steps, -84 dB.

Alternating projection method reconstruction:

500 steps, -22 dB. 1,000 steps, -24 dB. 2,000 steps, -25 dB. 5,000 steps, -28 dB.
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EXAMPLE 5. CRYSTALLOGRAPHY

We wish to estimate x in L2(IRn)∗ and can suppose
the modulus c = |x̂| is known (here x̂ is the Fourier
transform of x).†

Now {y : |ŷ| = c}, is not convex. So the issue is to find
x given c and other convex information.

An appropriate problem extending the previous one is

min {f(x) : Ax = b, ‖Mx‖ = c, x ∈ X}, (NP)

where M models the modular constraint, and f is as in
Theorem 2.
∗Here n = 2 for images, n = 3 for holographic imaging, etc.
†Observation of the modulus of the diffracted image in crystallog-
raphy. Similarly, for optical aberration correction.

65



Most optimization methods rely on a two-stage (easy
convex, hard non-convex) decoupling schema — the
following is from Decarreau-Hilhorst-LeMaréchal [D].

They suggest solving

min {f(x) : Ax= y, ‖Bky‖ = bk, (k ∈ K) x ∈ X},
(NP ∗)

where ‖Bky‖ = bk, (k ∈ K) encodes the hard modular
constraints.

• They solve formal first-order Kuhn-Tucker condi-
tions for a relaxed form of (NP ∗). The easy con-
straints are treated by Thm. 2.

I am obscure, mainly because the results were largely
negative:
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They applied these ideas to a

prostaglandin molecule (25 atoms),

with known structure, using quasi-

Newton (which could fail to find a local

min), truncated Newton (better) and

trust-region (best) numerical schemes.

• They observe that the “reconstructions were often

mediocre” and highly dependent on the amount of

prior information — a small proportion of unknown

phases — to be satisfactory.
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“Conclusion. It is fair to say that the entropy

approach has limited efficiency, in the sense that

it requires a good deal of information, espe-

cially concerning the phases. Other methods

are wanted when this information is not avail-

able.”

• I had similar experiences with non-convex medical

image reconstruction.

“Another thing I must point out is that you cannot prove
a vague theory wrong. ... Also, if the process of com-
puting the consequences is indefinite, then with a little
skill any experimental result can be made to look like the
expected consequences.” Richard Feynman (1964)
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GENERAL PHASE RECONSTRUCTION

The basic setup — more details follow.

• Electromagnetic field: u : R2 → C ∈ L2

• DATA: Field intensities for m = 1,2, . . . ,M :

ψm : R2 → R+ ∈ L1 ∩ L2 ∩ L∞

• MODEL: Functions Fm : L2 → L2, are modified

Fourier Transforms, for which we can measure the mod-

ulus (intensity)

|Fm(u)| = ψm ∀m = 1,2, . . . ,M.
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ABSTRACT INVERSE PROBLEM

Given transforms

Fm
and measured field in-

tensities

ψm

(for m = 1, . . . ,M), find a

robust estimate of the

underlying field function

u.
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EXAMPLE 6. SOME HOPE FROM HUBBLE

The (human-ground) lens was

mis-assembled by 1.33mm.

The perfect back-up (computer-

ground) lens stayed on earth!

• NASA asked 10 teams to devise algorithmic fixes.

• Optical aberration correction, using the Misell al-
gorithm, a method of alternating projections, works
much better than it should — given that it is being
applied to:
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PROBLEM. Find a member of a version of

Ψ :=
M⋂
k=1

{x : Ax = b, ‖Mkx‖ = ck, x ∈ X},
(NCFP)

which is a M-set non-convex feasibility prob-

lem as examined more below.

• Is there hidden convexity to explain good behaviour?

• Misell is now built in to home computer telescopes.
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HUBBLE IS ALIVE AND KICKING

Hubble reveals most distant planets yet
Last Updated: Wednesday, October 4, 2006 | 7:21 PM ET
CBC News

Astronomers have discovered the farthest planets from Earth yet found, including one with a year as short as 10 hours — the
fastest known.

Using the Hubble space telescope to peer deeply into the centre of the galaxy, the scientists found as many as 16 planetary 
candidates, they said at a news conference in Washington, D.C., on Wednesday.

The findings were published in the journal Nature.

Looking into a part of the Milky Way known as the galactic bulge, 26,000 light years from Earth, Kailash Sahu and his team 
of astronomers confirmed they had found two planets, with at least seven more candidates that they said should be planets.

The bodies are about 10 times farther away from Earth than any planet previously detected.

A light year is the distance light travels in one year, or about 9.46 trillion kilometres.

73



• From Nature Oct 2006. Hubble was reborn twice
and exoplanet discoveries have become quotidian.

• There were 228 listed at exoplanets.org in March
09 and 432 a year later, 563 as of 22/6/11 and
750 confirmed on 6/12/13. (More according to
Kepler. There is an iPad Exoplanet app.)

• How reliable are these determinations (velocity, imag-
ing, transiting, timing, micro-lensing)? The one
above has been withdrawn!
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THE KEPLER SATELLITE

5 Facts About Kepler (launch March 6)
-- Kepler is the world's first mission with the ability to find true Earth analogs -- planets that 
orbit stars like our sun in the "habitable zone." The habitable zone is the region around a star 
where the temperature is just right for water -- an essential ingredient for life as we know it -- to 
pool on a planet's surface. 

-- By the end of Kepler's three-and-one-half-year mission, it will give us a good 
idea of how common or rare other Earths are in our Milky Way galaxy. This will be
an important step in answering the age-old question: Are we alone? 

-- Kepler detects planets by looking for periodic dips in the brightness of stars. 
Some planets pass in front of their stars as seen from our point of view on Earth; 
when they do, they cause their stars to dim slightly, an event Kepler can see. 

-- Kepler has the largest camera ever launched into space, a 95-megapixel array
of charge-coupled devices, or CCDs, as in everyday digital cameras. 

-- Kepler's telescope is so powerful that, from its view up in space, it 
could see one person in a small town turning off a porch light at night. 

NASA 05.03.2009
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TWO RECONSTRUCTION APPROACHES

I. Error reduction of a nonsmooth objective (an

‘entropy’): for fixed βm > 0

⊙
we attempt to solve

minimize E(u) :=
M∑

m=0

βm

2
dist2(u,Qm)

over u ∈ L2.

– Many variations on this theme are possible.
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II. Non-convex (in)feasibility problem: Given ψm �=
0, define Q0 ⊂ L2 convex, and

Qm :=
{
u ∈ L2 | |Fm(u)| = ψm a.e.

}
(nonconvex)

we wish to find u ∈ ⋂Mm=0 Qm = ∅.

⊙
via an alternating projection method: e.g., for two

sets A and B, repeatedly compute

x→ PB(x) =: y → PA(y) =: x.
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EXAMPLE 7. INVERSE SCATTERING

Central problem: determine the location and shape

of buried objects from measurements of the scattered

field after illuminating a region with a known incident

field.

Recent techniques determine if a point z is inside or

outside of the scatterer by determining solvability of the

linear integral equation:

Fgz ?
= ϕz

where F → X is a compact linear operator constructed

from the observed data, and ϕz ∈ X is a known function

parameterized by z [BLu].
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• F has dense range, but if z is on the exterior of the

scatterer, then ϕz /∈ Range(F) (which has a Fenchel

conjugate characterization).

• Since F is compact, any numerical implementation

to solve the above integral equation will need some

regularization scheme.

• If Tikhonov regularization is used—in a restricted

physical setting—the solution to the regularized in-

tegral equation, gz,α, has the behaviour

‖gz,α‖ → ∞ as α→ 0

if and only if z is a point outside the scatterer.
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• An important open problem is to determine be-
havior of regularized solutions gz,α under different
regularization strategies.

– In other words, when can these techniques fail?
(Ongoing work with Russell Luke [BLu]: also in
Experimental Math in Action, AKP, 2007.)

A heavy warning used to be given [by lecturers]
that pictures are not rigorous; this has never had
its bluff called and has permanently frightened
its victims into playing for safety. Some pic-
tures, of course, are not rigorous, but I should
say most are (and I use them whenever possible
myself). J.E. Littlewood (1885-1977)
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A SAMPLE RECONSTRUCTION (via I)

The object and its spectrum

Top row: data
Middle: reconstruction

Bottom: truth and error
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ALTERNATING PROJECTIONS

ALTERNATING PROJECTIONS FOR CIRCLE AND RAY
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The alternating projection method — discovered by

Schwarz, Wiener, Von Neumann, ... — is fairly well

understood when all sets are convex.

• If A ∩ B �= ∅ and A,B are closed convex then weak

convergence (only 2002) is assured—von Neumann

(1933) in norm for subspaces, Bregman (1965).

• First shown that norm convergence can fail by Hun-

dal (2002) – but only for an ‘artificial’ example.
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II: NON-CONVEX PROJECTION CAN FAIL

QUESTION. If A is finite codimension, closed

and affine, B is the nonnegative cone in �2(N)

and A ∩ B �= ∅, is the method norm conver-

gent?

Consider the alternating projection method to find

the unique red point on the line-segment A (convex)

and the blue circle B (non-convex).

• The method is ‘myopic’.
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A

B

• Starting on line-segment outside red circle, we

converge to unique feasible solution.

• Starting inside the red circle leads to a period-

two locally ‘least-distance’ solution.
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THE PROJECTION METHOD OF CHOICE

• For optical abberation correction this is the alter-
nating projection method: x→ PA (PB(x))

x

PA(x)

RA(x)

A

• For crystallography it is better to use (HIO) over-
relax and average: reflect to RA(x) := 2PA(x)−x
and use

x→ x+RA (RB(x))

2
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Both parallelize neatly: A :=diag, B :=
∏
i Bi.

Both are non-expansive in the convex case.

Both need new theory in the non-convex case.
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NAMES CHANGE WHEN FIELDS DO. . .

• The optics community calls projection algorithms

“Iterative Transform Algorithms”.

- Hubble used Misell’s Algorithm, which is just av-

eraged projections. The best projection algo-

rithm Luke∗ found was cyclic projections (with

no relaxation).

• For the crystallography problem the best known

method is called the Hybrid Input-Output algorithm

in the optical setting.

∗My former PDF, he was a Hubble Graduate student.
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Bauschke-Combettes-Luke (JMAA, 2004) showed HIO,

Lions-Mercier (1979), Douglas-Rachford (1959), Feinup

(1982), and divide-and-concur coincide.

• When u(t) ≥ 0 is imposed, Feinup’s method no

longer coincides, and DR (‘HPR’) is still better.

• JMB-Tam (2013) have found a promising cyclic re-

flection method.
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ELSER, QUEENS and SUDOKU

2006 Veit Elser, see [E1] and [E2], at Cornell has

had huge success (and press) using divide-and-concur

onprotein folding, sphere-packing, 3SAT, Sudoku (R2916),

and more.
Given a partially completed grid, fill it so that each
column, each row, and each of the nine 3 × 3 regions
contains the digits from 1 to 9 only once.
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2008 Bauschke and Schaad likewise study Eight queens
problem (R256) and image-retrieval (Science News, 08).

This success (a.e.?) is not seen with alternating projec-
tions and cries out for explanation. Brailey Sims and
I [BS] and then Fran Aragon and I [AB] have made
some progress, as follows:
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FINIS: DOUGLAS-RACHFORD IN THE SPHERE

Dynamics for B the unit circle and A the blue line at
height α ≥ 0 are already fascinating. Steps are for

T :=
I +RA ◦RB

2
.

• With θn the argument this becomes set
xn+1 := cos θn, yn+1 := yn+ α− sin θn.

0 ≤ α ≤ 1: converges (‘globally’ (‘13) & locally expo-
nentially asymptotically (‘11)) iff start off y-axis (‘chaos’):
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α > 1 ⇒ y → ∞, while α = 0.95 (0 < α < 1) and α = 1

respectively produce:

• The result remains valid for a sphere and any affine

manifold in Euclidean space.
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GLOBAL CONVERGENCE

A lot of hard work proved the result in Figure 5 [AB]:
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Figure 5: The picture in the left shows the regions of convergence in Theorem 2.1 for the
Douglas-Rachford algorithm. The picture in the right illustrates an example of a convergent
sequence generated by the algorithm.
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DYNAMIC GEOMETRY

• I finish with a Cinderella demo based on the recent

work with Brailey Sims [BS].
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The applets are at:

www.carma.newcastle.edu.au/~jb616/composite.html

www.carma.newcastle.edu.au/~jb616/expansion.html
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