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Jacques Hadamard, A Universal Mathematician (1998)

last dozen of the first hundred of his year”, said at the celebration of Hada-
mard’s centenary:

The taupin who saw Jacques Hadamard enter the lecture the-
atre, found a teacher who was active, alive, whose reasoning

bined t and dy i Thus the lecture became a
struggle and an adventure. Without rigour suffering, the impor-
tance of intuition was restored to us, and the better students
were delighted. For the others, the intellectual life was less com-
fortable, but so exciting... And then, above all, we knew quite
well that with such a guide we never risked going under [IL5,
p-8).

“The Ob]ect of Mandelbrojt recalled at the same jubilee:

mathematical rigor is to
For several years, Hadamard also gave lectures at the Collége

sanction and Iegltlmlze de France: lectures which were long, hard, infinitely interesting.
He never tried to hide the difficulties, on the contrary he brought
the conqueSts Of them out. The audience thought together with him; these lec-
H HYH tures provoked creativity. The day after a lecture by Hadamard
IntUItlon’ and there was was rich, full and all day long one thought about the ideas.
never any other Object It was in these lectures that I learnt the secrets of the function
. {(s) of Riemann, it was there that I understood the significance
for it.”—JSH (1865-1963) of analytic continuation, of quasi-analyticity, of Dirichlet series,
of the role of functional calculus in the calculus of variations
[IL5, p.25-27).
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EXTENDED ABSTRACT

Long before current graphic, visualisation and geometric tools were
available, John E. Littlewood (1885-1977) wrote in his delightful
Miscellany'

A heavy warning used to be given [by lecturers] that pictures
are not rigorous; this has never had its bluff called and has
permanently frightened its victims into playing for safety.
Some pictures, of course, are not rigorous, but | should say
most are (and | use them whenever possible myself). [p. 53]

1J.E. Littlewood, A mathematician’s miscellany, London: Methuen (1953);
Littlewood, J. E. and Bollobas, Béla, ed., Littlewood’s miscellany, Cambridge University
Press, 1986.
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EXTENDED ABSTRACT

Long before current graphic, visualisation and geometric tools were
available, John E. Littlewood (1885-1977) wrote in his delightful
Miscellany'

A heavy warning used to be given [by lecturers] that pictures
are not rigorous; this has never had its bluff called and has
permanently frightened its victims into playing for safety.
Some pictures, of course, are not rigorous, but | should say
most are (and | use them whenever possible myself). [p. 53]

Over the past decade, the role of visual computing in my own
research has expanded dramatically.

In part this was made possible by the increasing speed and storage
capabilities—and the growing ease of programming—of modern
multi-core computing environments [BMC].

1J.E. Littlewood, A mathematician’s miscellany, London: Methuen (1953);
Littlewood, J. E. and Bollobas, Béla, ed., Littlewood’s miscellany, Cambridge University
Press, 1986.
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But, at least as much, it has been driven by my group’s paying more
active attention to the possibilities for graphing, animating or
simulating most mathematical research activities.

2See http://www.carma.newcastle.edu.au/jon/Completion.pdf and
http://www.carma.newcastle.edu.au/jon/dr-fieldsll.pptx.
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But, at least as much, it has been driven by my group’s paying more
active attention to the possibilities for graphing, animating or
simulating most mathematical research activities.

@ | first briefly discuss both visual theorems and
experimental computation.

@ [ then turn to dynamic geometry (iterative reflection
methods [AB]) and matrix completion problems (applied
to protein conformation [ABT]).2 (Case studies |)

2See http://www.carma.newcastle.edu.au/jon/Completion.pdf and
http://www.carma.newcastle.edu.au/jon/dr-fieldsll.pptx.

Jonathan Borwein Visual Theorems www.carma.newcastle.edu.au/walks


http://www.carma.newcastle.edu.au/jon/Completion.pdf
http://www.carma.newcastle.edu.au/jon/dr-fields11.pptx
http://www.carma.newcastle.edu.au/walks

But, at least as much, it has been driven by my group’s paying more
active attention to the possibilities for graphing, animating or
simulating most mathematical research activities.

@ | first briefly discuss both visual theorems and
experimental computation.

@ [ then turn to dynamic geometry (iterative reflection
methods [AB]) and matrix completion problems (applied
to protein conformation [ABT]).2 (Case studies |)

@ After an algorithmic interlude (Case studies 1), I end
with description of work from my group in probability
(behaviour of short random walks [BS, BSWZ]) and
transcendental number theory (normality of real
numbers [AB3]). (Case studies 1)

2See http://www.carma.newcastle.edu.au/jon/Completion.pdf and
http://www.carma.newcastle.edu.au/jon/dr-fieldsll.pptx.
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Jonathan Borwein

While all this work involved significant, often

3 threaded [BSC], numerical- symbolic

computation, | shall focus on the visual
components.
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3 threaded [BSC], numerical- symbolic
‘ computation, | shall focus on the visual

components.

| will make a sample of the on-line presentation,
based in part on:
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Jonathan Borwein

While all this work involved significant, often

3 threaded [BSC], numerical- symbolic
‘ computation, | shall focus on the visual

components.

| will make a sample of the on-line presentation,
based in part on:

@ What makes most sense for the audience
@ My inclinations on the day
@ How | manage my time
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While all this work involved significant, often

| threaded [BSC], numerical- symbolic
computation, | shall focus on the visual
components.

| will make a sample of the on-line presentation,
based in part on:

@ What makes most sense for the audience
@ My inclinations on the day
@ How | manage my time

JMB was among roughly 60 new 2015 Fellows of the American
Mathematical Society. He was cited “For contributions to
nonsmooth analysis and classical analysis as well as experimental
mathematics and visualization of mathematics.”
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Tools and Mathematics April 2016

John Monaghan
LucTrouche
Jonathan M. Borwein

Tools and

Mathematics

Instruments for learning

) Springer

1st ed. 2016, XXI, 481 p. 133 illus., 92 illus.
in color.

Q Printed book

Jonathan Borwein

J. Monaghan, L. Trouche, J.M. Borwein
Tools and Mathematics

Instruments for learning
Series: Mathematics Education Library

» The only book on the topic of tools and mathematics education

» Comprehensive coverage from pre-history to future directions in the
field

» Content divided equally among the areas of curriculum, assessment,
and policy design

This book is an exploration of tools and mathematics and issues in mathematics education
related to tool use. The book has four parts. The first part sets the scene with a reflection
on doing a mathematical task with different tools, a mathematician's account of tool
use in his work and historical considerations of tool use. The second part opens with

a broad review of technology and intellectual trends, circa 1970, and continues with
three case studies of approaches in mathematics education and the place of tools in
these approaches. The third part considers issues related to mathematics instructions:
curriculum, assessment and policy; the calculator debate; mathematics in the real world;
and teachers' use of technology. The final part looks to the future and digital tools:

task design; the importance of artefacts in gameplay; and new forms of activity via
connectivity.
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NAMS 2005. KnotPlot in a Cave

Jonathan Borwein

Considerable obstacles generally present
themselves to the beginner, in studying the
elements of Solid Geometry, from the
practice which has hitherto uniformly
prevailed in this country, of never
submitting to the eye of the student, the
figures on whose properties he is
reasoning, but of drawing perspective
representations of them upon a plane.

I hope that | shall never be obliged to have
recourse to a perspective drawing of any
figure whose parts are not in the same
plane.—Augustus De Morgan

In Adrian Rice,“What Makes a Great Mathematics Teacher?” MAA Monthly, 1999.
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Visual Theorems: Animation, Simulation and Stereo . ..

See http://vis.carma.newcastle.edu.au/: Stoneham movie

Cinderella, 3.14 min of Pi, Catalan’s constant and Passive 3D
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Visual Theorems: Animation, Simulation and Stereo . ..

See http://vis.carma.newcastle.edu.au/: Stoneham movie

The latest developments in computer and video technology
have provided a multiplicity of computational and symbolic
tools that have rejuvenated mathematics and mathematics
education. Two important examples of this revitalization are
experimental mathematics and visual theorems

— ICMI Study 19 (2012)

Cinderella, 3.14 min of Pi, Catalan’s constant and Passive 3D
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PART I: Visual Theorems
oeo

Visualising large matrices

Large matrices often have structure that pictures will reveal but which
numeric data may obscure.
@ The picture shows a 25 x 25 Hilbert matrix on the left and on the
right a matrix required to have 50% sparsity and non-zero entries
random in [0, 1].

Figure: The Hilbert matrix (L) and a sparse random matrix (R)
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Visualising large matrices MATLAB's first symbolic example

The 4 x 4 Hilbert matrix is
1 1/2 1/3 1/4
/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7
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Visualising large matrices

The 4 x 4 Hilbert matrix is

1
1/2
1/3
1/4

1/2
1/3
1/4
1/5

1/3
1/4
1/5
1/6

1/4
1/5
1/6
1/7

MATLAB’s first symbolic example

Hilbert matrices are notoriously unstable numerically. The left of the
Figure shows the inverse of the 20 x 20 Hilbert matrix computed
symbolically exactly. The middle shows enormous numerical errors if
one uses 10 digit precision, and the right even if one uses 20 digits.

Figure: Inverse 20 x 20 Hilbert matrix (L) and 2 numerical inverses (R)

Jonathan Borwein
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Visualising large polynomials

Large polynomials also often have structure that pictures will reveal
but whict o '

Table: 192-degree minimal polynomial for optical aberration correction, with
up to 85 digit coefficients found by multipair PSLQ.

Jonathan Borwein
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Visualising large polynomials

Large ponnom|aIs also often have structure that pictures will reveal
but whict

Table: 192-degree minimal polynomial for optical aberration correction, with
up to 85 digit coefficients found by multipair PSLQ.
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Table: Some large coefficients
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Poisson & Crandall for aberration correction

References

@ D.H. Bailey, J.M. Borwein, R.E. Crandall and I.J. Zucker, “Lattice sums
arising from the Poisson equation.” Journal of Physics A, 46 (2013)
#115201 (31pp).

@ D.H. Bailey, J.M. Borwein, and J. Kimberley, “Discovery and computation
of large Poisson polynomials.” Experimental Mathematics, Accepted,
May 2016.

@ G. Savin and D. Quarfoot, “On attaching coordinates of Gaussian prime
torsion points of y> = x> +x to Q(i),” 2010.
www.math.utah.edu/~savin/EllipticCurvesPaper. pdf3

3Found from one 12 digit coefficient 387221579866.
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Me and my collaborators

MAA 3.14

http://www.carma.newcastle.edu.au/jon/pi-monthly.pdf
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PART I[: Visual Theorems Digital Assistance PART II. Case Studies Other References
0000000000e00000000000000 00000000000 00000000000000000000000000

Figure: Walk on first 100 billion base-4 digits of 7 (normal?).
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PART I[: Visual Theorems Digital Assistance PART II. Case Studies Other References

000000000 0e00000000000000 00000000000 0000000000000 0O000000000000
201 2 walk on (went vir. al) Blggest mathematics picture ever?
f)-lﬂ A 200 % .—W Hkll 1
(108 g|gap|xe|s) 5 where several parts of the algorithm

were run in parallel with 20 threads
on CARMA’s MacPro cluster.

Walk on first 100 billion base-4 digits of & (normal?).
http://gigapan.org/gigapans/106803
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images and animations led to high-level research which went viral
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Outreach: images and animations led to high-level research which went viral

¢ 100 billion base four digits of & on Gigapan
o Really big pictures are often better than movies (NASA and AMS)
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My number-walk collaborators

2 . I —7 y
Jon Boerwein Peter Borwein
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My short-walk collaborators

JIIM ‘ N ’ TR
James Wan Armin Straub Wadim Zudilin
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My short-walk collaborators

James Wan Armin Straub Wadim Zudilin

e Plus Dirk Nuyens ﬂ and Don Zagier, ...
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Some early conclusions: So | am sure they get made

Key ideas: randomness, normality of numbers, planar walks, and fractals

Vgipre-r)p-o
Pozdopn o 8
Eatreo Cacky-Gassar

How not to experiment
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Some early conclusions: So | am sure they get made

Key ideas: randomness, normality of numbers, planar walks, and fractals

Maths can be done experimentally (it is fun)

- using computer algebra, numerical
computation and graphics: SNaG

- computations, tables and pictures are
experimental data

- but you can not stop thinking

How not to experiment
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Some early conclusions: So | am sure they get made

Key ideas: randomness, normality of numbers, planar walks, and fractals

Maths can be done experimentally (it is fun)

- using computer algebra, numerical
computation and graphics: SNaG

- computations, tables and pictures are
experimental data

- but you can not stop thinking
Making mistakes is fine

- as long as you learn from them

- keep your eyes open (conquer fear)

How not to experiment
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Some early conclusions: So | am sure they get made

Key ideas: randomness, normality of numbers, planar walks, and fractals

Maths can be done experimentally (it is fun)

- using computer algebra, numerical
computation and graphics: SNaG

- computations, tables and pictures are
experimental data

- but you can not stop thinking
Making mistakes is fine

- as long as you learn from them

- keep your eyes open (conquer fear)
You can not use what you do not know

- and what you know you can usually use

- you do not need to know much before
you start research (as we shall see)

How not to experiment
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Some early conclusions: So | am sure they get made

Key ideas: randomness, normality of numbers, planar walks, and fractals

Maths can be done experimentally (it is fun)

- using computer algebra, numerical
computation and graphics: SNaG

- computations, tables and pictures are
experimental data

- but you can not stop thinking
Making mistakes is fine

- as long as you learn from them

- keep your eyes open (conquer fear)
You can not use what you do not know

- and what you know you can usually use

- you do not need to know much before
you start research (as we shall see)

How not to experiment

DHB and JMB, Exploratory Experi ion in ics (2011), www.ams.org/notices/201110/rtx111001410p.pdf
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It is not knowledge, but the act of learning, not possession
but the act of getting there, which grants the greatest
enjoyment.
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It is not knowledge, but the act of learning, not possession
but the act of getting there, which grants the greatest
enjoyment.

When | have clarified and exhausted a
subject, then | turn away from it, in order
to go into darkness again; the
never-satisfied man is so strange if he
has completed a structure, then it is not
in order to dwell in it peacefully, but in
order to begin another.

I imagine the world conqueror must feel
thus, who, after one kingdom is scarcely
conquered, stretches out his arms for
others.

Carl Friedrich Gauss
(1777-1855)
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It is not knowledge, but the act of learning, not possession
but the act of getting there, which grants the greatest
enjoyment.

When | have clarified and exhausted a
subject, then | turn away from it, in order
to go into darkness again; the
never-satisfied man is so strange if he
has completed a structure, then it is not
in order to dwell in it peacefully, but in
order to begin another.

I imagine the world conqueror must feel
thus, who, after one kingdom is scarcely
conquered, stretches out his arms for
others.

Carl Friedrich Gauss
(1777-1855)

@ In an 1808 letter to his friend Farkas (father of Janos) Bolyai
@ Archimedes, Euler, Gauss are the big three
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MOTIVATED by the desire to visualize lange mathematical data sets, especially in number theory, we offer various tools for rej "‘"""‘“"ZL LA

LR 2555

floating peint numbers as planar (cr three dimensional] walks and for quantitatively messuring their “randomness. This is ou
homepage that discusses and showcases our research. Come back regularly for updates.

RESEARCH TEAM: Francisco ). Aragon Artacho, David H. Bailey, Jonathan M. Borwein, Peter B. Barwein with the assistance of 12
Fountain and Matt Skerritt

CONTACT: Fran Aragon

Almost all | mention in Part Il is accessible at

http://carma.newcastle.edu.au/walks/
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Computer Assisted Research Maths: what it is?

Experimental mathematics is the use of a computer to run
computations—sometimes no more than trial-and- error
tests—to look for patterns, to identify particular numbers and
sequences, to gather evidence in support of specific
mathematical assertions that may themselves arise by
computational means, including search.
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0@000

Computer Assisted Research Maths: what it is?

Experimental mathematics is the use of a computer to run
computations—sometimes no more than trial-and- error
tests—to look for patterns, to identify particular numbers and
sequences, to gather evidence in support of specific
mathematical assertions that may themselves arise by
computational means, including search.

Like contemporary chemists — and before them the alchemists of
old—who mix various substances together in a crucible and heat
them to a high temperature to see what happens, today’s
experimental mathematicians put a hopefully potent mix of
numbers, formulas, and algorithms into a computer in the hope that
something of interest emerges. (JMB-Devlin, Crucible 2008, p. 1)

e Quoted in International Council on Mathematical Instruction
Study 19: On Proof and Proving, 2012
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Experimental Mathematics: Integer Relation Methods

Secure Knowledge without Proof. Given real
numbers B, a;, a0, ..., a,, Helaman Ferguson’s
integer relation method (PSLQ), finds a nontrivial
linear relation of the form

a0,3+a1051+a2(x2+~~+an(xn:0, (1)

Own Unique Niche,
In Symbols and Stone

W ar, 3 self-descibed “misfit” has

where q; are integers—if one exists and provides
an exclusion bound otherwise.

2013 Lattice Sums book (CUP)
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Experimental Mathematics: Integer Relation Methods

Secure Knowledge without Proof. Given real
numbers B, a;, a0, ..., a,, Helaman Ferguson’s
integer relation method (PSLQ), finds a nontrivial
linear relation of the form

aoﬁ+a1a1+a2(x2+m+an(xn:0, (1)

Own Unique Niche,
In Symbols and Stone

W ar, 3 self-descibed “misfit” has

where q; are integers—if one exists and provides
an exclusion bound otherwise.

@ If ag #0then (1) assures f is in rational vector
space generated by {o;, o, ..., 0}

2013 Lattice Sums book (CUP)
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Experimental Mathematics: Integer Relation Methods

Secure Knowledge without Proof. Given real
numbers B, a;, a0, ..., a,, Helaman Ferguson’s
integer relation method (PSLQ), finds a nontrivial
linear relation of the form

aoﬁ+a1a1+a2(x2+m+an(xn:0, (1)

Own Unique Niche,
In Symbols and Stone

W ar, 3 self-descibed “misfit” has

where q; are integers—if one exists and provides
an exclusion bound otherwise.

@ If ag #0then (1) assures f is in rational vector
space generated by {o;, o, ..., 0}

@ B =1,0; =o' means « is algebraic of degree n

2013 Lattice Sums book (CUP)
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[e]e] le]e}

Experimental Mathematics: Integer Relation Methods

Secure Knowledge without Proof. Given real
numbers B, a;, a0, ..., a,, Helaman Ferguson’s
integer relation method (PSLQ), finds a nontrivial
linear relation of the form

aoﬁ+a1a1+a2(x2+m+an(xn:0, (1)

Own Unique Niche,
In Symbols and Stone

W ar, 3 self-descibed “misfit” has

where q; are integers—if one exists and provides
an exclusion bound otherwise.

@ If ag #0then (1) assures f is in rational vector
space generated by {o;, o, ..., 0}

@ B =1,0; =o' means « is algebraic of degree n

@ 2000 Computing in Science & Engineering: PSLQ
one of top 10 algorithms of 20th century
(2001 CISE article on Grand Challenges (JB-PB))

2013 Lattice Sums book (CUP)
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PSLQ in action

In all serious computations of z from 1700 (by John Machin) until 1980 some
version of a Machin formula was used. These write

1 1 1
arctan(1) = a -arctan | — | +ap -arctan { — | + ---+a, -arctan [ — (2)
P1 P2 Pn

for rationals ay,as,...,a, and integers py,pa,...,pn > 1.

Recall the Taylor series arctan(x) = Y (2n1+) 21+l Combined with (2) this
computes © = 4arctan(1) efficiently, especially if the p, are not too small.
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[e]e]e] lo}

PSLQ in action

In all serious computations of z from 1700 (by John Machin) until 1980 some
version of a Machin formula was used. These write

1 1 1
arctan(1) = a -arctan | — | +ap -arctan { — | + ---+a, -arctan [ — (2)
P1 P2 Pn

for rationals ay,as,...,a, and integers py,pa,...,pn > 1.
Recall the Taylor series arctan(x) = Y (2n1+) 21+l Combined with (2) this
computes © = 4arctan(1) efficiently, especially if the p, are not too small.

For instance, Machin found

1 1
= 16arctan ( ~ | —4arctan [ ——
T arctan (5) arctan (239)

while Euler discovered

1 1 1
arctan(1) = arctan (5) + arctan (g> -+ arctan (§) (3)
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[e]e]e] lo}

PSLQ in action

In all serious computations of z from 1700 (by John Machin) until 1980 some
version of a Machin formula was used. These write

1 1 1
arctan(1) = a -arctan | — | +ap -arctan { — | + ---+a, -arctan [ — (2)
P1 P2 Pn

for rationals ay,as,...,a, and integers py,pa,...,pn > 1.
Recall the Taylor series arctan(x) = Y (2n1+) 21+l Combined with (2) this
computes © = 4arctan(1) efficiently, especially if the p, are not too small.

For instance, Machin found

1 1
= 16arctan ( ~ | —4arctan [ ——
T arctan (5) arctan (239)

while Euler discovered

1 1 1
arctan(1) = arctan (5) + arctan (g> -+ arctan (§) (3)

@ | have a function ‘ps1q’ in Maple. When input data for PSLQ it predicts
an answer to the precision requested. And checks it to ten digits more
(or some other precision).

@ This makes the code a real experimental tool as it predicts and confirms.
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PSLQ in action prepping for class

B pslg(arctan(l) , [arctan(l/2) ,arctan(l/5), arctan(l/8)1,20);;
[1,1,1, 1], "Error is", 0., "checking to", 30, places

1 1t=arctan(%) +arctan(%) +arctan(l)

4 8
[> pslq(arctan(l), [arctan(1/2) ,arctan(l/3), arctan(l/8)1,20);
[1,1,1,0], "Erroris", -1. 10'30, "checking to", 30, places

% n=arctan(%) +arctan(%)
=> pslg(arctan(l) , [arctan(l/2) ,arctan(1/5), arctan(1/9)1,20);
[42613, 72375, 22013, -40066 ], "Error is", 2.31604649037 10° 15 , "checking to", 30, places
1 72375 ( 1 J + 22013 (L) 40066 ( 1 J
2 42613

| 4 = 42613 42613 5 9
[> pslq(Pi, [arctan(1/5), arctan(1/239)1,20);
[1, 16, -4], "Error is", 2.8 1030 "checking to", 30, places
- 1 1
1t—l6arctan( 5 ) 4arctan( 239 )

@ The third shows that when no relation exists the code may find a good
approximation but using very large rationals.
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[e]e]e]e] ]

PSLQ in action prepping for class

B pslg(arctan(l) , [arctan(l/2) ,arctan(l/5), arctan(l/8)1,20);;
[1,1,1, 1], "Error is", 0., "checking to", 30, places

1 1t=arctan(%) +arctan(%) +arctan(l)

4 8
[> pslq(arctan(l), [arctan(1/2) ,arctan(l/3), arctan(l/8)1,20);
[1,1,1,0], "Erroris", -1. 10'30, "checking to", 30, places

% n=arctan(%) +arctan(%)
=> pslg(arctan(l) , [arctan(l/2) ,arctan(1/5), arctan(1/9)1,20);
[42613, 72375, 22013, -40066 ], "Error is", 2.31604649037 10° 15 , "checking to", 30, places
1 72375 ( 1 J + 22013 (L) 40066 ( 1 J
2 42613

4™ 613 ™ 42613 " 5 9

> pslg(Pi, [arctan(1l/5), arctan(1/239)],20);
[1, 16, -4], "Error is", 2.8 1030 "checking to", 30, places

_ 1 1
1t—l6arctan( 5 ) 4arctan( 239 )

@ The third shows that when no relation exists the code may find a good
approximation but using very large rationals.

@ So it diagnoses failure because it uses large coefficients and because it
is not true to the requested 30 places.
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Digital Assistance

By digital assistance | mean use of artefacts as:

@ Modern Mathematical Computer Packages-—symbolic, numeric,
geometric, or graphical.
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Digital Assistance

By digital assistance | mean use of artefacts as:

@ Modern Mathematical Computer Packages-—symbolic, numeric,
geometric, or graphical.

— Largely symbolic packages include the commercial

computer algebra packages Maple and Mathematica, and
the open source SAGE.

— Primarily numeric packages start with the proprietary

MATLAB and public counterpart Octave or the statistical
package R.

— The dynamic geometry offerings include Cinderella,
Geometer’s SketchPad, Cabri and the freeware Geogebra.
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Digital Assistance

By digital assistance | mean use of artefacts as:

@ Modern Mathematical Computer Packages-—symbolic, numeric,
geometric, or graphical.

— Largely symbolic packages include the commercial

computer algebra packages Maple and Mathematica, and
the open source SAGE.

— Primarily numeric packages start with the proprietary

MATLAB and public counterpart Octave or the statistical
package R.

— The dynamic geometry offerings include Cinderella,
Geometer’s SketchPad, Cabri and the freeware Geogebra.

@ Specialized Packages or General Purpose Languages such as
Fortran, C++, Python, CPLEX, PARI, SnapPea, and MAGMA.

Jonathan Borwein
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Digital Assistance

@ Web Applications such as: Sloane’s Encyclopedia of Integer
Sequences, the Inverse Symbolic Calculator, Fractal Explorer,
Jeff Weeks’ Topological Games, or Euclid in Java.*

— Most of the functionality of the ISC is built into the “identify”
function Maple starting with version 9.5. For example,
identify (4.45033263602792) returns V3+e. As
always, the experienced will extract more than the novice.

4A cross-section of such resources is available through
http://www.carma.newcastle.edu.au/jon/portal.html and
www.experimentalmath.info.
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Digital Assistance

@ Web Applications such as: Sloane’s Encyclopedia of Integer
Sequences, the Inverse Symbolic Calculator, Fractal Explorer,
Jeff Weeks’ Topological Games, or Euclid in Java.*

— Most of the functionality of the ISC is built into the “identify
function Maple starting with version 9.5. For example,
identify (4.45033263602792) returns V3+e. As
always, the experienced will extract more than the novice.

@ Web Databases including Google, MathSciNet, ArXiv, GitHub,
Wikipedia, MathWorld, MacTutor, Amazon, Wolfram Alpha, the
DLMF (all formulas of which are accessible in MathML, as
bitmaps, and in TgX) and many more that are not always so
viewed.

4A cross-section of such resources is available through
http://www.carma.newcastle.edu.au/jon/portal.html and
www.experimentalmath.info.
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Digital Assistance

All entail data-mining . Franklin argues “exploratory experimentation”
facilitated by “widening technology”, as in finance, pharmacology,
astrophysics, medicine, and biotechnology, is leading to a
reassessment of what legitimates experiment; in that a “local moder”
is not now prerequisite. Sarenson says experimental mathematics is
following similar tracks.

These aspects of exploratory experimentation and wide
instrumentation originate from the philosophy of (natural) science

and have not been much developed in the context of experimental
mathematics. However, | claim that e.g. the importance of wide
instrumentation for an exploratory approach to experiments that
includes concept formation also pertain to mathematics.
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All entail data-mining . Franklin argues “exploratory experimentation”
facilitated by “widening technology”, as in finance, pharmacology,
astrophysics, medicine, and biotechnology, is leading to a
reassessment of what legitimates experiment; in that a “local moder”
is not now prerequisite. Sarenson says experimental mathematics is
following similar tracks.

These aspects of exploratory experimentation and wide

instrumentation originate from the philosophy of (natural) science

and have not been much developed in the context of experimental

mathematics. However, | claim that e.g. the importance of wide

instrumentation for an exploratory approach to experiments that

includes concept formation also pertain to mathematics.

In consequence, boundaries between mathematics and natural
sciences and between inductive and deductive reasoning are blurred
and getting more so.
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All entail data-mining . Franklin argues “exploratory experimentation”
facilitated by “widening technology”, as in finance, pharmacology,
astrophysics, medicine, and biotechnology, is leading to a
reassessment of what legitimates experiment; in that a “local moder”
is not now prerequisite. Sarenson says experimental mathematics is
following similar tracks.

These aspects of exploratory experimentation and wide

instrumentation originate from the philosophy of (natural) science

and have not been much developed in the context of experimental

mathematics. However, | claim that e.g. the importance of wide

instrumentation for an exploratory approach to experiments that

includes concept formation also pertain to mathematics.

In consequence, boundaries between mathematics and natural
sciences and between inductive and deductive reasoning are blurred
and getting more so.

| leave the philosophically-vexing if mathematically-minor question as to if
genuine mathematical experiments exist even if one embraces a fully idealist
notion of mathematical existence. They sure feel like they do.
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Top Ten Algorithms (20C): all but one well used in CARMA
Algorithms for the Ages

"Great algorithms are the poetry of computation,” says Francis Sullivan of the Institute for
Defense Analyses' Center for Computing Sciences in Bowie, Maryland. He and Jack Dongarra of
the University of Tennessee and Oak Ridge National Laboratory have put together a sampling
that might have made Robert Frost beam with pride--had the poet been a computer jock.
Their list of 10 algorithms having "the greatest infl e on the develop and practice of
science and engineering in the 20th century” appears in the January/February issue of
Computing in Science & Engineering. If you use a computer, some of these algorithms are no
doubt crunching your data as you read this. The drum roll, please:

1. 1946: The Metropolis Algorithm for Monte Carlo. Through the use of random processes, this
algorithm offers an efficient way to stumble toward answers to problems that are too complicated to
solve exactly.

. 1947: Simplex Method for Linear Programming. An elegant solution to a common problem in
planning and decision-making.

. 1950: Krylov Subspace Iteration Method. A technique for rapidly solving the linear equations
that abound in scientific computation.

. 1951: The Decompositional Approach to Matrix Computations. A suite of techniques for
numerical linear algebra.

. 1957: The Fortran Optimizing Compiler. Turns high-level code into efficient computer-readable

2 woN

4]

. 1959: QR Algorithm for Computing Eigenvalues. Another crucial matrix operation made swift
and practical.

. 1962: Quicksort Algorithms for Sorting. For the efficient handling of large databases.

. 1965: Fast Fourier Transform. Perhaps the most ubiquitous algorithm in use today, it breaks down
waveforms (like sound) into periodic components.

. 1977: Integer Relation Detection. A fast method for spotting simple equations satisfied by
collections of seemingly unrelated numbers.

10. 1987: Fast Multipole Method. A breakthrough in dealing with the complexity of n-body

calculations, applied in problems ranging from celestial mechanics to protein folding.

O N O

From Random Samples, Science page 799, February 4, 2000.
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Experimental Mathematics: PSLQ is core to CARMA

SECOND EDITION

Experimentelle

-fﬁﬂfhemal'ics Mathematik

by Experiment

Puausiece Rensoning in e 2151 Centuny

Jonathan Bonwein
Dovid Bailey

THE COMPUTE

AN INTRODUCTIONTO EX
) X

Experimental Mathematics (2004-08, 2009, 2010)

Jonathan Borwein Visual Theorems www.carma.newcastle.edu.au/walks


http://www.carma.newcastle.edu.au/walks

Digital Assistance
[ Jelelelo)

Contents

e Digital Assistance

@ Simulation in Mathematics
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Simulation in pure mathematics

Pure mathematicians have not often though of simulation as a

relevant tool.

The cardioid in the Figure below came from a scatter plot while trying
to determine for which complex numbers z = b/a a continued fraction
due to Ramanujan, #(a,b), converged.
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Simulation in pure mathematics

Pure mathematicians have not often though of simulation as a
relevant tool.
The cardioid in the Figure below came from a scatter plot while trying
to determine for which complex numbers z = b/a a continued fraction
due to Ramanujan, #(a,b), converged.
It is given for complex numbers « and b by
a

b2
_de?

9?
1+
14

(4)

X(a,b) =
1+
I+

As often | first tried to compute—R(1, 1)—and had little luck.
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Simulation in pure mathematics

Pure mathematicians have not often though of simulation as a
relevant tool.

The cardioid in the Figure below came from a scatter plot while trying
to determine for which complex numbers z = b/a a continued fraction
due to Ramanujan, #(a,b), converged.

It is given for complex numbers « and b by

Z(a,b) = a

b2
4l
op?
1+
1+

(4)

1+
I+

As often | first tried to compute—R(1, 1)—and had little luck.

It transpires for a = b € R convergence is O(1/n); but is geometric for
a # b. So what looks like the simplest case analytically is the hardest
computationally.
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Simulation in pure mathematics

Pure mathematicians have not often though of simulation as a
relevant tool.
The cardioid in the Figure below came from a scatter plot while trying
to determine for which complex numbers z = b/a a continued fraction
due to Ramanujan, #(a,b), converged.
It is given for complex numbers « and b by
a
b2
4q?
9b*

1+

14

Z(a,b) = (4)

1+
I+

As often | first tried to compute—R(1, 1)—and had little luck.

It transpires for a = b € R convergence is O(1/n); but is geometric for
a # b. So what looks like the simplest case analytically is the hardest
computationally.

We eventually determined from highly sophisticated arguments that:
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Simulation in pure mathematics

Theorem (Six formulae for #Z(a,a),a > 0)

> sech (5=
#aaw) = | 71+;; dr

o )k-‘rl
(2k—

- 2§ Ol

k=

i é ) e(ed)

2a L+ 4.1
T+a”! ( ~+3
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Simulation in pure mathematics

Here ,F; is the hypergeometric function. If you do not know v (‘psi’) ,
you can easily look it up once you can say ‘psi’.
Notice that

1 tl/a

2 ——dr
o 1+

% (a,a) =
so that R(1,1) = log?2.
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Simulation in pure mathematics

Here ,F; is the hypergeometric function. If you do not know v (‘psi’) ,
you can easily look it up once you can say ‘psi’.
Notice that

1 tl/a

2 ——dr
o 1+

X(a,a) =

so that R(1,1) =1log2.
@ After making no progress analytically, Crandall and | decided in
2003, taking a somewhat arbitrary criterion for convergence, to
colour yellow points for which the fraction seemed to converge.
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Simulation in pure mathematics

Here ,F; is the hypergeometric function. If you do not know v (‘psi’) ,
you can easily look it up once you can say ‘psi’.
Notice that

1 tl/a

2 ——dr
o 1+

X(a,a) =

so that R(1,1) =1log2.
@ After making no progress analytically, Crandall and | decided in
2003, taking a somewhat arbitrary criterion for convergence, to
colour yellow points for which the fraction seemed to converge.

@ We sampled one million points and reasoned a few thousand
mis-categorisations would not damage the experiment.
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Digital Assistance
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Simulation in pure mathematics

The Figure is so precise that we could identify the cardioid. It is the

points where
la+Db|
b| < .
Viab| <=5

Jonathan Borwein Visual Theorems www.carma.newcastle.edu.au/walks


http://www.carma.newcastle.edu.au/walks

Digital Assistance
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Simulation in pure mathematics

The Figure is so precise that we could identify the cardioid. It is the

points where
la+Db|
b| < .
Viab| <=5

Since for positive a,b the fraction satisfies

a+b7@) K(a,b)+Z(b,a)

9 _
j(Z 2

this gave us enormous impetus to continue our eventually successful
hunt for a proof.
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Reflection methods

Let S CR™. The (nearest point or metric) projection onto § is the
(set-valued) mapping,

Pgx := argmin||s — x]|.
sES

The reflection w.r.t. S is the (set-valued) mapping,

Rslz 2P571.
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Let S CR™. The (nearest point or metric) projection onto § is the
(set-valued) mapping,

Pgx := argmin||s — x]|.
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The reflection w.r.t. S is the (set-valued) mapping,

Rslz 2P571.
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Pgx := argmin||s — x]|.
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The reflection w.r.t. S is the (set-valued) mapping,
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Let S CR™. The (nearest point or metric) projection onto § is the
(set-valued) mapping,

Pgx := argmin||s — x]|.
sES

The reflection w.r.t. S is the (set-valued) mapping,

Rslz 2P571.
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Reflection methods

Let S CR™. The (nearest point or metric) projection onto § is the
(set-valued) mapping,

Pgx := argmin||s — x]|.
sES

The reflection w.r.t. S is the (set-valued) mapping,

Rslz 2P571.
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The Douglas—Rachford Algorithm (1956—1979— )

Theorem (Douglas—Rachford in finite dimensions)
Suppose A, B C R™ are closed and convex. For any x, € R™ define

I+ RpRy

Xptl = TA_’B)C,, where TA,B = >

If ANB # 0, then x,, — x such that P4x € ANB. Else ||x,|| — +o°.

A

Xn

A={xeR":|x| <1}, B:={xeR":(a,x)=0>b}.
((non)-convex Phase retrieval)
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The Douglas—Rachford Algorithm (1956—1979— )

Theorem (Douglas—Rachford in finite dimensions)
Suppose A, B C R™ are closed and convex. For any x, € R™ define

I+ RpRy

Xptl = TA_’B)C,, where TA,B = >

If ANB # 0, then x,, — x such that P4x € ANB. Else ||x,|| — +o°.

RAxn‘(..__

A

Xn

A={xeR":|x| <1}, B:={xeR":(a,x)=0>b}.
((non)-convex Phase retrieval)
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The Douglas—Rachford Algorithm (1956—1979— )

Theorem (Douglas—Rachford in finite dimensions)
Suppose A, B C R™ are closed and convex. For any x, € R™ define

I+ RpRy

Xptl = TA_’B)C,, where TA,B = >

If ANB # 0, then x,, — x such that P4x € ANB. Else ||x,|| — +o°.

RpRax, «

RAxn;(..__

A

Xn

A={xeR":|x| <1}, B:={xeR":(a,x)=0>b}.
((non)-convex Phase retrieval)
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The Douglas—Rachford Algorithm (1956—1979— )

Theorem (Douglas—Rachford in finite dimensions)
Suppose A, B C R™ are closed and convex. For any x, € R™ define

I+ RpRy

Xptl = TA_’B)C,, where TA,B = >

If ANB # 0, then x,, — x such that P4x € ANB. Else ||x,|| — +o°.

RpRax, «

 Xnr1 = TABXn
Ryx, ;(..__

A

Xn

A={xeR":|x| <1}, B:={xeR":(a,x)=0>b}.
((non)-convex Phase retrieval)

Jonathan Borwein Visual Theorems www.carma.newcastle.edu.au/walks


http://www.carma.newcastle.edu.au/walks

PART II. Case Studies
00@00

The Douglas—Rachford Algorithm (1956—1979— )

Theorem (Douglas—Rachford in finite dimensions)
Suppose A, B C R™ are closed and convex. For any x, € R™ define

I+ RpRy

Xptl = TA_’B)C,, where TA,B = >

If ANB # 0, then x,, — x such that P4x € ANB. Else ||x,|| — +o°.

X1 = Ta BXn

A

Xn

A={xeR":|x| <1}, B:={xeR":(a,x)=0>b}.
((non)-convex Phase retrieval)
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Works for B affine and A a ‘sphere’ ANIMATION

In this case we have:
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Works for B affine and A a ‘sphere’ ANIMATION

In this case we have:
@ Some local and fewer global convergence results.
@ Much empirical evidence for this and other non-convex settings.
— both numeric and geometric (Cinderella/SAGE)

— http://carma.newcastle.edu.au/jon/expansion.html
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Works for B affine and A a ‘sphere’ ANIMATION

In this case we have:
@ Some local and fewer global convergence results.
@ Much empirical evidence for this and other non-convex settings.
— both numeric and geometric (Cinderella/SAGE)

— http://carma.newcastle.edu.au/jon/expansion.html
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Works for B affine and A a ‘sphere’ ANIMATION

In this case we have:
@ Some local and fewer global convergence results.
@ Much empirical evidence for this and other non-convex settings.
— both numeric and geometric (Cinderella/SAGE)

— http://carma.newcastle.edu.au/jon/expansion.html
P—

— 20000 starting points coloured
by distance from y-axis

— after 0,7,14,21 steps
— a “generic visual theorem”?
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Works for B affine and A a ‘sphere’ ANIMATION

In this case we have:
@ Some local and fewer global convergence results.
@ Much empirical evidence for this and other non-convex settings.
— both numeric and geometric (Cinderella/SAGE)

— http://carma.newcastle.edu.au/jon/expansion.html
P—

— 20000 starting points coloured
by distance from y-axis

— after 0,7,14,21 steps

— a “generic visual theorem”?

© showing global
convergence off the
(chaotic) y-axis?
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[e]e]e] le}

Works for B affine and A a ‘sphere’ ANIMATION

In this case we have:
@ Some local and fewer global convergence results.
@ Much empirical evidence for this and other non-convex settings.
— both numeric and geometric (Cinderella/SAGE)

— http://carma.newcastle.edu.au/jon/expansion.html
P—

— 20000 starting points coloured
by distance from y-axis
— after 0,7,14,21 steps
— a “generic visual theorem”?
© showing global
convergence off the
(chaotic) y-axis?
— note the error from using only
14 digit computation.
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Works for B affine and A a ‘sphere’

What we could prove (L) and what we could see (R)

14 1-
12
0.8} \
1 =
08 0.6
0.6 oal
0.4
0.2+
0.2
02 04 06 08 1 12 14 0.2 0.4 0.6 0.8 1

2012 Proven region of convergence in grey
2014 Lyapunov function based proof of global convergence (Benoist)
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@ |b: Protein conformation

Jonathan Borwein Visual Theorems www.carma.newcastle.edu.au/walks


http://www.carma.newcastle.edu.au/walks

PART II. Case Studies
0®000000

Case study I: Protein conformation determination

Proteins: large biomolecules comprising multiple amino acid chains.?

Generic amino acid RuBisCO

5RuBisCO (responsible for photosynthesis) has 550 amino acids (smallish).
A coupling which occurs through space, rather than chemical bonds.
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Case study I: Protein conformation determination

Proteins: large biomolecules comprising multiple amino acid chains.?

Generic amino acid RuBisCO

@ Proteins participate in virtually every cellular process !
@ Protein structure — predicts how functions are performed.

@ NMR spectroscopy (Nuclear Overhauser effect®) can determine
a subset of interatomic distances without damage (under 6A ).

5RuBisCO (responsible for photosynthesis) has 550 amino acids (smallish).
A coupling which occurs through space, rather than chemical bonds.
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Case study I: Protein conformation determination

Proteins: large biomolecules comprising multiple amino acid chains.?

Generic amino acid RuBisCO

@ Proteins participate in virtually every cellular process !
@ Protein structure — predicts how functions are performed.
@ NMR spectroscopy (Nuclear Overhauser effect®) can determine
a subset of interatomic distances without damage (under 6A ).
A low-rank Euclidean distance matrix completion problem.

5RuBisCO (responsible for photosynthesis) has 550 amino acids (smallish).
A coupling which occurs through space, rather than chemical bonds.
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Six Proteins Numerics if reconstructed using reflection methods

We use only interatomic distances below 6A typically constituting less
than 8% of the total nonzero entries of the distance matrix.

Table. Six Proteins: average (maximum) errors from five replications.

Protein  # Atoms Rel. Error (dB) RMSE Max Error
1PTQ 404 -83.6 (-83.7) 0.0200 (0.0219)  0.0802 (0.0923)
1HOE 581 -72.7 (-69.3) 0.191 (0.257) 2.88 (5.49)
1LFB 641 -47.6 (-45.3) 3.24 (3.53) 21.7 (24.0)
1PHT 988 -60.5 (-58.1) 1.03 (1.18) 12.7 (13.8)
1POA 1067 -49.3 (-48.1) 34.1 (34.3) 81.9 (87.6)
1AX8 1074 -46.7 (-43.5) 9.69 (10.36) 58.6 (62.6)
] l1Pc, Pc, Xx — Pc, Xy ||?
Rel. error(dB) := 10log,, (W) ,
m 5. _ ptrue]|2
RMSE :— X #I ![f’latopr;"S Hz i Max := I[g?g(" H/A’l 7/’?”"?“2'

@ The points py,pa,. .., pn denote the best fitting of py,p»,..., p» When rotation, translation and
reflection is allowed.
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What do the reconstructions look like?

5,000 steps, -83.6dB (perfect)

1POA (actual) 5,000 steps, -49.3dB (mainly good!)
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[eele] Yolelele]

What do the reconstructions look like?

1POA (actual) 5,000 steps, -49.3dB (mainly good!)

e The picture of ‘failure’ suggests many strategies
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What do reconstructions look like?

lterations: 4
Video: First 3,000 steps of the 1PTQ reconstruction.

At http://carma.newcastle.edu.au/DRmethods/1PTQ.html
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What do the Reconstructions Look Like?

An optimised implementation gave a ten-fold speed-up.
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What do the Reconstructions Look Like?

An optimised implementation gave a ten-fold speed-up. This allowed
for the following axneariment tn ha nerfarmed-

— 1POA
— 1HOE
0 — 1LFB
— 1PHT
— 1POA
5 1AX8
g 107
w
)
>
ks
s
i 10
14
10
3 P— =
1o 5000 10000 15000 20000 35000 30000

Iterations

Figure: Relative error by iterations (vertical axis logarithmic).
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What do the Reconstructions Look Like?

An optimised implementation gave a ten-fold speed-up. This allowed
for the following axneariment tn ha nerfarmed-

Relative Error

1POA
1HOE
1LFB

1PHT
1POA

5000

10000

15000 - 20&007 25000
Iterations

301

00

Figure: Relative error by iterations (vertical axis logarithmic).
@ For < 5,000 iterations, the error exhibits non-monotone
oscillatory behaviour. It then decreases sharply. Beyond this

progress is slower.

@ |s early termination to blame? Terminate when error < —100dB.
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A More Robust Stopping Criterion

The “un-tuned” implementation (from previous slide):

1POA (actual) 5,000 steps (~2d), -49.3dB
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A More Robust Stopping Criterion

The “un-tuned” implementation (from previous slide):

1POA (actual) 5,000 steps (~2d), -49.3dB
The optimised implementation:

1POA (actual) 28,500 steps (~1d), -100dB (perfect!)
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A More Robust Stopping Criterion

The “un-tuned” implementation (from previous slide):

1POA (actual)
The optimised implementation:

1POA (actual) 28,500 steps (~1d), -100dB (perfect!)

@ Similar results observed for the other test proteins.
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What do reconstructions look like?

There are many projection methods, so why use Douglas-Rachford?

500 steps, -25 dB. 1,000 steps, -30 dB. 2,000 steps, -51 dB. 5,000 steps, -84 dB.

Alternating projection method reconstr

500 steps, -22 dB. 1,000 steps, -24 dB. 2,000 steps, -25 dB. 5,000 steps, -28 dB.
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What do reconstructions look like?

There are many projection methods, so why use Douglas-Rachford?

500 steps, -25 dB. 1,000 steps, -30 dB. 2,000 steps, -51 dB. 5,000 steps, -84 dB.

Alternating projection method reconstr

500 steps, -22 dB. 1,000 steps, -24 dB. 2,000 steps, -25 dB. 5,000 steps, -28 dB.
@ Yet MAP works very well for optical abberation correction
(Hubble, amateur telescopes). Why?
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@ lla: 100 digit challenge
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How the mathematical software world has changed

In the January 2002 issue of SIAM News, Nick Trefethen presented
ten diverse problems used in teaching modern graduate numerical

analysis students at Oxford University, the answer to each being a

certain real number.
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How the mathematical software world has changed

In the January 2002 issue of SIAM News, Nick Trefethen presented
ten diverse problems used in teaching modern graduate numerical
analysis students at Oxford University, the answer to each being a

certain real number.

Readers were challenged to compute ten digits of each answer, with
a $100 prize to the best entrant. Trefethen wrote,

“If anyone gets 50 digits in total, | will be impressed.”
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How the mathematical software world has changed

In the January 2002 issue of SIAM News, Nick Trefethen presented
ten diverse problems used in teaching modern graduate numerical
analysis students at Oxford University, the answer to each being a

certain real number.

Readers were challenged to compute ten digits of each answer, with
a $100 prize to the best entrant. Trefethen wrote,
“If anyone gets 50 digits in total, | will be impressed.”

@ To his surprise, a total of 94 teams, representing 25 different
nations, submitted results. Twenty of these teams received a full
100 points (10 correct digits for each problem).

@ Bailey, Fee and | quit at 85 digits!
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The hundred digit challenge
The problems and solutions are dissected most entertainingly in

[1] F. Bornemann, D. Laurie, S. Wagon, and J. Waldvogel
(2004).“The Siam 100-Digit Challenge: A Study In
High-accuracy Numerical Computing”, SIAM, Philadelphia.
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The hundred digit challenge
The problems and solutions are dissected most entertainingly in

[1] F. Bornemann, D. Laurie, S. Wagon, and J. Waldvogel
(2004).“The Siam 100-Digit Challenge: A Study In
High-accuracy Numerical Computing”, SIAM, Philadelphia.

@ In a 2005 Math Intelligencer review of [1], | wrote
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The hundred digit challenge
The problems and solutions are dissected most entertainingly in

[1] F. Bornemann, D. Laurie, S. Wagon, and J. Waldvogel
(2004).“The Siam 100-Digit Challenge: A Study In
High-accuracy Numerical Computing”, SIAM, Philadelphia.

@ In a 2005 Math Intelligencer review of [1], | wrote

Success in solving these problems required a broad
knowledge of mathematics and numerical analysis, together
with significant computational effort, to obtain solutions and
ensure correctness of the results. As described in [1] the
strengths and limitations of Maple, Mathematica, MATLAB
(The 3Ms), and other software tools such as PARI or GAP,
were strikingly revealed in these ventures.

Almost all of the solvers relied in large part on one or more
of these three packages, and while most solvers attempted
to confirm their results, there was no explicit requirement for
proofs to be provided.
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Trefethen’s problem #9

The integral

2
I(o) :/ [2+sin(10a)]x® sin( “ > dx
0 2—x
depends on the parameter a. What is
the value a € [0,5] at which I(o)
achieves its maximum?

Integrands for some o
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Trefethen’s problem #9

The integral

I(a) :/02[2+sin(10(x)]x°‘ sin <2fx> dx

depends on the parameter a. What is
the value a € [0,5] at which I(o)
achieves its maximum?

Integrands for some o
@ /(a) is expressible in terms of a Meijjer-G function —a special
function with a solid history that we use below.

I@)=4Vr T(a?Gz“le:—z

22 e
G J[sin(ll)aHQ].
b0

@ Unlike most contestants, Mathematica and Maple will figure this
out; help files or a web search then inform the scientist.

@ This is another measure of the changing environment. It is
usually a good idea—and not at all immoral—to data-mine.
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Trefethen’s problem #10 ANIMATION

A particle at the center of a 10 x 1
rectangle undergoes Brownian motion (i.e., Walkingina 03 box
2-D random walk with infinitesimal step 7
lengths) till it hits the boundary. What is the
probability that it hits at one of the ends
rather than at one of the sides?

Jonathan Borwein
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Trefethen’s problem #10 ANIMATION

A particle at the center of a 10 x 1
rectangle undergoes Brownian motion (i.e., Walkingina 03 box
2-D random walk with infinitesimal step ' 7
lengths) till it hits the boundary. What is the
probability that it hits at one of the ends
rather than at one of the sides?

Hitting the Ends. Bornemann [1] starts his remarkable solution by
exploring Monte-Carlo methods, which are shown to be impracticable.
@ He reformulates the problem deterministically as the value at the
center of a 10 x 1 rectangle of an appropriate harmonic measure
of the ends, arising from a 5-point discretization of Laplace’s
equation with Dirichlet boundary conditions.

@ This is then solved by a well chosen sparse Cholesky solver. A
reliable numerical value of 3.837587979- 10~ is obtained and the
problem is solved numerically to the requisite ten places.

@ This is the warm up....
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Walking in a b x a box ANIMATION
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PART II. Case Studies
000000@000

Trefethen’s problem #10

We may proceed to develop two analytic solutions, the first using
separation of variables on the underlying PDE on a general 2a x 2b
rectangle. We learn that with p :=a/b

i ;;j_): sech (7[(2nz+ D p). (5)
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PART II. Case Studies
000000@000

Trefethen’s problem #10

We may proceed to develop two analytic solutions, the first using
separation of variables on the underlying PDE on a general 2a x 2b
rectangle. We learn that with p :=a/b

pla,b) = % i ;;j_): sech (7[(2nz+ D p). (5)

@ Three terms yields 50 correct digits:
p(10,1) = 0.00000038375879792512261034071331862048391007930055940724 . ...

@ The first term alone, %sech(Sﬂ?), gives the underlined digits.
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PART II. Case Studies
000000@000

Trefethen’s problem #10

We may proceed to develop two analytic solutions, the first using
separation of variables on the underlying PDE on a general 2a x 2b
rectangle. We learn that with p :=a/b

pla,b) = % i ;;j_): sech (7[(2nz+ D p). (5)

@ Three terms yields 50 correct digits:
p(10,1) = 0.00000038375879792512261034071331862048391007930055940724 . ...

@ The first term alone, %sech(Sﬂ?), gives the underlined digits.

A second method using conformal mappings, yields
arccotp = p(a,b) g +argK (ei”(“’h)”) (6)
where K is the complete elliptic integral of the first kind.
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0000000e00

Trefethen’s problem #10

o We have entered the wonderful world of modular functions
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PART II. Case Studies
0000000e00

Trefethen’s problem #10

o We have entered the wonderful world of modular functions

Bornemann et al ultimately show that the answer is
2 .
P=_ arcsin (k19) (7)
where

b= ((3-242) (2+3) (- v10) (-2+5)’)

is a singular value. [In general p(a,b) = %arcsin (k(a/b)z) J
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PART II. Case Studies
0000000e00

Trefethen’s problem #10

o We have entered the wonderful world of modular functions

Bornemann et al ultimately show that the answer is
2 .
P=_ arcsin (k19) (7)
where

to= ((0-293) (2+5) (5v10) (-va+ 5]

is a singular value. [In general p(a,b) = %arcsin (k(a/b)z) J
@ No one (except harmonic analysts perhaps) anticipated a closed
form—Iet alone one like this.

@ Can be done for some other shapes (perhaps, convex with
piecewise smooth boundaries, starting at barycentre), and for
self-avoiding walks.
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00000000 e0

Trefethen’s problem #4 ... Zooming

What is the global minimum of the function
exp(sin(50x)) + sin(60e”) + sin(70sinx) + sin(sin(80y))

—sin(10(x+y)) + (x* +y%) /4?
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PART II. Case Studies

00000000 e0

Trefethen’s problem #4 ... Zooming

What is the global minimum of the function
exp(sin(50x)) + sin(60e”) + sin(70sinx) + sin(sin(80y))

—sin(10(x+y)) + (x* +y%) /4?

@ Can be solved in a global optimization package or by a damped Newton

method

@ In Mathematicaby NMinimize [f[x, y], %X, y, Method ->
"RandomSearch", "SearchPoints" -> 250,
WorkingPrecision —-> 20]

@ In Maple by NLPSolve (f (x,y), x = -4 .. 4, y = -4 .. 4,
initialpoint = {x = -.4, y = -.1});

@ or by ‘zooming’ on [-3,3] x [-3,3].
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PART II. Case Studies
0000000008

Trefethen’s problem #4 ... zooming on [0,1]
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Contents

© PART L. Case Studies

@ llb: Polylogarithms
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(o] 1]

Algorlthm performance a simulated interlude

Proposition (Polylogarithm computation)
(a) Fors = n a positive integer,

e !

0m On—l
Lis@) = ¥ {(n—m) 28 24 108" 2

e oy (Hior —log(~log2)).  (8)
m=0 : :

(b) For any complex order s not a positive integer,

ZC log < +T(1—s)(—logz)* . 9)

m>0

Here {(s) := ¥,* and continuations, H, := 1+ 1+ 1+ +1 and ¥’
avoids the singularity at £(1).

n (8), |logz| < 27 precludes use when |z| < e=2" = 0.0018674. For
small |z|, however, it suffices to use the definition

oo
k=1
Vis|

(10)

Z

ual Theorems www.carma.newcastle.edu.au/walks
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ooce

Algorlthm performance a simulated interlude

@ We found (10) faster than (8) whenever |z| < 1/4, for precision
from 100 to 4000 digits. We illustrate for Li, in the Figure.

Performance of equation (1) versus (3) for Li_2(z)

Figure: (L) Timing (8) (blue) and (10) (red).(R) blue region where (8) is faster.
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PART II. Case Studies

ooce

Algorlthm performance a simulated interlude

@ We found (10) faster than (8) whenever |z| < 1/4, for precision
from 100 to 4000 digits. We illustrate for Li, in the Figure.

@ Timings show microseconds required for 1,000 digit accuracy as
the modulus goes from 0 to 1 with blue showing superior
performance of (8). The region records 10,000 trials of random z,
such that —0.6 < R(z) < 0.4,-0.5 < 3(z) < 0.5.

Performance of equation (1) versus (3) for Li_2(z)

Figure: (L) Timing (8) (blue) and (10) (red).(R) blue region where (8) is faster.
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