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Dedicated to Jacques Hadamard, A Universal Mathematician (1998)

last dozen of the first hundred of his year”, said at the celebration of Hada-
mard’s centenary:

The taupin who saw Jacques Hadamard enter the lecture the-
atre, found a teacher who was active, alive, whose reasoning

bined t and dy i Thus the lecture became a
struggle and an adventure. Without rigour suffering, the impor-
tance of intuition was restored to us, and the better students
were delighted. For the others, the intellectual life was less com-
fortable, but so exciting... And then, above all, we knew quite
well that with such a guide we never risked going under [IL5,
p-8).

“The Ob]ect of Mandelbrojt recalled at the same jubilee:

mathematical rigor is to
For several years, Hadamard also gave lectures at the Collége

sanction and Iegltlmlze de France: lectures which were long, hard, infinitely interesting.
He never tried to hide the difficulties, on the contrary he brought
the conqueSts Of them out. The audience thought together with him; these lec-
H HYH tures provoked creativity. The day after a lecture by Hadamard
IntUItlon’ and there was was rich, full and all day long one thought about the ideas.
never any other Object It was in these lectures that Ilearnt the secrets of the function
. {(s) of Riemann, it was there that I understood the significance
for it.”-JSH (1865-1963) of analytic continuation, of quasi-analyticity, of Dirichlet series,
of the role of functional calculus in the calculus of variations
[IL5, p.25-27).
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EXTENDED ABSTRACT

Long before current graphic, visualisation and geometric tools were
available, John E. Littlewood (1885-1977) wrote in his delightful
Miscellany'

A heavy warning used to be given [by lecturers] that pictures
are not rigorous; this has never had its bluff called and has
permanently frightened its victims into playing for safety.
Some pictures, of course, are not rigorous, but | should say
most are (and | use them whenever possible myself). [p. 53]

1J.E. Littlewood, A mathematician’s miscellany, London: Methuen (1953);
Littlewood, J. E. and Bollobas, Béla, ed., Littlewood’s miscellany, Cambridge University
Press, 1986.
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EXTENDED ABSTRACT

Long before current graphic, visualisation and geometric tools were
available, John E. Littlewood (1885-1977) wrote in his delightful
Miscellany'

A heavy warning used to be given [by lecturers] that pictures
are not rigorous; this has never had its bluff called and has
permanently frightened its victims into playing for safety.
Some pictures, of course, are not rigorous, but | should say
most are (and | use them whenever possible myself). [p. 53]

Over the past decade, the role of visual computing in my own
research has expanded dramatically.

In part this was made possible by the increasing speed and storage
capabilities—and the growing ease of programming—of modern
multi-core computing environments [BMC].

1J.E. Littlewood, A mathematician’s miscellany, London: Methuen (1953);
Littlewood, J. E. and Bollobas, Béla, ed., Littlewood’s miscellany, Cambridge University
Press, 1986.
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But, at least as much, it has been driven by my group’s paying more
active attention to the possibilities for graphing, animating or
simulating most mathematical research activities.

2See http://www.carma.newcastle.edu.au/jon/Completion.pdf and
http://www.carma.newcastle.edu.au/jon/dr-fieldsll.pptx.
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But, at least as much, it has been driven by my group’s paying more
active attention to the possibilities for graphing, animating or
simulating most mathematical research activities.

@ | first briefly discuss both visual theorems and
experimental computation.

@ [ then turn to dynamic geometry (iterative reflection
methods [AB]) and matrix completion problems (applied
to protein conformation [ABT]).2 (Case studies |)

2See http://www.carma.newcastle.edu.au/jon/Completion.pdf and
http://www.carma.newcastle.edu.au/jon/dr-fieldsll.pptx.
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But, at least as much, it has been driven by my group’s paying more
active attention to the possibilities for graphing, animating or
simulating most mathematical research activities.

@ | first briefly discuss both visual theorems and
experimental computation.

@ [ then turn to dynamic geometry (iterative reflection
methods [AB]) and matrix completion problems (applied
to protein conformation [ABT]).2 (Case studies |)

@ After an algorithmic interlude (Case studies 1), I end
with description of work from my group in probability
(behaviour of short random walks [BS, BSWZ]) and
transcendental number theory (normality of real
numbers [AB3]). (Case studies 1)

2See http://www.carma.newcastle.edu.au/jon/Completion.pdf and
http://www.carma.newcastle.edu.au/jon/dr-fieldsll.pptx.
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Jonathan Borwein

While all this work involved significant, often

'| threaded [BSC], numerical- symbolic

computation, | shall focus on the visual
components.
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3 threaded [BSC], numerical- symbolic

computation, | shall focus on the visual
components.

| will make a sample of the on-line presentation,
based in part on:
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While all this work involved significant, often

3 threaded [BSC], numerical- symbolic
‘ computation, | shall focus on the visual

components.

| will make a sample of the on-line presentation,
based in part on:

@ What we have seen and heard so far
@ My inclinations on the day
@ How | manage my time
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While all this work involved significant, often

| threaded [BSC], numerical- symbolic
computation, | shall focus on the visual
components.

| will make a sample of the on-line presentation,
based in part on:

@ What we have seen and heard so far
@ My inclinations on the day
@ How | manage my time

JMB was among roughly 60 new 2015 Fellows of the American
Mathematical Society. He was cited “For contributions to
nonsmooth analysis and classical analysis as well as experimental
mathematics and visualization of mathematics.”
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NAMS 2005. KnotPlot in a Cave

Jonathan Borwein

Considerable obstacles generally present
themselves to the beginner, in studying the
elements of Solid Geometry, from the
practice which has hitherto uniformly
prevailed in this country, of never
submitting to the eye of the student, the
figures on whose properties he is
reasoning, but of drawing perspective
representations of them upon a plane.

I hope that | shall never be obliged to have
recourse to a perspective drawing of any
figure whose parts are not in the same
plane.—Augustus De Morgan

In Adrian Rice,“What Makes a Great Mathematics Teacher?” MAA Monthly, 1999.
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PART I: Visual Theorems
oeo

Visual Theorems: Animation, Simulation and Stereo . ..

See http://vis.carma.newcastle.edu.au/: Stoneham movie

Cinderella, 3.14 min of Pi, Catalan’s constant and Passive 3D
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PART I: Visual Theorems
oeo

Visual Theorems: Animation, Simulation and Stereo . ..

See http://vis.carma.newcastle.edu.au/: Stoneham movie

The latest developments in computer and video technology
have provided a multiplicity of computational and symbolic
tools that have rejuvenated mathematics and mathematics
education. Two important examples of this revitalization are
experimental mathematics and visual theorems

— ICMI Study 19 (2012)

CARMA

Cinderella, 3.14 min of Pi, Catalan’s constant and Passive 3D
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PART I: Visual Theorems
[e]e] J

Visualising large matrices

Large matrices often have structure that pictures will reveal but which
numeric data may obscure.
@ The picture shows a 25 x 25 Hilbert matrix on the left and on the
right a matrix required to have 50% sparsity and non-zero entries
random in [0, 1].

Figure: The Hilbert matrix (L) and a sparse random matrix (R)
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PART I: Visual Theorems
O®@0000000000

Visualising large matrices

The 4 x 4 Hilbert matrix is
1 1/2 1/3 1/4
/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7
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PART I: Visual Theorems
O®@0000000000

Visualising large matrices

The 4 x 4 Hilbert matrix is
1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
/3 1/4 1/5 1/6
/4 1/5 1/6 1/7
Hilbert matrices are notoriously unstable numerically. The left of the
Figure shows the inverse of the 20 x 20 Hilbert matrix computed

symbolically exactly. The middle shows enormous numerical errors if
one uses 10 digit precision, and the right even if one uses 20 digits.

Figure: Inverse 20 x 20 Hilbert matrix (L) and 2 numerical inverses (R)
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Me and my collaborators

MAA 3.14

http://www.carma.newcastle.edu.au/jon/pi-monthly.pdf
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Figure: Walk on first 100 billion base-4 digits of # (normal?).
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http://gigapan.org/gigapans/106803
http://www.carma.newcastle.edu.au/walks

PART I[: Visual Theorems Digital Assistance  PART Il. Case Studies PART lll: Randomness Random-ish
00000080000000000000 OOOO0000000 0000000000 0000000000000000 DOO000000000000000000000 0OO0000

2012 walk on & (went ViIr al) Biggest mathematics picture ever?
| Resolution: 372,224 x290,218 pixels Computation: took roughly a month |
(108 gigapixels) where several parts of the algorithm

were run in parallel with 20 threads
on CARMA’s MacPro cluster.

Walk on first 100 billion base-4 digits of & (normal?).

http://gigapan.org/gigapans/106803
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Outreach: images and animations led to high-level research which went viral

G e ey

W~ "y

Wired UK August 2013

potashape
and reinvent maths
‘This rendering of the first 100 billion

digits of pi proves they're
Tandom - unless you see a pattern

his image is a representation of the first  GOING FOR
T 100 billion digits of pi. “I was interested to ~  RANOOM
see what I'd get by turning a number into
a picture,” says mathematician Jon Borwein
from the University of Newcastle in Australia,
who collaborated with programmer Fran
Aragon. “We wanted to prove, with the imay
that the digits of i are really random.” explains
Aragon. “If they weren't, the picture would
have a structure or a specifically repeating
shape, likea circle, or some broccoli.
Thisimage is equivalent to 10000 photosfrom
aten-megapirel camera, andit can be explored in
Gigapan. The technique doesn’t only confirm
established theories - it provides insig
the drawing of a supposedly random sequence
called the “Stoneham number”, Aragon noticed
aregularly occurring shape within the f
“Wewereable to show that the Stoncham number
is not random in base 6,” he

Spot ashape

and reinvent maths LAY earmaneneostie o,
This rendering of the first 100 billion awphwalkshtml

digits of pi proves they're
random - unless you see a pattern [P i )
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Outreach: images and animations led to high-level research which went viral

¢ 100 billion base four digits of & on Gigapan
o Really big pictures are often better than movies (NASA and AMS)
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My number-walk collaborators

& . l —- y
Jon Borwein PeterBorwein
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0O000000e0000

My short-walk collaborators

i %.i \
James Wan Armin Straub Wadim Zudilin
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My short-walk collaborators

il

James Wan Armin Straub Wadim Zudilin

e Plus Dirk Nuyens and Don Zagier, ...
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Dedication: To my friend Richard E. Crandall (1947-2012)
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Dedication: To my friend Richard E. Crandall (1947-2012)

@ A remarkable man and a brilliant (physical and computational)
scientist and inventor, from Reed College

- Chief scientist for NeXT
- Apple distinguished scientist
- and High Performance Computing head

Jonathan Borwein Visual Theorems www.carma.newcastle.edu.au/walks


http://en.wikipedia.org/wiki/Richard_Crandall
http://www.carma.newcastle.edu.au/walks

PART I: Visual Theorems
0O0000000e000

Dedication: To my friend Richard E. Crandall (1947-2012)

@ A remarkable man and a brilliant (physical and computational)
scientist and inventor, from Reed College

- Chief scientist for NeXT

- Apple distinguished scientist

- and High Performance Computing head
@ Developer of the Pixar compression format

- and the iPod shuffle

http://en.wikipedia.org/wiki/Richard_Crandall
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Some early conclusions: So | am sure they get made

Key ideas: randomness, normality of numbers, planar walks, and fractals

Vgipre-wr)p-o
Pozdopn o 8
Gatreo Cacky-Gassor

How not to experiment
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Some early conclusions: So | am sure they get made

Key ideas: randomness, normality of numbers, planar walks, and fractals

Maths can be done experimentally (it is fun)

- using computer algebra, numerical
computation and graphics: SNaG

- computations, tables and pictures are
experimental data

- but you can not stop thinking

How not to experiment
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Some early conclusions: So | am sure they get made

Key ideas: randomness, normality of numbers, planar walks, and fractals

Maths can be done experimentally (it is fun)

- using computer algebra, numerical
computation and graphics: SNaG

- computations, tables and pictures are
experimental data

- but you can not stop thinking
Making mistakes is fine

- as long as you learn from them

- keep your eyes open (conquer fear)

How not to experiment
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Some early conclusions: So | am sure they get made

Key ideas: randomness, normality of numbers, planar walks, and fractals

Maths can be done experimentally (it is fun)

- using computer algebra, numerical
computation and graphics: SNaG

- computations, tables and pictures are
experimental data

- but you can not stop thinking
Making mistakes is fine

- as long as you learn from them

- keep your eyes open (conquer fear)
You can not use what you do not know

- and what you know you can usually use

- you do not need to know much before
you start research (as we shall see)

How not to experiment
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Some early conclusions: So | am sure they get made

Key ideas: randomness, normality of numbers, planar walks, and fractals

Maths can be done experimentally (it is fun)

- using computer algebra, numerical
computation and graphics: SNaG

- computations, tables and pictures are
experimental data

- but you can not stop thinking
Making mistakes is fine

- as long as you learn from them

- keep your eyes open (conquer fear)
You can not use what you do not know

- and what you know you can usually use

- you do not need to know much before
you start research (as we shall see)

How not to experiment

DHB and JMB, Exploratory Experi ion in ics (2011), www.ams.org/notices/201110/rtx111001410p.pdf
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PART I[: Visual Theorems
It is not knowledge, but the act of learning, not possession

but the act of getting there, which grants the greatest
enjoyment.
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PART I[: Visual Theorems
It is not knowledge, but the act of learning, not possession

but the act of getting there, which grants the greatest
enjoyment.

When | have clarified and exhausted a
subject, then | turn away from it, in order
to go into darkness again; the
never-satisfied man is so strange if he
has completed a structure, then it is not
in order to dwell in it peacefully, but in
order to begin another.

I imagine the world conqueror must feel
thus, who, after one kingdom is scarcely
conquered, stretches out his arms for
others.

Carl Friedrich Gauss
(1777-1855)
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PART I[: Visual Theorems
It is not knowledge, but the act of learning, not possession

but the act of getting there, which grants the greatest
enjoyment.

When | have clarified and exhausted a
subject, then | turn away from it, in order
to go into darkness again; the
never-satisfied man is so strange if he
has completed a structure, then it is not
in order to dwell in it peacefully, but in
order to begin another.

I imagine the world conqueror must feel
thus, who, after one kingdom is scarcely
conquered, stretches out his arms for
others.

Carl Friedrich Gauss
(1777-1855)

@ In an 1808 letter to his friend Farkas (father of Janos Bolyai)
@ Archimedes, Euler, Gauss are the big three
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Walking on Real Numbers <« P— S o
X N 4 5 TBLE EGUATONS A0 DTS
A Multiple Media Mathematics Project SUGHTY WRONG APPROKIMTIONS
EQUATONS AND IDEXTITES TRUNG TErGERS
APPROXIMATIONS e e
N o | B
(U0 USNG A M OF TRACAND-ERRR e T
MAHEVIATIR, D ROBERT MNADS A5 To0L) —
s MR | 75" b
R IGR | 51000 | 25
e
| e T T
acee | =
Lk K[
s (Mg
| =
! by
=l el 1
PUBLICATIONS PRESENTATIONS CALLERY GIGAPAN IMACES LiNKS T — fud q’:@ 72
Worw s et e P savctooes demtaent. We Rave rrienved Cur entrsner ey of femternal tink) e page of L FONDAMENTAL 3 OERRT o
e Mttt preiiv i s | | eaghtht gl | | pldaieh g Ccking s wit e sttt OPRE | "0 oo | o7 |3
o - ey st for o work 1 38 [ a——— e e | 220 |55
Stated [ulibatire. I T T et esewch images of Gt |
ooy W e sews ey (A
[y er— 5% i
e | A |
n.vawlL ) :,,E
MOTIVATED by the desire to visualize large mathematical data sets, especially in number theory, we offer various toals for ref = i‘“ - -~ xz;;
flaating peint numbers s planar or three dimensional] walks and for quantitatively measuring their randomness”. This is ou g iy o
homepage that discusses and shawcases cur research. Come back regularly for upclates. e P ey
e e g,
RESEARCH TEAM: Francisco ). Aragon Artacho, David H. Bailey, Jonathan M. Borwein, Peter B. Borwein with the assistance of Ja ETILEIER -]
Fountain and Matt Skerritt
COMTACT: Fran Aragon

Almost all | mention is accessible at http:// tle.edu.au/walks/
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Computer Assisted Research Maths: what it is?

Experimental mathematics is the use of a computer to run
computations—sometimes no more than trial-and- error
tests—to look for patterns, to identify particular numbers and
sequences, to gather evidence in support of specific
mathematical assertions that may themselves arise by
computational means, including search.
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Computer Assisted Research Maths: what it is?

Experimental mathematics is the use of a computer to run
computations—sometimes no more than trial-and- error
tests—to look for patterns, to identify particular numbers and
sequences, to gather evidence in support of specific
mathematical assertions that may themselves arise by
computational means, including search.

Like contemporary chemists — and before them the alchemists of
old—who mix various substances together in a crucible and heat
them to a high temperature to see what happens, today’s
experimental mathematicians put a hopefully potent mix of
numbers, formulas, and algorithms into a computer in the hope that
something of interest emerges. (JMB-Devlin, Crucible 2008, p. 1)

e Quoted in International Council on Mathematical Instruction
Study 19: On Proof and Proving, 2012
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Experimental Mathematics: Integer Relation Methods

Secure Knowledge without Proof. Given real
numbers 3, a;, a0, ..., a,, Helaman Ferguson’s
integer relation method (PSLQ), finds a nontrivial
linear relation of the form

aoﬁ+a1a1+a2a2+m+an(xn:0, (1)

Own Unique Niche,
In Symbols and Stone

W ar, 3 selfdescibed “misfit” has

where q; are integers—if one exists and provides
an exclusion bound otherwise.

2013 Lattice Sums book (CUP)
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Experimental Mathematics: Integer Relation Methods

Secure Knowledge without Proof. Given real
numbers 3, a;, a0, ..., a,, Helaman Ferguson’s
integer relation method (PSLQ), finds a nontrivial
linear relation of the form

aoﬁ+a1a1+a2a2+m+an(xn:0, (1)

Own Unique Niche,
In Symbols and Stone

W ar, 3 selfdescibed “misfit” has

where q; are integers—if one exists and provides
an exclusion bound otherwise.

@ If ag #0then (1) assures f is in rational vector
space generated by {o;, o, ..., 0}

2013 Lattice Sums book (CUP)
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Experimental Mathematics: Integer Relation Methods

Secure Knowledge without Proof. Given real
numbers 3, a;, a0, ..., a,, Helaman Ferguson’s
integer relation method (PSLQ), finds a nontrivial
linear relation of the form

aoﬁ+a1a1+a2a2+m+an(xn:0, (1)

Own Unique Niche,
In Symbols and Stone

W ar, 3 selfdescibed “misfit” has

where q; are integers—if one exists and provides
an exclusion bound otherwise.

@ If ag #0then (1) assures f is in rational vector
space generated by {o;, o, ..., 0}

@ B =1,0; =o' means « is algebraic of degree n

2013 Lattice Sums book (CUP)
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Experimental Mathematics: Integer Relation Methods

Secure Knowledge without Proof. Given real
numbers 3, a;, a0, ..., a,, Helaman Ferguson’s
integer relation method (PSLQ), finds a nontrivial
linear relation of the form

aoﬁ+a1a1+a2(x2+m+an(xn:0, (1)

Own Unique Niche,
In Symbols and Stone

W ar, 3 selfdescibed “misfit” has

where q; are integers—if one exists and provides
an exclusion bound otherwise.

@ If ag #0then (1) assures f is in rational vector
space generated by {o;, o, ..., 0}

@ B =1,0; =o' means « is algebraic of degree n

@ 2000 Computing in Science & Engineering: PSLQ
one of top 10 algorithms of 20th century
(2001 CISE article on Grand Challenges (JB-PB))

2013 Lattice Sums book (CUP)
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PSLQ in action

In all serious computations of 7 from 1700 (by John Machin) until 1980 some
version of a Machin formula was used. These write

1 1 1
arctan(1) = a -arctan | — | +ay -arctan { — | + --- 4@, -arctan [ — (2)
P1 P2 Pn

for rationals ay,as,...,a, and integers py,pa,...,pn > 1.

Recall the Taylor series arctan(x) = Y <2an 21+l Combined with (2) this
computes © = 4arctan(1) efficiently, especially if the p, are not too small.
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PSLQ in action

In all serious computations of 7 from 1700 (by John Machin) until 1980 some
version of a Machin formula was used. These write

1 1 1
arctan(1) = a -arctan | — | +ay -arctan { — | + --- 4@, -arctan [ — (2)
P1 P2 Pn

for rationals ay,as,...,a, and integers py,pa,...,pn > 1.
Recall the Taylor series arctan(x) = Y <2an 21+l Combined with (2) this
computes © = 4arctan(1) efficiently, especially if the p, are not too small.

For instance, Machin found

1 1
= 16arctan  ~ | —4arctan [ ——
T arctan (5) arctan (239)

while Euler discovered

1 1 1
arctan(1) = arctan (5) + arctan (g> -+ arctan (§) . (3)
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PSLQ in action

In all serious computations of z from 1700 (by John Machin) until 1980 some
version of a Machin formula was used. These write

1 1 1
arctan(1) = a -arctan | — | +ay -arctan { — | + --- 4@, -arctan [ — (2)
P1 P2 Pn

for rationals ay,as,...,a, and integers py,pa,...,pn > 1.
Recall the Taylor series arctan(x) = Y (2n1+) 21+l Combined with (2) this
computes © = 4arctan(1) efficiently, especially if the p, are not too small.

For instance, Machin found

1 1
= 16arctan  ~ | —4arctan [ ——
T arctan (5) arctan (239)

while Euler discovered

1 1 1
arctan(1) = arctan (5) + arctan (g> -+ arctan (§) (3)

@ | have a function ‘ps1q’ in Maple. When input data for PSLQ it predicts
an answer to the precision requested. And checks it to ten digits more
(or some other precision).

@ This makes the code a real experimental tool as it predicts and confirms.
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PSLQ in action prepping for class

B pslg(arctan(l) , [arctan(l/2) ,arctan(l/5), arctan(l/8)1,20);;
[1, 1,1, 1], "Error is", 0., "checking to", 30, places

1 1t=arctan(%) +arctan(%) +arctan(l)

4 8
[> pslq(arctan(l), [arctan(1/2) ,arctan(l/3), arctan(l/8)1,20);
[1,1,1,0], "Erroris", -1. 10'30, "checking to", 30, places

% n=arctan(%) +arctan(%)
=> pslg(arctan(l) , [arctan(l/2) ,arctan(1l/5), arctan(1/9)1,20);
[42613, 72375, 22013, -40066 ], "Error is", 2.31604649037 10° 15 , "checking to", 30, places
1 72375 ( 1 J + 22013 (L) 40066 ( 1 J
2 42613

| 4 = 42613 42613 5 9
[> pslq(Pi, [arctan(1/5), arctan(1/239)1,20);
[1, 16, -4], "Error is", 2.8 1030 "checking to", 30, places
- 1 1
1t—l6arctan( 5 ) 4arctan( 239 )

@ The third shows that when no relation exists the code may find a good
approximation but using very large rationals.
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PSLQ in action prepping for class

B pslg(arctan(l) , [arctan(l/2) ,arctan(l/5), arctan(l/8)1,20);;
[1, 1,1, 1], "Error is", 0., "checking to", 30, places

1 1t=arctan(%) +arctan(%) +arctan(l)

4 8
[> pslq(arctan(l), [arctan(1/2) ,arctan(l/3), arctan(l/8)1,20);
[1,1,1,0], "Erroris", -1. 10'30, "checking to", 30, places

% n=arctan(%) +arctan(%)
=> pslg(arctan(l) , [arctan(l/2) ,arctan(1l/5), arctan(1/9)1,20);
[42613, 72375, 22013, -40066 ], "Error is", 2.31604649037 10° 15 , "checking to", 30, places
1 72375 ( 1 J + 22013 (L) 40066 ( 1 J
2 42613

4™ 613 ™ 42613 " 5 9

> pslg(Pi, [arctan(1/5), arctan(1/239)],20);
[1, 16, -4], "Error is", 2.8 1030 "checking to", 30, places

_ 1 1
1t—l6arctan( 5 ) 4arctan( 239 )

@ The third shows that when no relation exists the code may find a good
approximation but using very large rationals.

@ So it diagnoses failure because it uses large coefficients and because it
is not true to the requested 30 places.
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Digital Assistance

By digital assistance | mean use of artefacts as:

@ Modern Mathematical Computer Packages-—symbolic, numeric,
geometric, or graphical.
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Digital Assistance

By digital assistance | mean use of artefacts as:

@ Modern Mathematical Computer Packages-—symbolic, numeric,
geometric, or graphical.

— Largely symbolic packages include the commercial

computer algebra packages Maple and Mathematica, and
the open source SAGE.

— Primarily numeric packages start with the proprietary

MATLAB and public counterpart Octave or the statistical
package R.

— The dynamic geometry offerings include Cinderella,
Geometer’s SketchPad, Cabri and the freeware Geogebra.
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Digital Assistance

By digital assistance | mean use of artefacts as:

@ Modern Mathematical Computer Packages-—symbolic, numeric,
geometric, or graphical.

— Largely symbolic packages include the commercial

computer algebra packages Maple and Mathematica, and
the open source SAGE.

— Primarily numeric packages start with the proprietary

MATLAB and public counterpart Octave or the statistical
package R.

— The dynamic geometry offerings include Cinderella,
Geometer’s SketchPad, Cabri and the freeware Geogebra.

@ Specialized Packages or General Purpose Languages such as
Fortran, C++, Python, CPLEX, PARI, SnapPea, and MAGMA.
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Digital Assistance

@ Web Applications such as: Sloane’s Encyclopedia of Integer
Sequences, the Inverse Symbolic Calculator, Fractal Explorer,
Jeff Weeks’ Topological Games, or Euclid in Java.?

— Most of the functionality of the ISC is built into the “identify”
function Maple starting with version 9.5. For example,
identify (4.45033263602792) returns v/3+e. As
always, the experienced will extract more than the novice.

3A cross-section of such resources is available through
http://www.carma.newcastle.edu.au/jon/portal.html and
www.experimentalmath.info.
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Digital Assistance

@ Web Applications such as: Sloane’s Encyclopedia of Integer
Sequences, the Inverse Symbolic Calculator, Fractal Explorer,
Jeff Weeks’ Topological Games, or Euclid in Java.?

— Most of the functionality of the ISC is built into the “identify
function Maple starting with version 9.5. For example,
identify (4.45033263602792) returns v/3+e. As
always, the experienced will extract more than the novice.

@ Web Databases including Google, MathSciNet, ArXiv, GitHub,
Wikipedia, MathWorld, MacTutor, Amazon, Wolfram Alpha, the
DLMF (all formulas of which are accessible in MathML, as
bitmaps, and in TEX) and many more that are not always so
viewed.

3A cross-section of such resources is available through
http://www.carma.newcastle.edu.au/jon/portal.html and
www.experimentalmath.info.
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Digital Assistance

All entail data-mining . Franklin argues “exploratory experimentation”
facilitated by “widening technology”, as in finance, pharmacology,
astrophysics, medicine, and biotechnology, is leading to a
reassessment of what legitimates experiment; in that a “local moder”
is not now prerequisite. Sarenson says experimental mathematics is
following similar tracks.

These aspects of exploratory experimentation and wide
instrumentation originate from the philosophy of (natural) science
and have not been much developed in the context of experimental
mathematics. However, | claim that e.g. the importance of wide
instrumentation for an exploratory approach to experiments that
includes concept formation also pertain to mathematics.
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Digital Assistance

All entail data-mining . Franklin argues “exploratory experimentation”
facilitated by “widening technology”, as in finance, pharmacology,
astrophysics, medicine, and biotechnology, is leading to a
reassessment of what legitimates experiment; in that a “local moder”
is not now prerequisite. Sarenson says experimental mathematics is
following similar tracks.

These aspects of exploratory experimentation and wide
instrumentation originate from the philosophy of (natural) science
and have not been much developed in the context of experimental
mathematics. However, | claim that e.g. the importance of wide
instrumentation for an exploratory approach to experiments that
includes concept formation also pertain to mathematics.

In consequence, boundaries between mathematics and natural
sciences and between inductive and deductive reasoning are blurred
and getting more so.
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Digital Assistance

All entail data-mining . Franklin argues “exploratory experimentation”
facilitated by “widening technology”, as in finance, pharmacology,
astrophysics, medicine, and biotechnology, is leading to a
reassessment of what legitimates experiment; in that a “local moder”
is not now prerequisite. Sarenson says experimental mathematics is
following similar tracks.

These aspects of exploratory experimentation and wide
instrumentation originate from the philosophy of (natural) science
and have not been much developed in the context of experimental
mathematics. However, | claim that e.g. the importance of wide
instrumentation for an exploratory approach to experiments that
includes concept formation also pertain to mathematics.

In consequence, boundaries between mathematics and natural
sciences and between inductive and deductive reasoning are blurred
and getting more so.

| leave the philosophically-vexing if mathematically-minor question as to if
genuine mathematical experiments exist even if one embraces a fully idealist
notion of mathematical existence. They sure feel like they do.
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Top Ten Algorithms (20C): all but one well used in CARMA
Algorithms for the Ages

"Great algorithms are the poetry of computation,” says Francis Sullivan of the Institute for
Defense Analyses' Center for Computing Sciences in Bowie, Maryland. He and Jack Dongarra of
the University of Tennessee and Oak Ridge National Laboratory have put together a sampling
that might have made Robert Frost beam with pride--had the poet been a computer jock.
Their list of 10 algorithms having "the greatest infl e on the develop and practice of
science and engineering in the 20th century" appears in the January/February issue of
Computing in Science & Engineering. If you use a computer, some of these algorithms are no
doubt crunching your data as you read this. The drum roll, please:

1. 1946: The Metropolis Algorithm for Monte Carlo. Through the use of random processes, this
algorithm offers an efficient way to stumble toward answers to problems that are too complicated to
solve exactly.

. 1947: Simplex Method for Linear Programming. An elegant solution to a common problem in
planning and decision-making.

. 1950: Krylov Subspace Iteration Method. A technique for rapidly solving the linear equations
that abound in scientific computation.

. 1951: The Decompositional Approach to Matrix Computations. A suite of techniques for
numerical linear algebra.

. 1957: The Fortran Optimizing Compiler. Turns high-level code into efficient computer-readable

2 woN

4]

. 1959: QR Algorithm for Computing Eigenvalues. Another crucial matrix operation made swift
and practical.

. 1962: Quicksort Algorithms for Sorting. For the efficient handling of large databases.

. 1965: Fast Fourier Transform. Perhaps the most ubiquitous algorithm in use today, it breaks down
waveforms (like sound) into periodic components.

. 1977: Integer Relation Detection. A fast method for spotting simple equations satisfied by
collections of seemingly unrelated numbers.

10. 1987: Fast Multipole Method. A breakthrough in dealing with the complexity of n-body

calculations, applied in problems ranging from celestial mechanics to protein folding.

O N O

From Random Samples, Science page 799, February 4, 2000.
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Experimental Mathematics: PSLQ is core to CARMA

SECOND EDITION

Experimentelle

Methemstics Mathematik

by Experiment

Puausiece Rensoning in e 2151 Centuny

Jonathan Borwein
Dovid Bailey

Experimental Mathematics (2004-08, 2009, 2010)
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Simulation in pure mathematics

Pure mathematicians have not often though of simulation as a

relevant tool.

The cardioid in the Figure below came from a scatter plot while trying
to determine for which complex numbers z = b/a a continued fraction
due to Ramanujan, #(a,b), converged.
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Simulation in pure mathematics

Pure mathematicians have not often though of simulation as a
relevant tool.
The cardioid in the Figure below came from a scatter plot while trying
to determine for which complex numbers z = b/a a continued fraction
due to Ramanujan, #(a,b), converged.
It is given for complex numbers a and b by
a

b2
_de®

9?
1+
14

(4)

H(a,b) =
1+
I+

As often | first tried to compute—R(1, 1)—and had little luck.
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Simulation in pure mathematics

Pure mathematicians have not often though of simulation as a
relevant tool.

The cardioid in the Figure below came from a scatter plot while trying
to determine for which complex numbers z = b/a a continued fraction
due to Ramanujan, #(a,b), converged.

It is given for complex numbers a and b by

Z(a,b) = a

b2
4
op?
1+
1+

(4)

1+
I+

As often | first tried to compute—R(1, 1)—and had little luck.

It transpires for a = b € R convergence is O(1/n); but is geometric for
a # b. So what looks like the simplest case analytically is the hardest
computationally.
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Simulation in pure mathematics

Pure mathematicians have not often though of simulation as a
relevant tool.
The cardioid in the Figure below came from a scatter plot while trying
to determine for which complex numbers z = b/a a continued fraction
due to Ramanujan, #(a,b), converged.
It is given for complex numbers a and b by
a

b2
_de®

9?
1+
14

Z(a,b) = (4)

1+
I+

As often | first tried to compute—R(1, 1)—and had little luck.

It transpires for a = b € R convergence is O(1/n); but is geometric for
a # b. So what looks like the simplest case analytically is the hardest
computationally.

We eventually determined from highly sophisticated arguments that:
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Simulation in pure mathematics

Theorem (Six formulae for Z(a,a),a > 0)

> sech (5=
#aa) = | 71+;; dr

') )k-‘rl
(2k—

- 2§ Ol

k=

i é e(ed)

2a L+ 4.1
T+a”" ( ~+3
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Simulation in pure mathematics

Here ,F; is the hypergeometric function. If you do not know v (‘psi’) ,
you can easily look it up once you can say ‘psi’.
Notice that

1 tl/a

2 ——dr
o 1+

X (a,a) =
so that R(1,1) = log?2.
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Simulation in pure mathematics

Here ,F; is the hypergeometric function. If you do not know v (‘psi’) ,
you can easily look it up once you can say ‘psi’.
Notice that

1 tl/a

2 ——dr
o 1+

X(a,a) =

so that R(1,1) =log2.
@ After making no progress analytically, Crandall and | decided in
2003, taking a somewhat arbitrary criterion for convergence, to
colour yellow points for which the fraction seemed to converge.
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Simulation in pure mathematics

Here ,F; is the hypergeometric function. If you do not know v (‘psi’) ,
you can easily look it up once you can say ‘psi’.
Notice that

1 tl/a

2 ——dr
o 1+

X(a,a) =

so that R(1,1) =log2.
@ After making no progress analytically, Crandall and | decided in
2003, taking a somewhat arbitrary criterion for convergence, to
colour yellow points for which the fraction seemed to converge.

@ We sampled one million points and reasoned a few thousand
mis-categorisations would not damage the experiment.
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Simulation in pure mathematics
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Simulation in pure mathematics

The Figure is so precise that we could identify the cardioid. It is the

points where
la+b|
b| < .
Viab| <=5
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Simulation in pure mathematics

The Figure is so precise that we could identify the cardioid. It is the

points where
la+b|
b| < .
Viab| <=5

Since for positive a,b the fraction satisfies

a+b7@) K(a,b)+Z(b,a)

7 _
j(Z 2

this gave us enormous impetus to continue our eventually successful
hunt for a proof.
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Reflection methods

Let S CR™. The (nearest point or metric) projection onto § is the
(set-valued) mapping,

Pgx := argmin||s — x]|.
sES

The reflection w.r.t. S is the (set-valued) mapping,

Rslz 2P571.

Jonathan Borwein Visual Theorems www.carma.newcastle.edu.au/walks


http://www.carma.newcastle.edu.au/walks

PART II. Case Studies
00000

Reflection methods

Let S CR™. The (nearest point or metric) projection onto § is the
(set-valued) mapping,

Pgx := argmin||s — x]|.
sES

The reflection w.r.t. S is the (set-valued) mapping,

Rslz 2P571.
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The Douglas—Rachford Algorithm (1956—1979- )

Theorem (Douglas—Rachford in finite dimensions)

Suppose A, B C R™ are closed and convex. For any x, € R™ define

I+ RpRy

Xptl = TA_’B)C,, where TA,B = >

If ANB # 0, then x,, — x such that P4x € ANB. Else ||x,|| — +o°.

A

Xn

A={xeR":|x| <1}, B:={xeR"™:(a,x)=0>b}.
((non)-convex Phase retrieval)
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Theorem (Douglas—Rachford in finite dimensions)

Suppose A, B C R™ are closed and convex. For any x, € R™ define

I+ RpRy

Xptl = TA_’B)C,, where TA,B = >

If ANB # 0, then x,, — x such that P4x € ANB. Else ||x,|| — +o°.

Raxy O
A xn"
A={xeR":|x| <1}, B:={xeR"™:(a,x)=0>b}.
((non)-convex Phase retrieval)
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I+ RpRy

Xptl = TA_’B)C,, where TA,B = >

If ANB # 0, then x,, — x such that P4x € ANB. Else ||x,|| — +o°.
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A xn"
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Theorem (Douglas—Rachford in finite dimensions)
Suppose A, B C R™ are closed and convex. For any x, € R™ define

I+ RpRy

Xptl = TA_’B)C,, where TA,B = >

If ANB # 0, then x,, — x such that P4x € ANB. Else ||x,|| — +o°.

RpRAXy -

: « Xn+1 = T4 BXn
Raxn <.

A

Xn

A={xeR":|x| <1}, B:={xeR"™:(a,x)=0>b}.
((non)-convex Phase retrieval)
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I+ RpRy

Xptl = TA_’B)C,, where TA,B = >
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A

Xn
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Works for B affine and A a ‘sphere’ ANIMATION

In this case we have:
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Works for B affine and A a ‘sphere’ ANIMATION

In this case we have:
@ Some local and fewer global convergence results.
@ Much empirical evidence for this and other non-convex settings.
— both numeric and geometric (Cinderella/SAGE)

— http://carma.newcastle.edu.au/jon/expansion.html
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Works for B affine and A a ‘sphere’ ANIMATION

In this case we have:
@ Some local and fewer global convergence results.
@ Much empirical evidence for this and other non-convex settings.
— both numeric and geometric (Cinderella/SAGE)

— http://carma.newcastle.edu.au/jon/expansion.html
P—

— 20000 starting points coloured
by distance from y-axis

— after 0,7,14,21 steps
— a “generic visual theorem”?
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Works for B affine and A a ‘sphere’ ANIMATION

In this case we have:
@ Some local and fewer global convergence results.
@ Much empirical evidence for this and other non-convex settings.
— both numeric and geometric (Cinderella/SAGE)
— http://carma.newcastle.edu.au/jon/expansion.html
“—
— 20000 starting points coloured
by distance from y-axis
— after 0,7,14,21 steps
— a “generic visual theorem”?

© showing global
convergence off the

==&y (chaotic) y-axis?
& @;\
O - O
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Works for B affine and A a ‘sphere’ ANIMATION

In this case we have:
@ Some local and fewer global convergence results.
@ Much empirical evidence for this and other non-convex settings.
— both numeric and geometric (Cinderella/SAGE)
— http://carma.newcastle.edu.au/jon/expansion.html
“—

— 20000 starting points coloured
by distance from y-axis
— after 0,7,14,21 steps
— a “generic visual theorem”?
© showing global
convergence off the
(chaotic) y-axis?
— note the error from using only
14 digit computation.

-
S
s
e
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Works for B affine and A a ‘sphere’

What we could prove (L) and what we could see (R)

14 1+
1.2
0.8} \
1 =
o8 0.6
0.6 oal
0.4
0.2}
0.2
02 04 06 08 1 12 14 0.2 0.4 0.6 0.8 1

2012 Proven region of convergence in grey
2014 Lyapunov function based proof of global convergence (Benoist)
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Case study I: Protein conformation determination

Proteins: large biomolecules comprising multiple amino acid chains.*

Generic amino acid RuBisCO

4RuBisCO (responsible for photosynthesis) has 550 amino acids (smallish).
5A coupling which occurs through space, rather than chemical bonds.
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Case study I: Protein conformation determination

Proteins: large biomolecules comprising multiple amino acid chains.*

Generic amino acid RuBisCO Matt Tam

@ Proteins participate in virtually every cellular process !
@ Protein structure — predicts how functions are performed.

@ NMR spectroscopy (Nuclear Overhauser effect®) can determine
a subset of interatomic distances without damage (under 6A ).

4RuBisCO (responsible for photosynthesis) has 550 amino acids (smallish).
5A coupling which occurs through space, rather than chemical bonds.
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Case study I: Protein conformation determination

Proteins: large biomolecules comprising multiple amino acid chains.*

Generic amino acid RuBisCO

@ Proteins participate in virtually every cellular process !
@ Protein structure — predicts how functions are performed.
@ NMR spectroscopy (Nuclear Overhauser effect®) can determine
a subset of interatomic distances without damage (under 6A ).
A low-rank Euclidean distance matrix completion problem.

4RuBisCO (responsible for photosynthesis) has 550 amino acids (smallish).
5A coupling which occurs through space, rather than chemical bonds.
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Six Proteins Numerics if reconstructed using reflection methods

We use only interatomic distances below 6A typically constituting less
than 8% of the total nonzero entries of the distance matrix.

Table. Six Proteins: average (maximum) errors from five replications.

Protein # Atoms Rel. Error (dB) RMSE Max Error
1PTQ 404 -83.6 (-83.7)  0.0200 (0.0219)  0.0802 (0.0923)
1HOE 581 -72.7 (-69.3) 0.191 (0.257) 2.88 (5.49)
1LFB 641 -47.6 (-45.3) 3.24 (3.53) 21.7 (24.0)
1PHT 988 -60.5 (-58.1) 1.03 (1.18) 12.7 (13.8)
1POA 1067 -49.3 (-48.1) 34.1 (34.3) 81.9 (87.6)
1AX8 1074 -46.7 (-43.5) 9.69 (10.36) 58.6 (62.6)

||Pc,Pe, Xy — Pc, Xu|*
Rel. error(dB) := 10log,, | — 22—+ ——1""1 |,
(dB) 10 ( [Pc, Xn |

o Z:”:l ”]31 *PﬁmHg . ~ 1rue
RMSE = \ " #ofatoms M := 1?21(””1)’ =P

@ The points py,pa,. .., pn denote the best fitting of py,ps, ..., p» When rotation, translation and
reflection is allowed.
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What do the reconstructions look like?

5,000 steps, -83.6dB (perfect)

1POA (actual) 5,000 steps, -49.3dB (mainly good!)
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What do the reconstructions look like?

1POA (actual) 5,000 steps, -49.3dB (mainly good!)

e The picture of ‘failure’ suggests many strategies
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What do reconstructions look like?

&

Iterations: 4
Video: First 3,000 steps of the 1PTQ reconstruction.

At http://carma.newcastle.edu.au/DRmethods/1PTQ.html
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What do the Reconstructions Look Like?

An optimised implementation gave a ten-fold speed-up.
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What do the Reconstructions Look Like?

An optimised implementation gave a ten-fold speed-up. This allowed
for the following experiment to be performed:

— 1PoA
— 1HOE
. — B
! — 1PHT
— 1PoA
5 1AX8
g 107
Jin}
(5]
>
B
)
E 10
['4
10
s r—— -~
1 5000 10000 15000 20000 25000 30000

Iterations

Figure: Relative error by iterations (vertical axis logarithmic).
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What do the Reconstructions Look Like?

An optimised implementation gave a ten-fold speed-up. This allowed
for the following experiment to be performed:

1POA
1HOE
1LFB

1PHT
1POA

7
LT

Relative Error

s — -
1w 5000 10000 15000 20000 25000 30000
Iterations

Figure: Relative error by iterations (vertical axis logarithmic).

@ For < 5,000 iterations, the error exhibits non-monotone
oscillatory behaviour. It then decreases sharply. Beyond this
progress is slower.

@ |s early termination to blame? Terminate when error < —100dB.
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A More Robust Stopping Criterion

The “un-tuned” implementation (from previous slide):

1POA (actual) 5,000 steps (~2d), -49.3dB
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A More Robust Stopping Criterion

The “un-tuned” implementation (from previous slide):

1POA (actual) 5,000 steps (~2d), -49.3dB
The optimised implementation:

1POA (actual) 28,500 steps (~1d), -100dB (perfect!)
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A More Robust Stopping Criterion

The “un-tuned” implementation (from previous slide):

1POA (actual) 5,000 steps (~2d), -49.3dB

The optimised implementation:
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What do reconstructions look like?

There are many projection methods, so why use Douglas-Rachford?

Douglas—Rachford reflection method reconstruction:

500 steps, -25 dB. 1,000 steps, -30 dB. 2,000 steps, -51 dB. 5,000 steps, -84 dB.

Alternating projection method reconstruction:

500 steps, -22 dB. 1,000 steps, -24 dB. 2,000 steps, -25 dB. 5,000 steps, -28 dB.
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What do reconstructions look like?

There are many projection methods, so why use Douglas-Rachford?

Douglas—Rachford reflection method reconstruction:

500 steps, -25 dB. 1,000 steps, -30 dB. 2,000 steps, -51 dB. 5,000 steps, -84 dB.

Alternating projection method reconstruction:

500 steps, -22 dB. 1,000 steps, -24 dB. 2,000 steps, -25 dB. 5,000 steps, -28 dB.

@ Yet MAP works very well for optical abberation correction
(Hubble, amateur telescopes). Why?
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@ lla: 100 digit challenge
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How the mathematical software world has changed

In the January 2002 issue of SIAM News, Nick Trefethen presented
ten diverse problems used in teaching modern graduate numerical

analysis students at Oxford University, the answer to each being a

certain real number.
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How the mathematical software world has changed

In the January 2002 issue of SIAM News, Nick Trefethen presented
ten diverse problems used in teaching modern graduate numerical
analysis students at Oxford University, the answer to each being a

certain real number.

Readers were challenged to compute ten digits of each answer, with
a $100 prize to the best entrant. Trefethen wrote,

“If anyone gets 50 digits in total, | will be impressed.”
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How the mathematical software world has changed

In the January 2002 issue of SIAM News, Nick Trefethen presented
ten diverse problems used in teaching modern graduate numerical
analysis students at Oxford University, the answer to each being a

certain real number.

Readers were challenged to compute ten digits of each answer, with
a $100 prize to the best entrant. Trefethen wrote,
“If anyone gets 50 digits in total, | will be impressed.”

@ To his surprise, a total of 94 teams, representing 25 different
nations, submitted results. Twenty of these teams received a full
100 points (10 correct digits for each problem).

@ Bailey, Fee and | quit at 85 digits!
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The hundred digit challenge
The problems and solutions are dissected most entertainingly in

[1] E. Bornemann, D. Laurie, S. Wagon, and J. Waldvogel
(2004).“The Siam 100-Digit Challenge: A Study In
High-accuracy Numerical Computing”, SIAM, Philadelphia.

Jonathan Borwein Visual Theorems www.carma.newcastle.edu.au/walks


http://www.carma.newcastle.edu.au/walks

PART II. Case Studies
00@0000000

The hundred digit challenge
The problems and solutions are dissected most entertainingly in

[1] E. Bornemann, D. Laurie, S. Wagon, and J. Waldvogel
(2004).“The Siam 100-Digit Challenge: A Study In
High-accuracy Numerical Computing”, SIAM, Philadelphia.

@ In a 2005 Math Intelligencer review of [1], | wrote
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The hundred digit challenge
The problems and solutions are dissected most entertainingly in

[1] E. Bornemann, D. Laurie, S. Wagon, and J. Waldvogel
(2004).“The Siam 100-Digit Challenge: A Study In
High-accuracy Numerical Computing”, SIAM, Philadelphia.

@ In a 2005 Math Intelligencer review of [1], | wrote

Success in solving these problems required a broad
knowledge of mathematics and numerical analysis, together
with significant computational effort, to obtain solutions and
ensure correctness of the results. As described in [1] the
strengths and limitations of Maple, Mathematica, MATLAB
(The 3Ms), and other software tools such as PARI or GAP,
were strikingly revealed in these ventures.

Almost all of the solvers relied in large part on one or more
of these three packages, and while most solvers attempted
to confirm their results, there was no explicit requirement for
proofs to be provided.
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Trefethen’s problem #9

The integral

2
(o) = / 2+ sin(100)]x% sin ( “ > dx
0 2—x
depends on the parameter o.. What is

the value o € [0,5] at which I(a)
achieves its maximum?

Integrands for some o
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Trefethen’s problem #9

The integral

I(a) = /02[2+sin(10a)]x0‘ sin (2:) dx

depends on the parameter o.. What is
the value o € [0,5] at which I(a)
achieves its maximum?

Integrands for some o

@ /(a) is expressible in terms of a Meijjer-G function —a special
function with a solid history that we use below.

I1@=4Va T(a)ﬁ“}ll:%

J[sm[lﬂ&) +2].

a2 as
Ll
53 1.0

)
3

@ Unlike most contestants, Mathematica and Maple will figure this
out; help files or a web search then inform the scientist.

@ This is another measure of the changing environment. It is
usually a good idea—and not at all immoral—to data-mine.
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Trefethen’s problem #10 ANIMATION

A particle at the center of a 10 x 1
rectangle undergoes Brownian motion (i.e., Jalkingina 03 box
2-D random walk with infinitesimal step 7
lengths) till it hits the boundary. What is the
probability that it hits at one of the ends
rather than at one of the sides?

Jonathan Borwein
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Trefethen’s problem #10 ANIMATION

A particle at the center of a 10 x 1
rectangle undergoes Brownian motion (i.e., Jalkingina 03 box
2-D random walk with infinitesimal step 7
lengths) till it hits the boundary. What is the
probability that it hits at one of the ends
rather than at one of the sides?

Hitting the Ends. Bornemann [1] starts his remarkable solution by
exploring Monte-Carlo methods, which are shown to be impracticable.
@ He reformulates the problem deterministically as the value at the
center of a 10 x 1 rectangle of an appropriate harmonic measure
of the ends, arising from a 5-point discretization of Laplace’s
equation with Dirichlet boundary conditions.

@ This is then solved by a well chosen sparse Cholesky solver. A
reliable numerical value of 3.837587979- 10~ is obtained and the
problem is solved numerically to the requisite ten places.

@ This is the warm up....
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Walking in a b x a box ANIMATION
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Trefethen’s problem #10

We may proceed to develop two analytic solutions, the first using
separation of variables on the underlying PDE on a general 2a x 2b
rectangle. We learn that with p :=a/b

b= ¥ G pseen (2L ). (5)

rz:O
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Trefethen’s problem #10

We may proceed to develop two analytic solutions, the first using
separation of variables on the underlying PDE on a general 2a x 2b
rectangle. We learn that with p :=a/b

% i — (n(znz—kl)p) 5)

@ Three terms yields 50 correct digits:
p(10,1) = 0.00000038375879792512261034071331862048391007930055940724 . ..

@ The first term alone, %sech(Sn), gives the underlined digits.
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Trefethen’s problem #10

We may proceed to develop two analytic solutions, the first using
separation of variables on the underlying PDE on a general 2a x 2b
rectangle. We learn that with p :=a/b

% i — (n(znz—kl)p) 5)

@ Three terms yields 50 correct digits:
p(10,1) = 0.00000038375879792512261034071331862048391007930055940724 . ..

@ The first term alone, %sech(Sn), gives the underlined digits.

A second method using conformal mappings, yields
arccotp = p(a,b) = +argK( ip(a, )”) (6)
where K is the complete elliptic integral of the first kind.
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Trefethen’s problem #10

o We have entered the wonderful world of modular functions
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Trefethen’s problem #10

o We have entered the wonderful world of modular functions

Bornemann et al ultimately show that the answer is
2 .
p= p arcsin (k1o) (7)
where

b= ((3-243) () (31 (V3 43)')

is a singular value. [In general p(a,b) = 2 arcsin (k<a /,,)z) J
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PART II. Case Studies
0000000@00

Trefethen’s problem #10

o We have entered the wonderful world of modular functions

Bornemann et al ultimately show that the answer is
2 .
p= p arcsin (k1o) (7)
where

b= ((3-243) () (31 (V3 43)')

is a singular value. [In general p(a,b) = 2 arcsin (k<a /,,)z) J
@ No one (except harmonic analysts perhaps) anticipated a closed
form—Iet alone one like this.

@ Can be done for some other shapes (perhaps, convex with
piecewise smooth boundaries, starting at barycentre), and for
self-avoiding walks.
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PART Il. Case Studies

00000000 e0

Trefethen’s problem #4 ... Zooming

What is the global minimum of the function
exp(sin(50x)) +sin(60e”) 4 sin(70sinx) + sin(sin(80y)) ‘

—sin(10(x+y)) + (x* +y%) /4?
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PART Il. Case Studies

00000000 e0

Trefethen’s problem #4 ... Zooming

What is the global minimum of the function
exp(sin(50x)) +sin(60e”) 4 sin(70sinx) + sin(sin(80y)) ‘

—sin(10(x+y)) + (x* +y%) /4?

@ Can be solved in a global optimization package or by a damped Newton
method

@ In Mathematicaby NMinimize [f[x, y], %X, y, Method ->
"RandomSearch", "SearchPoints" -> 250,
WorkingPrecision —-> 20]

@ In Maple by NLPSolve (f (x,y), x = -4 .. 4, y = -4 .. 4,
initialpoint = {x = -.4, y = -.1});

@ or by ‘zooming’ on [—3,3] x [-3,3].
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PART Il. Case Studies
0000000008

Trefethen’s problem #4 ... zooming on [0,1]
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Contents

Q PART II. Case Studies

@ llb: Polylogarithms
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PART II. Case Studies

Algorlthm performance a simulated interlude

Proposition (Polylogarithm computation)
(a) Fors = n a positive integer,

e !

0m On—l
Lis@) = ¥ {(n—m) 2B 24 108" 2

e oy (Haor —log(~log2)).  (8)
m=0 : :

(b) For any complex order s not a positive integer,

ZC log < +T(1—s)(—logz)* . 9)

m>0

Here {(s) := ¥,* and continuations, H, := 1+ 1+ 1+ + 1 andy’
avoids the singularity at £(1).

n (8), |logz| < 27 precludes use when |z| < e=2" ~ 0.0018674. For
small |z|, however, it suffices to use the definition

oo
k=1
Vis|

(10)

Z

ual Theorems www.carma.newcastle.edu.au/walks
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PART II. Case Studies

Algorlthm performance a simulated interlude

@ We found (10) faster than (8) whenever |z| < 1/4, for precision
from 100 to 4000 digits. We illustrate for Li, in the Figure.

Performance of equation (1) versus (3) for Li_2(z)

Figure: (L) Timing (8) (blue) and (10) (red).(R) blue region where (8) is faster.
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PART II. Case Studies

Algorlthm performance a simulated interlude

@ We found (10) faster than (8) whenever |z| < 1/4, for precision
from 100 to 4000 digits. We illustrate for Li, in the Figure.

@ Timings show microseconds required for 1,000 digit accuracy as
the modulus goes from 0 to 1 with blue showing superior
performance of (8). The region records 10,000 trials of random z,
such that —0.6 < R(z) < 0.4,-0.5 < 3(z) < 0.5.

Performance of equation (1) versus (3) for Li_2(z)

Figure: (L) Timing (8) (blue) and (10) (red).(R) blue region where (8) is faster.
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PART lll: Randomness
0000000000

Contents

© PART I1I: Randomness
@ Randomness is slippery
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PART lll: Randomness
0@00000000

We shall explore things like: How random is Pi?

Remember: 7 is area of a circle of radius one (and perimeter is 2x).
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PART lll: Randomness
0@00000000

We shall explore things like: How random is Pi?

Remember: 7 is area of a circle of radius one (and perimeter is 2x).

First true calculation of = was due to Archimedes of Syracuse
(287—-212 BCE). He used a brilliant scheme for doubling inscribed
and circumscribed polygons (with ‘interval arithmetic’)
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PART lll: Randomness
0@00000000

We shall explore things like: How random is Pi?

Remember: 7 is area of a circle of radius one (and perimeter is 2x).

First true calculation of = was due to Archimedes of Syracuse
(287—-212 BCE). He used a brilliant scheme for doubling inscribed
and circumscribed polygons (with ‘interval arithmetic’)

612+ 24+ 48 — 96
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PART lll: Randomness
0@00000000

We shall explore things like: How random is Pi?

Remember: 7 is area of a circle of radius one (and perimeter is 2x).

First true calculation of = was due to Archimedes of Syracuse
(287—-212 BCE). He used a brilliant scheme for doubling inscribed
and circumscribed polygons (with ‘interval arithmetic’)

6— 12— 24+ 48+— 96 to obtain the estimate

10

10
37—]<7r<370.
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0080000000

Archimedes’ “Method of Mechanical Theorems”

Pi movie below
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PART lll: Randomness
0080000000

Archimedes’ “Method of Mechanical Theorems”

Pi movie below
... certain things first became clear to
me by a mechanical method
(Codex C), although they had to be
proved by geometry afterwards
because their investigation by the said
method did not furnish an actual proof.

But it is of course easier, when we have
previously acquired, by the method,
some knowledge of the questions, to
supply the proof than it is to find it
without any previous knowledge.
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PART lll: Randomness
0080000000

Archimedes’ “Method of Mechanical Theorems”

Pi movie below
... certain things first became clear to
me by a mechanical method
(Codex C), although they had to be
proved by geometry afterwards
because their investigation by the said
method did not furnish an actual proof.

But it is of course easier, when we have
previously acquired, by the method,
some knowledge of the questions, to
supply the proof than it is to find it
without any previous knowledge.

e Only recently rediscovered and even more recently reconstructed ...
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PART lll: Randomness
000@000000

Proving 7 is not =

Even Maple or Mathematica ‘knows’ this since

T (1 —x)*t 22
L dy = - 11
0 < /0 1+ & 7" (1)

though it would be prudent to ask ‘why’ it can perform the integral and
‘whether’ to trust it?
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PART lll: Randomness
000@000000

Proving 7 is not =

Even Maple or Mathematica ‘knows’ this since
T (1 —x)*t 22
~— i = = — 11
0</01+x2x7n, (11)

though it would be prudent to ask ‘why’ it can perform the integral and
‘whether’ to trust it?

Assume we trust it. Then the integrand is strictly positive on (0,1),
and the answer in (11) is an area and so strictly positive, despite
millennia of claims that = is 22/7.
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PART lll: Randomness
000@000000

Proving 7 is not =

Even Maple or Mathematica ‘knows’ this since

T (1 —x)*t 22
0 T dx = - 11
< [Ea-om (11)

though it would be prudent to ask ‘why’ it can perform the integral and
‘whether’ to trust it?

Assume we trust it. Then the integrand is strictly positive on (0, 1),
and the answer in (11) is an area and so strictly positive, despite
millennia of claims that = is 22/7.

@ Accidentally, 22/7 is one of the early continued fraction approximation to

7. These commence:
22 333 355

T771067 11377
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[o]e]e]e] lelelelele}

Proving 7 is not =

In this case, the indefinite integral provides immediate reassurance.
We obtain
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PART lll: Randomness
[o]e]e]e] lelelelele}

Proving 7 is not =

In this case, the indefinite integral provides immediate reassurance.
We obtain

tx4(1—x)4 17 26,5 453
/Owdx = ?t —gt +t —gt +4t_4arctan(t)

as differentiation easily confirms, and the fundamental theorem of
calculus proves (11). QED

An opinion without 3.14 is an onion.
You'll understand.
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[o]e]e]e]e] lelelele}

Randomness
@ The digits expansions of x,¢, /2 appear to be “random”:

= 3.141592653589793238462643383279502884197169399375 . ..
e =12.718281828459045235360287471352662497757247093699.. ...

V2= 1.414213562373095048801688724209698078569671875376.. ..
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PART lll: Randomness
[o]e]e]e]e] lelelele}

Randomness
@ The digits expansions of x,¢, /2 appear to be “random”:

= 3.141592653589793238462643383279502884197169399375 . ..
e =12.718281828459045235360287471352662497757247093699.. ...

V2= 1.414213562373095048801688724209698078569671875376.. ..
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PART lll: Randomness
[o]e]e]e]e] lelelele}

Randomness
@ The digits expansions of x,¢, /2 appear to be “random”:

= 3.141592653589793238462643383279502884197169399375 . ..
e =12.718281828459045235360287471352662497757247093699.. ...

V2= 1.414213562373095048801688724209698078569671875376.. ..

Are they really?

Jonathan Borwein Visual Theorems www.carma.newcastle.edu.au/walks


http://www.carma.newcastle.edu.au/walks

Randomness

PART lll: Randomness
[o]e]e]e]e] lelelele}

@ The digits expansions of x,¢, /2 appear to be “random”:
= 3.141592653589793238462643383279502884197169399375 ...
e =2.718281828459045235360287471352662497757247093699. ..

V2= 1.414213562373095048801688724209698078569671875376.. ..

Are they really?

@ 1949 ENIAC (Electronic Numerical Integrator and Calculator)
computed of & to 2,037 decimals (in 70 hours)—proposed by
polymath John von Neumann (1903-1957) to shed light on

distribution of & (and of ¢).
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PART lll: Randomness

000000e000

Two continued fractions Change representations often

Gauss map. Remove the integer, invert the fraction and repeat: for
3.1415926 and 2.7182818 to get the fractions below.
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PART lll: Randomness

000000e000

Two continued fractions Change representations often

Gauss map. Remove the integer, invert the fraction and repeat: for
3.1415926 and 2.7182818 to get the fractions below.

Jrrr oty
CT1T1 26 24 120 T 720
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000000e000

Two continued fractions

3.1415926 and 2.7182818 to g

Gauss map. Remove the integer, invert the fraction and repeat: for

Change representations often

et the fractions below.

n=3+ 1 1
7+ ;
15+ ;
1+
292 + ;
e N
1+1+1+1+ ! + ! + ! +
e=—+—-—+-+-+—+-—+-~+...
1 1 2 6 24 120 720
1
e=2+ 1
1+ . Leonhard Euler (1707-
2+ L 1 1783) named e and 7.
1
”4+ 1 “Lisez Euler, lisez Euler, c’'est
- L notre maitre a tous.” Simon
fp— . Laplace (1749-1827)
6+
1+..

Jonathan Borwein
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PART lll: Randomness
0000000800

Are the digits of * random?

Digit Ocurrences
99,993,942
99,997,334

100,002,410
99,986,911

100,011,958
99,998,885

100,010,387
99,996,061

100,001,839

100,000,273

Total | 1,000,000,000

O©CoONOOOTA,WN—=O

Table: Counts of first billion
digits of 7. Second half is
‘right’ for law of large
numbers.
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PART lll: Randomness
0000000800

Are the digits of * random?

Digit Ocurrences Pi is Still Mysterious. We know r is not
99,993,942 algebraic; but do not ‘know’ (in sense of
99,997,334 being able to prove) whether ....

100,002,410
99,986,911

100,011,958
99,998,885

100,010,387
99,996,061

100,001,839

100,000,273

Total | 1,000,000,000

O©CoONOOOTA,WN—=O

Table: Counts of first billion
digits of 7. Second half is
‘right’ for law of large
numbers.
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PART lll: Randomness
0000000800

Are the digits of * random?

Digit Ocurrences

99,993,942
99,997,334
100,002,410
99,986,911
100,011,958
99,998,885
100,010,387
99,996,061
100,001,839
100,000,273

O©CoONOOOTA,WN—=O

Total | 1,000,000,000

Table: Counts of first billion
digits of 7. Second half is
‘right’ for law of large
numbers.

Jonathan Borwein

Pi is Still Mysterious. We know r is not
algebraic; but do not ‘know’ (in sense of
being able to prove) whether ....

@ The simple continued fraction for x is
unbounded
— Euler found the 292

— ¢ has a fine continued fraction
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PART lll: Randomness
0000000800

Are the digits of * random?

Digit Ocurrences Pi is Still Mysterious. We know r is not
0 99,993,942 algebraic; but do not ‘know’ (in sense of
1 99,997,334 being able to prove) whether ....
2 100,002,410 @ The simple continued fraction for « is
| e o

’ ’ — Euler found the 292

5 99,998,885 vierfound ihe < .
6 100,010,387 — ¢ has a fine continued fraction
7 99,996,061 @ There are infinitely many sevens in
8 100,001,839 the decimal expansion of &
9 100,000,273

Total | 1,000,000,000

Table: Counts of first billion
digits of 7. Second half is
‘right’ for law of large
numbers.
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PART lll: Randomness
0000000800

Are the digits of * random?

Digit Ocurrences Pi is Still Mysterious. We know r is not
0 99,993,942 algebraic; but do not ‘know’ (in sense of
1 99,997,334 being able to prove) whether ....
2 100,002,410 @ The simple continued fraction for « is
3 99,986,911 unbounded
4 100,011,958 — Euler found the 292
5 99,998,885 i . .
6 100,010,387 — e has a fine continued fraction
7 99,996,061 @ There are infinitely many sevens in
8 100,001,839 the decimal expansion of &
9 100,000,273 @ There are infinitely many ones in the
Total | 1,000,000,000 ternary expansion of ©

Table: Counts of first billion
digits of 7. Second half is
‘right’ for law of large
numbers.
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PART lll: Randomness
0000000800

Are the digits of * random?

Digit Ocurrences Pi is Still Mysterious. We know r is not
0 99,993,942 algebraic; but do not ‘know’ (in sense of
1 99,997,334 being able to prove) whether ....
2 100,002,410 @ The simple continued fraction for « is
| et nbme
’ ’ — Euler found the 292
5 99,998,885 verfotnd e < ,
6 100,010,387 — e has a fine continued fraction
7 99,996,061 @ There are infinitely many sevens in
8 100,001,839 the decimal expansion of &
9 100,000,273 @ There are infinitely many ones in the
Total | 1,000,000,000 ternary expansion of ©
Table: Counts of first billion @ There are equally many zeroes and
digits of 7. Second half is ones in the binary expansion of &
‘right’ for law of large

numbers.
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PART lll: Randomness
0000000800

Are the digits of * random?

Digit Ocurrences Pi is Still Mysterious. We know r is not
0 99,993,942 algebraic; but do not ‘know’ (in sense of
1 99,997,334 being able to prove) whether ....
2 100,002,410 @ The simple continued fraction for « is
| et nbme
’ ’ — Euler found the 292
5 99,998,885 verfotnd e < ,
6 100,010,387 — e has a fine continued fraction
7 99,996,061 @ There are infinitely many sevens in
8 100,001,839 the decimal expansion of &
9 100,000,273 @ There are infinitely many ones in the
Total | 1,000,000,000 ternary expansion of ©
Table: Counts of first billion @ There are equally many zeroes and
digits of 7. Second half is ones in the binary expansion of &
‘right’ for law of large @ Or pretty much anything else...

numbers.
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PART lll: Randomness

0000000080
B 11 L] .
What is “random”? A hard question
TOUR OF ACCOUNTING |§ s[ are
H NINE NINE 3| vou THAT'S THE
OVER HERE i NINE NINE H e PROBLEM
LJE HAVE OUR H NINE NINE H ars WITH RAN-
RANDOM NUMBER |3 :| RANDOM? DOMNESS:
H YOU CAN
GENERATOR.. :
§ H S NEVER BE
gla ]
2 g
3 5
= - 3
o 3
i 3 P s
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[o]e]e]e]ele]ele] lo}

What is “random”? A hard question

TOUR OF ACCOUNTING |§ | are
H NINE NINE | vou THAT'S THE
OVER HERE i NINE NINE £ some PROBLEM
WE HAVE OUR i NINE NINE | ThaTs LSJITI:] RAN-
RANDOM NUMBER |§ :| nANDOM?  DOMNESS:
GENERATOR. \ H YOU CAN
§ H S NEVER BE
2l a8 s SURE.
2 g
g %
= by
HES
I 3 — s

It might be:
@ Unpredictable (fair dice or coin-flips)?
@ Without structure (noise)?
@ Algorithmically random (x is not)?
@ Quantum random (radiation)?
@ Incompressible (‘zip’ does not help)?
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PART lll: Randomness
[o]e]e]e]ele]ele] lo}

What is “random”? A hard question

TOUR OF ACCOUNTING |§ i[ are
H NINE NINE il vou THAT'S THE
OVER HERE H NINE NINE H e PROBLEM
WE HAVE OUR i NINE NINE | ThaTs WITH RAN-
RANDOM NUMBER |§ {| RaNDOM?  DOMNESS:
GENERATOR. \ H YOU CAN
£ 3 L NEVER BE
M =
£ g
3 5
= s
. 3
I 3 — 3
It might be: Conjecture (Borel) All irrational

algebraic numbers are b-normal

@ Unpredictable (fair dice or coin-flips)?
@ Without structure (noise)?

@ Algorithmically random (x is not)?

@ Quantum random (radiation)?

@ Incompressible (‘zip’ does not help)?
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What is “random”?

PART lll: Randomness
[o]e]e]e]ele]ele] lo}

A hard question

TOUR OF ACCOUNTING

E .
H NINE NINE i ﬁgﬁ THAT'S THE
OVER HERE i NINE NINE H e PROBLEM
WE HAVE OUR H NINE NINE H thars WITH RAN-
RANDOM NUMBER |§ ¢l RANDOM?  DOMNESS:
H YOU CAN
GENERATOR.
§ H S NEVER BE
Sl a 5 SURE.
2 g
3 %
= 3
; e : =
e 3 p— S

It might be:
@ Unpredictable (fair dice or coin-flips)?
@ Without structure (noise)?
@ Algorithmically random (x is not)?
@ Quantum random (radiation)?
@ Incompressible (‘zip’ does not help)?

Conjecture (Borel) All irrational
algebraic numbers are b-normal

Best Theorem [BBCP, 04] (Fee-
ble but hard) Asymptotically all
degree d algebraics have at least
n'/? ones in binary (should be

n/2)
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RandomneSS in P|? http://mkweb.bcgsc.ca/pi/art/

Jonathan Borwein Visual Theorems www.carma.newcastle.edu.au/walks


http://mkweb.bcgsc.ca/pi/art/
http://www.carma.newcastle.edu.au/walks
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00000000 0e

RandomneSS in P|? http://mkweb.bcgsc.ca/pi/art/

S

‘-*3}.@‘-\\'1&#};‘: ool S
3 s ke S Il 5
et

&%

ﬁ.ff\g e
i Froely

e a better color palette for art if not for science
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PART lll: Randomness
@000
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© PART I1I: Randomness

@ Normality
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Normality A property random numbers must possess

Definition

A real constant « is b-normal if, given the positive integer b > 2 (the
base), every m-long string of base-b digits appears in the base-b
expansion of a with precisely the expected limiting frequency 1/5™.
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0e00

Normality A property random numbers must possess

Definition

A real constant « is b-normal if, given the positive integer b > 2 (the
base), every m-long string of base-b digits appears in the base-b
expansion of a with precisely the expected limiting frequency 1/5™.

@ Given an integer b > 2, almost all real numbers, with probability
one, are b-normal (Borel).

T USED T THINK, THEN I TOOK A | [ SOUNDS LIKE THE
CORRELATION IMPUED STATISTICS CLASS. CLASS HELPED.
CAUSHTION. Now I DON'T WELL, P‘?F‘YBE

FRELE
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0e00

Normality A property random numbers must possess

Definition

A real constant « is b-normal if, given the positive integer b > 2 (the
base), every m-long string of base-b digits appears in the base-b
expansion of a with precisely the expected limiting frequency 1/5™.

@ Given an integer b > 2, almost all real numbers, with probability
one, are b-normal (Borel).

@ Indeed, almost all real numbers are b-normal simultaneously for
all positive integer bases (“absolute normality”).

T USED T THINK, THEN I TOOK A | [ SOUNDS LIKE THE
CORRELATION IMPUED STATISTICS CLASS. CLASS HELPED.
CAUSHTION. Now I DON'T WELL, P‘?F‘YBE

FRELE
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PART lll: Randomness
0e00

Normality A property random numbers must possess

Definition

A real constant « is b-normal if, given the positive integer b > 2 (the
base), every m-long string of base-b digits appears in the base-b
expansion of a with precisely the expected limiting frequency 1/5™.

@ Given an integer b > 2, almost all real numbers, with probability
one, are b-normal (Borel).

@ Indeed, almost all real numbers are b-normal simultaneously for
all positive integer bases (“absolute normality”).

@ Unfortunately, it has been very difficult to prove normality for any
number in a given base b, much less all bases simultaneously.

T USED T THINK, THEN I TOOK A | [ SOUNDS LIKE THE
CORRELATION IMPUED STATISTICS CLASS. CLASS HELPED.
CAUSHTION. Now I DON'T WELL, P‘?F‘YBE

FRELE
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Normal numbers concatenation numbers

Definition

A real constant « is b-normal if, given the positive integer b > 2 (the
base), every m-long string of base-b digits appears in the base-b
expansion of a with precisely the expected limiting frequency 1/5™.

@ The first Champernowne number proven 10-normal was:
Cio :=0.123456789101112131415161718.....

- 1933 by David Champernowne (1912-2000) as a student
- 1937 Mahler proved transcendental. 2012 not strongly normal
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Normal numbers concatenation numbers

Definition

A real constant « is b-normal if, given the positive integer b > 2 (the
base), every m-long string of base-b digits appears in the base-b
expansion of a with precisely the expected limiting frequency 1/5™.

@ The first Champernowne number proven 10-normal was:
Cio:=0.123456789101112131415161718....
- 1933 by David Champernowne (1912-2000) as a student
- 1937 Mahler proved transcendental. 2012 not strongly normal

@ 1946 Arthur Copeland and Paul Erdés proved the same holds
when one concatenates the sequence of primes:

CE(10) :=0.23571113171923293137414347 ...

is 10-normal (concatenation works in all bases).
- Copeland—Erdés constant
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Normal numbers concatenation numbers

Definition

A real constant « is b-normal if, given the positive integer b > 2 (the
base), every m-long string of base-b digits appears in the base-b
expansion of a with precisely the expected limiting frequency 1/5™.

@ The first Champernowne number proven 10-normal was:
Cio:=0.123456789101112131415161718....
- 1933 by David Champernowne (1912-2000) as a student
- 1937 Mahler proved transcendental. 2012 not strongly normal

@ 1946 Arthur Copeland and Paul Erdés proved the same holds
when one concatenates the sequence of primes:

CE(10) :=0.23571113171923293137414347 ...

is 10-normal (concatenation works in all bases).
- Copeland—Erdés constant

@ Normality proofs are not known for 7, e,log2,v/2 etc.

Jonathan Borwein Visual Theorems www.carma.newcastle.edu.au/walks


http://www.carma.newcastle.edu.au/walks

PART lll: Randomness
[e]e]e] )

Normal numbers concatenation numbers

Definition
A real constant o is b-normal if, given the positive integer b > 2 (the

base), every m-long string of base-b digits appears in the base-b
expansion of a with precisely the expected limiting frequency 1/5™.

Theorem (Davenport-Erdds (1952))

Let p be any polynomial positive on the natural numbers. Then the
concatenation number

is Borel normal (in the base of presentation).
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Normal numbers concatenation numbers

Definition
A real constant o is b-normal if, given the positive integer b > 2 (the

base), every m-long string of base-b digits appears in the base-b
expansion of a with precisely the expected limiting frequency 1/5™.

Theorem (Davenport-Erdds (1952))

Let p be any polynomial positive on the natural numbers. Then the
concatenation number

is Borel normal (in the base of presentation).

@ Includes Champernowne’s number and 0.1491625... (Besicovich)

@ See H. Davenport and P. Erdds, “Note on normal numbers.” Can. J.
Math., 4 (1952), 58-63.
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@ Normality of Pi
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Is £ 10-normal?

String Occurrences String Occurrences String Occurrences
0 99,993,942 00 10,004,524 000 1,000,897
1 99,997,334 01 9,998,250 001 1,000,758
2 100,002,410 02 9,999,222 002 1,000,447
3 99,986,911 03 10,000,290 003 1,001,566
4 100,011,958 04 10,000,613 004 1,000,741
5 99,998,885 05 10,002,048 005 1,002,881
6 100,010,387 06 9,995,451 006 999,294
7 99,996,061 07 9,993,703 007 998,919
8 100,001,839 08 10,000,565 008 999,962
9 100,000,273 09 9,999,276 009 999,059

10 9,997,289 010 998,884
11 9,997,964 011 1,001,188
99 10,003,709 099 999,201

999 1,000,905

[ TOTAL | 1,000,000,000 || TOTAL | 1,000,000,000 || TOTAL | 1,000,000,000 |

Table: Counts for the first billion digits of x.
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Is 7 16-normal That is, in Hex?

« Counts of first trillion hex digits

62499881108
62500212206
62499924780
62500188844
62499807368
62500007205
62499925426
62499878794
62500216752
62500120671
62500266095
62499955595
62500188610
62499613666
62499875079

F 62499937801
Total 1,000,000,000,000

0O QWP OONOOOOAR~WN-—=2O
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[e]o] o]

Is 7 16-normal That is, in Hex?

« Counts of first trillion hex digits

62499881108
62500212206 @ 2011 Ten trillion hex digits computed by Yee
62499924780 and Kondo — and seem very normal. (2013:
62500188844 12.1 trillion)
62499807368
62500007205
62499925426
62499878794
62500216752
62500120671
62500266095
62499955595
62500188610
62499613666
62499875079

F 62499937801
Total 1,000,000,000,000

0O QWP OONOOOOAR~WN-—=2O
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PART lll: Randomness
[e]o] o]

Is 7 16-normal That is, in Hex?

« Counts of first trillion hex digits
62499881108
62500212206 @ 2011 Ten trillion hex digits computed by Yee
62499924780 and Kondo — and seem very normal. (2013:
62500188844 12.1 trillion)
62499807368
62500007205 @ 2012 Ed Karrel found 25 hex digits of ©
62499925426 starting after the 10> position computed
62499878794 using BBP on GPUs (graphics cards) at

62500216752 NVIDIA (too hard for Blue Gene)
62500120671

62500266095
62499955595
62500188610
62499613666
62499875079

F 62499937801
Total  1,000,000,000,000

HO QWP OooNOO~WN—=O
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PART lll: Randomness
[e]o] o]

Is 7 16-normal That is, in Hex?

« Counts of first trillion hex digits

0 62499881108
1 62500212206 @ 2011 Ten trillion hex digits computed by Yee
2 62499924780 and Kondo — and seem very normal. (2013:
3 62500188844 12.1 trillion)

4 62499807368

5 62500007205 @ 2012 Ed Karrel found 25 hex digits of ©

6 62499925426 starting after the 10> position computed

7 62499878794 using BBP on GPUs (graphics cards) at

8 62500216752 NVIDIA (too hard for Blue Gene)

9 62500120671

A 62500266095 @ They are 353CB3F7FOC9ACCFA9AA215F2

B 62499955595 See www.karrels.org/pi/index.html

C 62500188610

D

B

62499613666
62499875079
F 62499937801

Total 1,000,000,000,000 OCTOPI
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[e]o]e] )

Modern © Calculation Records: nd IBM Blue Gene/L at LBL

Name Year Correct Digits
Miyoshi and Kanada 1981 2,000,036
Kanada-Yoshino-Tamura 1982 16,777,206
Gosper 1985 17,526,200
Bailey Jan. 1986 29,360,111
Kanada and Tamura Sep. 1986 33,554,414
Kanada and Tamura Oct. 1986 67,108,839
Kanada et. al Jan. 1987 134,217,700
Kanada and Tamura Jan. 1988 201,326,551
Chudnovskys May 1989 480,000,000
Kanada and Tamura Jul. 1989 536,870,898
Kanada and Tamura Nov. 1989 1,073,741,799
Chudnovskys Aug. 1991 2,260,000,000
Chudnovskys May 1994 4,044,000,000
Kanada and Takahashi Oct. 1995 6,442,450,938
Kanada and Takahashi Jul. 1997 51,539,600,000
Kanada and Takahashi Sep. 1999 206,158,430,000
Kanada-Ushiro-Kuroda Dec. 2002 1,241,100,000,000
Takahashi Jan. 2009 1,649,000,000,000
Takahashi April 2009 2,576,980,377,524
Bellard Dec. 2009 2,699,999,990,000
Kondo and Yee Aug. 2010 5,000,000,000,000
Kondo and Yee Oct. 2011 10,000,000,000,000
Kondo and Yee Dec. 2013 12,100,000,000,000
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@ BBP Digit Algorithms
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What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of x, you
had to generate the (order of) the entire first d digits. This is not true:

@ at least for hex (base 16) or binary (base 2) digits of x.
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What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of x, you
had to generate the (order of) the entire first d digits. This is not true:

@ at least for hex (base 16) or binary (base 2) digits of x.

@ In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for
individual hex digits of z. It produces:
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What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of x, you
had to generate the (order of) the entire first d digits. This is not true:
@ at least for hex (base 16) or binary (base 2) digits of x.

@ In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for
individual hex digits of z. It produces:

@ a modest-length string of hex or binary digits of x, beginning at
any position, using no prior bits
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What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of x, you
had to generate the (order of) the entire first d digits. This is not true:
@ at least for hex (base 16) or binary (base 2) digits of x.

@ In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for
individual hex digits of z. It produces:

@ a modest-length string of hex or binary digits of x, beginning at
any position, using no prior bits
— is implementable on any modern computer;
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What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of x, you
had to generate the (order of) the entire first d digits. This is not true:
@ at least for hex (base 16) or binary (base 2) digits of x.

@ In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for
individual hex digits of z. It produces:

@ a modest-length string of hex or binary digits of x, beginning at
any position, using no prior bits
— is implementable on any modern computer;
— requires no multiple precision software;
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What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of x, you
had to generate the (order of) the entire first d digits. This is not true:
@ at least for hex (base 16) or binary (base 2) digits of x.

@ In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for
individual hex digits of z. It produces:

@ a modest-length string of hex or binary digits of x, beginning at
any position, using no prior bits
— is implementable on any modern computer;
— requires no multiple precision software;
— requires very little memory; and has
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What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of x, you
had to generate the (order of) the entire first d digits. This is not true:
@ at least for hex (base 16) or binary (base 2) digits of x.

@ In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for
individual hex digits of z. It produces:

@ a modest-length string of hex or binary digits of x, beginning at
any position, using no prior bits
— is implementable on any modern computer;
— requires no multiple precision software;
— requires very little memory; and has

— a computational cost growing only slightly faster than the
digit position.
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What BBP Does?

Prior to 1996, most folks thought to compute the d-th digit of x, you
had to generate the (order of) the entire first d digits. This is not true:
@ at least for hex (base 16) or binary (base 2) digits of x.

@ In 1996, P. Borwein, Plouffe, and Bailey found an algorithm for
individual hex digits of z. It produces:

@ a modest-length string of hex or binary digits of x, beginning at
any position, using no prior bits
— is implementable on any modern computer;
— requires no multiple precision software;
— requires very little memory; and has
— a computational cost growing only slightly faster than the
digit position.
@ An algorithm found by computer—now used to check record ©
computations and in some compilers.
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What BBP Is? Reverse Engineered Mathematics

This is based on the following then new formula for x:

=1 (4 2 1 1
) L 12
g ;)161(8i+1 8i+4 8its 8i+6) (12)
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[e]e] lele}

What BBP Is? Reverse Engineered Mathematics

This is based on the following then new formula for x:

=1 (4 2 1 1
) L 12
g ;)16’(81'—#1 8i+4 8its 8i+6) (12)

@ Millionth hex digit (four millionth bit) takes under 30 secs on a
fairly new PC in Maple (not C++ or Python) and billionth 10 hrs.
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What BBP Is? Reverse Engineered Mathematics

This is based on the following then new formula for x:

=1 (4 2 1 1
) L 12
g ;)16’(81'—#1 8i+4 8its 8i+6) (12)

@ Millionth hex digit (four millionth bit) takes under 30 secs on a
fairly new PC in Maple (not C++ or Python) and billionth 10 hrs.
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[e]e] lele}

What BBP Is? Reverse Engineered Mathematics

This is based on the following then new formula for x:

=1 (4 2 1 1
) L 12
g ;)16’(81'—#1 8i+4 8its 8i+6) (12)

@ Millionth hex digit (four millionth bit) takes under 30 secs on a
fairly new PC in Maple (not C++ or Python) and billionth 10 hrs.

Equation (12) was discovered numerically using integer relation
methods over months in my BC lab, CECM. It arrived coded as:
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What BBP Is? Reverse Engineered Mathematics

This is based on the following then new formula for x:
| 4 2 1 1
=y — - - - 12
"= L g (8i+1 8i+4 8its 8i+6) (12)

@ Millionth hex digit (four millionth bit) takes under 30 secs on a
fairly new PC in Maple (not C++ or Python) and billionth 10 hrs.

Equation (12) was discovered numerically using integer relation
methods over months in my BC lab, CECM. It arrived coded as:

15 1 1
= =) 42tan (2] -1
T =4,F (1,4,4, 4>+ an <2) OgS

where ,F;(1,1/4;5/4,—1/4) =0.955933837... is a Gaussian
hypergeometric function.
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What BBP Is? Reverse Engineered Mathematics

This is based on the following then new formula for x:
| 4 2 1 1
=y — - - - 12
"= L g (8i+1 8i+4 8its 8i+6) (12)

@ Millionth hex digit (four millionth bit) takes under 30 secs on a
fairly new PC in Maple (not C++ or Python) and billionth 10 hrs.

Equation (12) was discovered numerically using integer relation
methods over months in my BC lab, CECM. It arrived coded as:

15 1 1
= =) 42tan (2] -1
T =4,F (1,4,4, 4>+ an <2) OgS

where ,F;(1,1/4;5/4,—1/4) =0.955933837... is a Gaussian
hypergeometric function.
@ Bailey-Crandall (220) link BBP and normality.
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Edge of Computation Prize Finalist (2005)

EdgeThe Third Culture

About - The Reality. Third . " Edge
Home Edge Features Edge Editions Press Club Cultire Digerati Sk

THE $100,000 EDGE OF COMPUT. ON SCIENCE PRIZE

For individual scientific work, extending the computational idea,
performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc., is
a $100,000 prize initiated and funded by science philanthropist Jeffrey Epstein.

www.carma.newcastle.edu.au/walks
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Edge of Computation Prize Finalist (2005)

EdgeThe Third Culture

About - The Reality. Third . " Edge
Home Edge Features Edge Editions Press Club Cultire Digerati Sk

THE $100,000 EDGE OF COMPUTATION SCIENCE PRIZE

For individual scientific work, extending the computational idea,
performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc., is
a $100,000 prize initiated and funded by science philanthropist Jeffrey Epstein.

@ BBP was the only mathematical finalist (of about 40) for the first
Edge of Computation Science Prize
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Edge of Computation Prize Finalist (2005)

EdgeThe Third Culture

About - The Reality. Third . " Edge
Home Edge Features Edge Editions Press Club Cultire Digerati Sk

THE $100,000 EDGE OF COMPUTATION SCIENCE PRIZE

For individual scientific work, extending the computational idea,
performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc., is
a $100,000 prize initiated and funded by science philanthropist Jeffrey Epstein.

@ BBP was the only mathematical finalist (of about 40) for the first
Edge of Computation Science Prize

— Along with founders of Google, Netscape, Celera and many
brilliant thinkers, ...
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Edge of Computation Prize Finalist (2005)

EdgeThe Third Culture

About - The Reality. Third . " Edge
Home Edge Features Edge Editions Press Club Cultire Digerati Sk

THE $100,000 EDGE OF COMPUTATION SCIENCE PRIZE

For individual scientific work, extending the computational idea,
performed, published, or newly applied within the past ten years.

The Edge of Computation Science Prize, established by Edge Foundation, Inc., is
a $100,000 prize initiated and funded by science philanthropist Jeffrey Epstein.

@ BBP was the only mathematical finalist (of about 40) for the first
Edge of Computation Science Prize

— Along with founders of Google, Netscape, Celera and many
brilliant thinkers, ...

@ Won by David Deutsch — discoverer of Quantum Computing.
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[e]e]e]e] ]

Stefan Banach (1892-1945) Another Nazi casuality

A mathematician is a person who can find analogies
between theorems; a better mathematician is one who can
see analogies between proofs and the best mathematician
can notice analogies between theories. °

Th
Stefan Banach

80nly the best get stamps. Quoted in
www—-history.mcs.st-andrews.ac.uk/Quotations/Banach.html .
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Contents

@ Some background

e Random-ish walks
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A Little HiStOI’y: From a vast literature

/c f + + + + = + + : s + x/ =) ,/:
L: Pearson posed question R: Rayleigh gave large n estimates of
about a ‘rambler’ taking unit density: p,(x) ~ %efxz/n (Nature, 1905)
random steps (Nature, ‘05). with n = 5,8 shown above.
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Random-ish
0e00

A Little HiStOI’y: From a vast literature

L: Pearson posed question R Raylelgh gave Iarge n estlmates of
about a ‘rambler’ taking unit density: p,(x) ~ % —2/n (Nature, 1905)
random steps (Nature, ‘05). with n = 5,8 shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon,
explained why sky is blue.
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Random-ish
0e00

A Little HiStOI’y: From a vast literature

Vi - :

/ / " T 2 B 0 3 ' 2 0 G . W ,/‘); -
L: Pearson posed question R: Rayleigh gave large n estimates of
about a ‘rambler’ taking unit density: p,(x) ~ %efxz/n (Nature, 1905)
random steps (Nature, ‘05). with n = 5,8 shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon,
explained why sky is blue.

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C — K), declined knighthood.
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Random-ish
0e00

A Little HiStOI’y: From a vast literature

Vi - :

/ / " T 2 B 0 3 ' 2 0 G . W ,/‘); -
L: Pearson posed question R: Rayleigh gave large n estimates of
about a ‘rambler’ taking unit density: p,(x) ~ %efxz/n (Nature, 1905)
random steps (Nature, ‘05). with n = 5,8 shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon,
explained why sky is blue.

The problem “is the same as that of the composition of n isoperiodic vibra-
tions of unit amplitude and phases distributed at random” he studied in 1880
(diffusion equation, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C — K), declined knighthood.
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A Little HiStOI’y: From a vast literature

/ - _
L: Pearson posed question R: Rayleigh gave large n estimates of
about a ‘rambler’ taking unit density: p,(x) ~ %efxz/n (Nature, 1905)
random steps (Nature, ‘05). with n = 5,8 shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon,
explained why sky is blue.

The problem “is the same as that of the composition of n isoperiodic vibra-
tions of unit amplitude and phases distributed at random” he studied in 1880
(diffusion equation, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C — K), declined knighthood.

- UNSW: Donovan and Nuyens, WWII cryptography.
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A Little HiStOI’y: From a vast literature

L: Pearson posed question R Raylelgh gave Iarge n estlmates df

about a ‘rambler’ taking unit density: p, (x) ~ Ze */n (Nature, 1905)
random steps (Nature, ‘05). with n = 5,8 shown above.

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of Argon,
explained why sky is blue.

The problem “is the same as that of the composition of n isoperiodic vibra-
tions of unit amplitude and phases distributed at random” he studied in 1880
(diffusion equation, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C — K), declined knighthood.

- UNSW: Donovan and Nuyens, WWII cryptography.
- appear in graph theory, quantum chemlstry, in quantum physics as
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The first walk (Venn) Why is the sky blue?

Start Finish

\
S0 WHY /W7
UH... \
LHMM.

>z
'S
t
v
-
~3
- 4=
\'12

°

NE E SE
4 5
The first person to visualize the random nature of pi's decimal digits was the Victorian
nathematician John Venn. In The Logic of Chance (1888), he suggested that the digits 0 to 7

epresent eight compass directions, and he followed the path tracked by these digits in pi. He
nisses out the initial 3, and starts 14159. Venn's image was the first “random walk”, an idea now

1sed frequently in probability and statistics. (The illustration is taken from my book, Alex's W HDBBY‘- TF'_'HCHINGTRLK\’ QUESTIONS TO
\dventures in Numberland) THE CHILDREN OF My SCIENTIST FRIENDS.
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One 1500-step ramble: a familiar picture  Liouville function

(MS Books in Mathematics

Peter Borwein » Stephen Choi
Brendan Rooney * Andru Weirathmueller

The Riemann
Hypothesis

A Resource for the
Afficionado and
- Virtuoso Alike
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One 1500-step ramble: a familiar picture  Liouville function

(MS Books in Mathematics

Peter Borwein » Stephen Choi
Brendan Rooney « Andrea Weirathmueller

The Riemann
Hypothesis
A Resource for the

Afficionado and
e Virtuoso Alike

@ 1D (and 3D) easy. Expectation of RMS distance is easy (/n).
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One 1500-step ramble: a familiar picture  Liouville function

(MS Books in Mathematics

Peter Borwein » Stephen Choi
Brendan Rooney « Andrea Weirathmueller

The Riemann
Hypothesis
A Resource for the

Afficionado and
e Virtuoso Alike

@ 1D (and 3D) easy. Expectation of RMS distance is easy (/n).
@ 1D or 2D lattice: probability one of returning to the origin.

Jonathan Borwein Visual Theorems www.carma.newcastle.edu.au/walks


http://www.carma.newcastle.edu.au/walks

Random-ish
@00

Contents

@ llla. Short rambles

e Random-ish walks
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Case study Il: short rambles a less familiar picture?

1000 three-step uniform planar walks
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The moments of an n-step planar walk: W, = W, (1)

@ Second simplest case:

Ll . .
W2 :/ / ‘6271?1)6 +62my
0 Jo

dxdy = ?

7Quadrature was our first interest
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[ele] J

The moments of an n-step planar walk: W, = W, (1)

@ Second simplest case:

Ll . .
W2 :/ / ‘6271?1)6 +62my
0 Jo

@ Mathematica 10 and Maple 18 still think the answer is 0 (‘bug’ or
‘feature’?).

dxdy = ?

7Quadrature was our first interest
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[ele] J

The moments of an n-step planar walk: W, = W, (1)

@ Second simplest case:

Ll . .
W2 :/ / ‘6271?1)6 +62my
0 Jo

@ Mathematica 10 and Maple 18 still think the answer is 0 (‘bug’ or
‘feature’?).

@ There is always a 1-dimension reduction’

it = / § o
.

dxdy = ?

s
xl o 7xn717xn)

d(®1- )

+ Z eZn'xkt

7Quadrature was our first interest
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[ele] J

The moments of an n-step planar walk: W, = W, (1)

@ Second simplest case:

Ll . .
W2 :/ / ‘6271?1)6 +62my
0 Jo

@ Mathematica 10 and Maple 18 still think the answer is 0 (‘bug’ or
‘feature’?).

@ There is always a 1-dimension reduction’

it = / § o
.

dxdy = ?

s
xl o 7xn717xn)

+ Z eZn'xkt

d(®1- )

@ So W, = 4]0 cos(ﬂx)dx =

E1ES

7Quadrature was our first interest
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Art meets science AAAS & Bridges conference
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Art meets science

AAAS & Bridges conference

A visualization of six routes that 1000 ants took after leaving
their nest in search of food. The jagged blue lines represent
the breaking off of random ants in search of seeds.

(Nadia Whitehead 2014-03-25 16:15)
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Art meets science AAAS & Bridges conference

(JonFest 2011 Logo) Three-step random walks.
The (purple) expected distance travelled is 1.57459 ...

The closed form W5 is given below.

A visualization of six routes that 1000 ants took after leaving
their nest in search of food. The jagged blue lines represent
the breaking off of random ants in search of seeds.

6
(Nadia Whitehead 2014-03-25 16:15) Wa = 16 VA r? 7; (*)

l"(%) 8v/ant

nathan Borwein Visual Theo
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Simulating the densities for n = 3,4 ANIMATION

The densities p3 (L) and ps (R)

Simulation thanks to Cam Rogers
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The radial densities for3<n <6 (simulations by A. Mattingly)

3-Step Radial Random Walk Probability Density 4-Step Radial Random Walk Probability Des
for 1,000,000 Trials Allocated to 1,000 Radius Bins for 1,000,000 Trials Allocated to 1,000 Radius Bins
14
12
1.0]
03
08
04
02
5-Step Radial Random Walk Probability Density 6-Step Radial Random Walk Probability Density
for 1,000,000 Trials Allocated to 1,000 Radius Bins for 1,000,000 Trials Allocated to 1,000 Radius Bins
035 ey L.
¥ by 0.30) -
03 . .
3 028 a
g 020
02 .
0.5
o1 : 0.10]
05
s . - - Radins + 3 - " B .
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Pearson’s original full question and comment on ps

A man starts from a point O and walks [ yards in a straight
line; he then turns through any angle whatever and walks
another [ yards in a second straight line. He repeats this
process n times. | require the probability that after these n
stretches he is at a distance between r and r+ or from his
starting point, O.
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Pearson’s original full question and comment on ps

A man starts from a point O and walks [ yards in a straight
line; he then turns through any angle whatever and walks
another [ yards in a second straight line. He repeats this
process n times. | require the probability that after these n
stretches he is at a distance between r and r+ or from his
starting point, O.

“the graphical construction, however carefully reinvestigated, did
not permit of our considering the curve to be anything but a straight
line. .. Even if it is not absolutely true, it exemplifies the
extraordinary power of such integrals of J products to give
extremely close approximations to such simple forms as horizontal
lines.”

Jonathan Borwein Visual Theorems www.carma.newcastle.edu.au/walks


http://www.carma.newcastle.edu.au/walks

Random-ish
[e]e]e}

Pearson’s original full question and comment on ps

A man starts from a point O and walks [ yards in a straight
line; he then turns through any angle whatever and walks
another [ yards in a second straight line. He repeats this
process n times. | require the probability that after these n
stretches he is at a distance between r and r+ or from his
starting point, O.

“the graphical construction, however carefully reinvestigated, did
not permit of our considering the curve to be anything but a straight
line. .. Even if it is not absolutely true, it exemplifies the
extraordinary power of such integrals of J products to give
extremely close approximations to such simple forms as horizontal
lines.”

@ 2015. Our analysis of short walks extends interestingly to
arbitrary dimensions ...
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The radial densities for n = 3,4 are modular functions

Let o(x) := ?—;j Then o is an involution on [0,3] sending [0, 1] to [1,3]:
4x
p3(x) = mm(o()‘))- (13)

S0 2p4(0) = p3(3) = L2, p(1) = co.
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The radial densities for n = 3,4 are modular functions

Let o(x) := % Then o is an involution on [0,3] sending [0, 1] to [1,3]:

4x
p3(x) = mm(o()‘))- (13)

So 3p4(0) =p3(3) = g, p(1) = oo. We found:
230 12102(9-a)’\ 2V3 o
p3(a):‘[)2F1 (3 3| ( ) V3

T (3+a? L] 3+02)? T AG3(3+0a2,3(1-a2)*?)
where AGs; is the cubically convergent mean iteration (1991):

2 2 2 1/3
AG3(a7b);:azb®(b.M) .

3

The densities p5 (L) and p4 (R)
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Formula for the ‘shark-fin’ p4

We ultimately deduce on 2 < o < 4 a hyper-closed form:

— 3
1174(05)=216_0623172<é7%7é {16y > (15)

57 4
2,6 108 o
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Formula for the ‘shark-fin’ p4

We ultimately deduce on 2 < o < 4 a hyper-closed form:

2 Vie-a? (1431016 a?)’
paley = S Y10 (e o) ) (15)
T o 2,6 108 o
+ p4 from (15) vs 18-terms of empirical
power series
_2Pap(2) °_
v’ Proves p4(2) = 3\6F<3> =
By (~1) ~0.494233 < §
@ Empirically, quite marvelously, we found
— and proved by a subtle use of
distributional Mellin transforms — that on
[0,2] as well:
;2 VI6—a? 11 16—a?)’
pilay 2 YA p (222 ] 06 @) (16)
T a 2.6 108 o

(Discovering this )% brought us full circle.)
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(and large n approximation

P 035} 7
0350 < . 5
DS 030F . \

030f : \

025}
[

020fF
020F

,
01sF 015 \
010 010F
005F 005}
1 2 1 2 4 5 6
L 030F #
030 p N\ p \
p A\ 025f 4 )
025 p \ J \
3\ /
/ 020 / R
020F 3
3
3
01sf 015¢
010F o10r
005 005}
1 2 3 2 6 8
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The radial densities for 5 <n <8 (and large n approximation)
o 035} P
o3st ol y
030f N / 3
02sF ] \\\ i ,’/ \\\
ok /,’/ \\\\ 0.20 /,’ \\
01sF ,’/ A o f :
010 ,’/ 010
005 005
1 2 3 4 \5 1 2 3 4 s
Both ps,,.4,p2.45 are n-times continuously differentiable for x > 0
+ + )
with p,(x) ~ Zn—xe*x /n, So “four is small” but “eight is large.”
030f 7 o®r /,
ossf p N \ 025 //’ \\\
020F / \‘\ omf \\\\
015F \\‘\ 015¢ \\
010 \\\ 010
005 005
1 2 3 4 5 6 7 2 4 6 8
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Random-ish
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(and large n approximation)

P 035} 7
035 5
030F . \
030f N / \
/ AN 025k W B
[ p . P
\
P p
osob ! A o2f
: / 3
P 3
otk \ 01sF
: p
p
o10f 010}
005F 005}
1 2 3 5 1 2 4 5 6

Both py,,.14,p2n15 are n-times continuously differentiable for x > 0

H 2 113 H ” 113 H H ”
With p,(x) ~ Ze™ /n, So “four is small” but “eight is large.
030f 7 \ oo /'/

/ A\ 025 Y, \
025f p A ¥ N\
020f / \‘\ oo \\\
015F \\‘\ 015¢
010 o10p
005F 0051,
1 2 é 4 % 7 % é 8

@ Pearson wondered if ps was linear on [0, 1]. Only disproven in

sixties.
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Meijer-G (1 936) form for W3 and graph on real line

Theorem (Meijer-G form for W3)
For s not an odd integer
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Meijer-G (1 936) form for W3 and graph on real line

Theorem (Meijer-G form for W3)
For s not an odd integer

Wi(s) = —==—%5 1

F(1+%) 1 1,1,1
I(—3 G33 1 s s Z .
\/ﬁ (_2) 20 20 2

@ First found by Crandall via CAS.
@ Proved using residue calculus methods.

.
k\;
.
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Meijer-G (1 936) form for W3 and graph on real line

Theorem (Meijer-G form for W3)
For s not an odd integer

L(1+3) ., ( L,1,1 |1
Wi(s) = ———22-G =)
Val(-3) P\3-%-3/4

@ First found by Crandall via CAS.
@ Proved using residue calculus methods.
@ Wis(s) is among the first non-trivial higher order Meijer-G function

to be placed in closed form.

Jonathan Borwein Visual Theorems www.carma.newcastle.edu.au/walks



http://www.carma.newcastle.edu.au/walks

Random-ish
[e]e]e}

Meijer-G (1936) form fo
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Meijer-G (1936) form for W,

Theorem (Meijer form for W)

For 3s > —2 and s not an odd integer

zsr<1+;>022( L

Wa(s) = 7 T(—3) 44
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Meijer-G (1936) form for W,

Theorem (Meijer form for W)
For 3s > —2 and s not an odd integer

2T(1+3%) 1,55,1,1
W4(S) = ; F(_lz) Gii 2
2

He [Gauss (or Mathematica)]Iis like the fox, who effaces his
tracks in the sand with his tail— Niels Abel (1802-1829)
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Meijer-G (1936) form for W,

Theorem (Meijer form for W)
For 3s > —2 and s not an odd integer

zsr<1+;>022( L

4(S)* p F(—%’) 44

He [Gauss (or Mathematica)]Iis like the fox, who effaces his
tracks in the sand with his tail— Niels Abel (1802-1829)

But we really need a formula with s = 1, that is an integer.
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Visualizing W4, W5, and Wg on the real line
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Visualizing W4, W5, and Wg on the real line

HRe
T

4
) 1

e Use recursion from s > 1
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Visualizing W4, W5, and Wg on the real line

HRe
T

4
) 1

e Use recursion from s > 1
o Nonnegativity of W, was hard to prove (Wan)
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Visualizing W, in the complex plane

Jonathan Borwein Visual Theorems www.carma.newcastle.edu.au/walks


http://www.carma.newcastle.edu.au/walks

Random-ish
[e]e]e}

Visualizing W, in the complex plane

-6 -4 -2 0 2

@ Easily drawn now in Mathematica from the Meijer-G
representation
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Visualizing W4 in the complex plane

-6 -4 -2 0 2

@ Easily drawn now in Mathematica from the Meijer-G
representation

@ Each point is coloured differently (black is zero and white infinity).
Note the poles and zeros.
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Visualizing W4 in the complex plane: sometimes less is more

-6 -4 -2 0 2

@ Easily drawn now in Mathematica from the Meijer-G
representation.

@ Each quadrant is coloured differently (black is zero and white
infinity). Note the poles and zeros.
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Visualizing W4 in the complex plane: sometimes less is more

@ Less easily drawn now from the Meijer-G representation.
@ As prepared for Springer's Mathematical Beauties (2016).
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Simplifying the Meijer integrals for W3 and W,

@ We (humans and/or computers) now obtained:
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Simplifying the Meijer integrals for W3 and W,

@ We (humans and/or computers) now obtained:

Corollary (Hypergeometric forms for non-integer s > —2)

. 2 1 11
W(S),tan(Ts) Y ml 222 |1
36) =" (551 ) 372\ 13743

2

and
(%) (s Vo (BEEEE Y, (5) g (B8 e
Wals) = —5 szt | 4F3 | i gun s [1) (s )JaF3| 7 ] o1 " 1)
2 2 9 2 1 D 2 sy Ly 2
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Simplifying the Meijer integrals for W3 and W,

@ We (humans and/or computers) now obtained:
Corollary (Hypergeometric forms for non-integer s > —2)

ms 2 111

Wi(s) = an (%) s\ o[ 222

3T TR+l % 32| 543 543
2

3 111
s\ p(zD2it]
925 s=1 ) 43| 543 543 543

20200 2

S 1 _s _ s _s
1 +(x)4F3 R
Z L1, =5
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Hypergeometric values of Wj: from Meijer-G values.

(a) Fors# —3,-5,—7,... , we have

3s+3/2 1 1 s+2 s+2 s+2
W) = B (st gty )ama( 7 A

21

2 2

With much work involving moments of elliptic integrals we obtain:
Theorem (Tractable hypergeometric form for Ws)
1
- ]. (18)
s+3
7))
(b) For every natural number k=1,2,...,
V3()°

111

Lid
Wi(—2k—1)= k2 py (20202 1)
J )= i3 2(k+1,k+1 4
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Hypergeometric values of Wj: from Meijer-G values.

(a) Fors# —3,-5,—7,... , we have

3s+3/2 1 1 s+2 s+2 s+2
W) = B (st gty )ama( 7 A

21

2 2

With much work involving moments of elliptic integrals we obtain:
Theorem (Tractable hypergeometric form for Ws)
1
- ]. (18)
s+3
7))
(b) For every natural number k=1,2,...,
V3()°

111

Lid
Wi(—2k—1)= k2 py (20202 1)
J )= i3 2(k+1,k+1 4

@ The following formula hints at role played by Bessel functions
(Kluywer 1906 and http:
//www.carma.newcastle.edu.au/jon/walks—anu.pdf):

© d \/nm
W, = n/ T 0T T & VIT
0 X 2
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e Number walks
@ Number walks (base four)
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What is a (base four) random walk ?

Pick a random number in {0,1,2,3} and move accordingto 0 =—, 1 =1,2=+,3=]
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What is a (base four) random walk ?

Pick a random number in {0,1,2,3} and move accordingto 0 =—, 1 =1,2=+,3=]

Jonathan Borwein Visual Theorems www.carma.newcastle.edu.au/walks


http://www.carma.newcastle.edu.au/walks

What is a (base four) random walk ?

Pick a random number in {0, 1,2,3} and move accordingto 0 =—, 1 =1, 2

2 =<
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What is a (base four) random walk ?

Pick a random number in {0,1,2,3} and move accordingto 0 =—, 1 =1, 2=+, 3=

11222330
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What is a random walk (base 4)?

Pick a random number in {0,1,2,3} and move 0 =—, 1 =1, 2=+, 3= ANIMATION

i
o
’ *!ég

Figure: A million step base-4 pseudorandom walk. We use the spectrum to
show when we visited each point (ROYGBIV and R).
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Random walks look similarish Chaos theory (order in disorder)

Figure: Eight different base-4 (pseudo)random?® walks of one million steps.

8Python uses the Mersenne Twister as the core generator. It has a period of 219937 _y ~ 106002,
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Base-b random walks: Our direction choice

D

Figure: Directions for base-3 and base-7 random walks.
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0 Walks on ‘reals’
@ llIb: Study of number walks
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[1l: Two rational numbers ANIMATION

The base-4 digit expansion of Q1 and Q2:

Ql=
0.221221012232121200122101223121001222100011232123121000122210001222
10001222100012221000012221000122201103010122010012010311033333333333
33333333333333330111111111111111111111111111100100000000300300320032
00320030223000322203000322230003022220300032223000322230003222300032
22320000232223000322230032221330023321233023213232112112121222323233
33303000001000323003230032203032030110333011103301103101111011332333
3232322321221211211121122322222122. ..

Q2=
0.221221012232121200122101223121001222100011232123121000122210001222
10001222100012221000012221000122201103010122010012010311033333333333
33333333333333330111111111111111111111111111100100000000300300320032
00320030223000322203000322230003022220300032223000322230003222300032
22320000232223000322230032221330023321233023213232112112121222323233
33303000001000323003230032203032030110333011103301103101111011000000
000000...
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[1l: Two rational numbers ANIMATION

[EINSTEIN SIMPLLFIED

Figure: Self-referent walks on the rational numbers Q1 (top) and Q2 (bottom).
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Two more rationals Hard to tell from their decimal expansions

The following relatively small rational numbers [G. Marsaglia, 2010]
3624360069 123456789012
=————— and Q4=———"—
7000000001 1000000000061

have base-10 periods with huge length of 1,750,000,000 digits and
1,000,000,000,060 digits, respectively.
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Two more rationals Hard to tell from their decimal expansions

The following relatively small rational numbers [G. Marsaglia, 2010]
3624360069 123456789012
=————— and Q4=———"—
7000000001 1000000000061

have base-10 periods with huge length of 1,750,000,000 digits and
1,000,000,000,060 digits, respectively.

14 j _;&éf,\;
¥ *

wE

(b) 04
Figure: Walks on the first million base-10 digits of the rationals 03 and Q4.
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Walks on the digits of numbers ANIMATION

Figure: A walk on the first 10 million base-4 digits of x.
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Walks on the digits of numbers

Coloured by hits (more is more hits)

Figure: 100 million base-4 digits of & coloured by number of returns to points.
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0 Walks on ‘reals’

@ lllc: Stoneham numbers
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The Stoneham numbers

1973 Richard Stoneham proved some of the following (nearly
‘natural’) constants are b-normal for relatively prime integers b, c:

1 1 1
Opc = obe W m
Such super-geometric sums are Stoneham constants. To 10 places
1 1 1
24 + 3608 + 3623878656 e

+...

03 =
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0o 1

The Stoneham numbers Opc = Y e

1973 Richard Stoneham proved some of the following (nearly
‘natural’) constants are b-normal for relatively prime integers b, c:

1 1 1
Such super-geometric sums are Stoneham constants. To 10 places

1 1 1
24 o 3608 * 3623878656 T

+...

03 =

Theorem (Normality of Stoneham constants, Bailey—Crandall '02)

For every coprime pair of integers b > 2 and ¢ > 2, the constant o . is
b-normal.
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The Stoneham numbers Opc = Y e

1973 Richard Stoneham proved some of the following (nearly
‘natural’) constants are b-normal for relatively prime integers b, c:

1 1 1
Opc = obe W m
Such super-geometric sums are Stoneham constants. To 10 places
1 1 1
24 + 3608 + 3623878656 te
Theorem (Normality of Stoneham constants, Bailey—Crandall '02)

03 =

For every coprime pair of integers b > 2 and ¢ > 2, the constant o . is
b-normal.

v

Theorem (Nonnormality of Stoneham constants, Bailey—Borwein '12)

Given coprime b > 2 and ¢ > 2, such that ¢ < »°~!, the constant o, . is
bc-nonnormal.

<
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The Stoneham numbers Opc = Y e

1973 Richard Stoneham proved some of the following (nearly
‘natural’) constants are b-normal for relatively prime integers b, c:

1 1 1
Opc = obe W m
Such super-geometric sums are Stoneham constants. To 10 places
1 1 1
24 + 3608 + 3623878656 te
Theorem (Normality of Stoneham constants, Bailey—Crandall '02)

03 =

For every coprime pair of integers b > 2 and ¢ > 2, the constant o . is
b-normal.

v

Theorem (Nonnormality of Stoneham constants, Bailey—Borwein '12)

Given coprime b > 2 and ¢ > 2, such that ¢ < »°~!, the constant o, . is
bc-nonnormal.

<

@ Since 3 <21 =4, oy 5 is 2-normal and 6-nonnormal !
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The Stoneham numbers e =Y |

n=1 ch bc"

— {

Figure: oy 3 is 2-normal (top) but 6-nonnormal (bottom). Is seeing believing?
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The Stoneham numbers =Y 1

n=1 ch bc"

Figure: Is o 3 3-normal or not?

Jonathan Borwein Visual Theorems www.carma.newcastle.edu.au/walks


http://www.carma.newcastle.edu.au/walks

Contents

e Features of our walks
@ Expected distance to origin
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The expected distance to the origin

The expected distance dy to the origin of a base-b random walk of N
steps behaves like to v7N/2.
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The expected distance to the origin

The expected distance dy to the origin of a base-b random walk of N
steps behaves like to v7N/2.

Average normalized
Number Base Steps dist. ltostt?pf :?:gm: Normal
Steps =, @x
Mean of 10,000 4 1,000,000 1.00315 Yes
random walks
Mean of 10,000 walks | 1,000,000 1.00083 ?
on the digits of &
03 3 1,000,000 0.89275 ?
03 4 1,000,000 0.25901 Yes
003 6 1,000,000 108.02218 No
T 4 1,000,000 0.84366 ?
T 6 1,000,000 0.96458 ?
T 10 1,000,000 0.82167 ?
T 10 1,000,000,000 0.59824 ?
V2 4 1,000,000 0.72260 ?
Champernowne Cj, 10 1,000,000 59.91143 Yes

Jonathan Borwein Visual Theorems www.carma.newcastle.edu.au/walks


http://www.carma.newcastle.edu.au/walks

Contents

e Features of our walks

@ Number of points visited
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Number of points visited For a 2D lattice

@ The expected number of distinct points visited by an N-step
random walk on a two-dimensional lattice behaves for large N
like TN /log(N) (Dvoretzky—Erdds, 1951).
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Number of points visited For a 2D lattice

@ The expected number of distinct points visited by an N-step
random walk on a two-dimensional lattice behaves for large N
like TN /log(N) (Dvoretzky—Erdds, 1951).

@ Practical problem: Convergence is slow (O (NloglogN/(logN)?)).
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Number of points visited For a 2D lattice

@ The expected number of distinct points visited by an N-step
random walk on a two-dimensional lattice behaves for large N
like TN /log(N) (Dvoretzky—Erdds, 1951).

@ Practical problem: Convergence is slow (O (NloglogN/(logN)?)).

@ 1988 D. Downham and S. Fotopoulos gave better bounds on the
expectation. It lies in:

(N +0.84) A(N+1)
1.167 — 1 —1log2 +log(N +2) 1.0667 — 1 —log2 +1log(N+1) )
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Number of points visited For a 2D lattice

@ The expected number of distinct points visited by an N-step
random walk on a two-dimensional lattice behaves for large N
like TN /log(N) (Dvoretzky—Erdds, 1951).

@ Practical problem: Convergence is slow (O (NloglogN/(logN)?)).

@ 1988 D. Downham and S. Fotopoulos gave better bounds on the
expectation. It lies in:

(N +0.84) A(N+1)
1.167 — 1 —1log2 +log(N +2) 1.0667 — 1 —log2 +1log(N+1) )

@ For example, for N = 10° these bounds are (199256.1,203059.5),
while 7N /log(N) = 227396, which overestimates the expectation.
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Catalan’s constant G=1—1/4+1/9—1/16+--

e 00
0 00 o

Figure: A walk on one million quad-bits of G with height showing frequency
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Paul Erdds (1913-1996) “My brain is open”

o AN ol
. ¢ - N
Lty il # -‘_

(a) Paul Erdds (Banff 1981. | was there) (b) Emile Borel (1871-1956)

Figure: Two of my favourites. Consult MacTutor.
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Number of points visited: Again & looks random

240000 240000
220000 220000
200000 200000
180000 I 180000
160000} 160000

140000 140000

(a) (Pseudo)random walks. (b) Walks built by chopping up 10 billion
digits of .

Figure: Number of points visited by 10,000 million-steps base-4 walks.
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Points visited by various base-4 walks

Bounds on the expectation of

Number Steps Sites visited | sites visited by a random walk

Lower bound Upper bound

Mean of 10,000 1,000,000 202,684 199,256 203,060

random walks

Mean of 10,000 walks 1,000,000 202,385 199,256 203,060
on the digits of &

03 1,000,000 95,817 199,256 203,060

(028 1,000,000 195,585 199,256 203,060

n 1,000,000 204,148 199,256 203,060

T 10,000,000 1,933,903 1,738,645 1,767,533

n 100,000,000 16,109,429 15,421,296 15,648,132

T 1,000,000,000 138,107,050 138,552,612 140,380,926

e 1,000,000 176,350 199,256 203,060

V2 1,000,000 200,733 199,256 203,060

log2 1,000,000 214,508 199,256 203,060

Champernowne C;4 1,000,000 548,746 199,256 203,060

Rational number Q, 1,000,000 378 199,256 203,060

Rational number Q» 1,000,000 939,322 199,256 203,060

Jonathan Borwein

Visual Theorems
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Normal numbers need not be so “random” ...

o

Figure: Champernowne Cjy = 0.123456789101112... (normal).
Normalized distance to the origin: 15.9 (50,000 steps).
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Normal numbers need not be so “random” ...

<

:

Figure: Champernowne C4 = 0.123101112132021... (normal).
Normalized distance to the origin: 18.1 (100,000 steps).
Points visited: 52760. Expectation: (23333, 23857).
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Normal numbers need not be so “random” ...

Figure: Stoneham o, 3 = 0.0022232032.. .4 (normal base 4).
Normalized distance to the origin: 0.26 (1,000,000 steps).
Points visited: 95817. Expectation: (199256, 203060).
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Normal numbers need not be so “random” ...

Figure: Stoneham oy 3 = 0.0022232032.. .4 (normal base 4).
Normalized distance to the origin: 0.26 (1,000,000 steps).
Points visited: 95817. Expectation: (199256, 203060).
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o 3 is 4-normal but not so “random” ANIMATION
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Figure: A pattern in the digits of o, 3 base 4. We show only positions of the
walk after 3(3"+1),3(3"+1)+3"and 3(3" + 1) +2-3" steps, n=0,1,...,11.
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Experimental conjecture Proven 12-12-12 by Coons

Theorem (Base-4 structure of Stoneham ; 3)

Denote by a; the kM digit of 03 in its base 4 expansion:
s =Y, ar/45 with a, € {0,1,2,3} for all k. Then, foralln=0,1,2,...
one has:

2(3"+1)+3"

(I) Z eak”i/z _ { 7l’, n odd ,

. —1, neven
k=3 (37+1)
. . 33"+1) 3(3"+1 33"+1
(i) ar = agq3n = agqo3n it k= ( 2+ ), ( 2+ )+1,..., ( 2+ )+3" 1
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Likewise, a3 5 is 3-normal ... but not very “random” ANIMATION
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e Features of our walks

@ Fractal and box-dimension
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Box-dimension: Tends to ‘2’ for a planar random walk * s«®

[ 4

Box-dimension = lim M
side—0 log(1/side)

Norway is “frillier” — Hitchhiker’s Guide to the Galaxy
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Box-dimension:

Tends to ‘2’ for a planar random walk * s«e

Approximate fractal dimension of Champernowne C4 in base 4: 1.09
13 Steps of the walk: 1,000,000

Data
Least squares line

. . .
6—6 -5 -4 -3
log(1/side)

n
-2 -1 0

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds &
ferns not buildings & cars). Curves have dimension 1, squares dimension 2
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Box-dimension: Tends to ‘2’ for a planar random walk * s«®

Approximate fractal dimension of a, 4 in base 6: 1.057
12 Steps of the walk: 1,000,000

11f

10f

log(#bozes)

Data
— Least squares line

5 . . . n n
-6 -5 -4 -3 -2 -1 0
log(1/side)

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds &
ferns not buildings & cars). Curves have dimension 1, squares dimension 2
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Box-dimension: Tends to ‘2’ for a planar random walk * s«®

Approximate fractal dimension of Pi in base 4: 1.842
18 Steps of the walk: 1,000,000,000

log(#boxes)

10f - - Data g
— Least squares line

9 . . . n n
-6 -5 -4 -3 -2 -1 0
log(1/side)

Fractals: self-similar (zoom invariant) partly space-filling shapes (clouds &
ferns not buildings & cars). Curves have dimension 1, squares dimension 2
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e Other realisations
@ Fractals everywhere
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Fractals everywhere From Mars s
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Fractals everywhere From Mars s

The picture fractalized by the Barnsley’s
http://frangostudio.com/frangocamera.html
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Fractals everywhere From Space
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Fractals everywhere l+—3o0rl—8or..
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Fractals everywhere l>30r1s8o0r...
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Fractals everywhere l+—3o0rl—8or..
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Fractals everywhere l—3o0rl—8or..

Pascal triangle modulb two
[11,1111,2,1111,3,3,1,1[1,4,6,4,1] [1,510,10,5,1] ...
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Fractals everywhere l>30r1s8o0r...

Steps to construction of a Sierpinski cube
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Fractals everywhere The Sierpinski Triangle
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Fractals everywhere The Sierpinski Triangle
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Fractals everywhere The Sierpinski Triangle

1—»3—9
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Fractals everywhere The Sierpinski Triangle

P

Output from Pascal's Triangle Interface I

= e
e

b Output Rows (ma 100) Modis (210 16): Tmage

b Image (|

5
N B,

AN http:

//oldweb.cecm.sfu.ca/cgi-bin/organics/pascalform
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@ 3D drunkard’s walks

Jonathan Borwein Visual Theorems www.carma.newcastle.edu.au/walks


http://www.carma.newcastle.edu.au/walks

Three dimensional walks: Using base six — soon on 3D screen

Figure: Matt Skerritt’s 3D walk on 7 (base 6), showing one million steps. But
3D random walks are not recurrent.
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Three dimensional walks: Using base six — soon on 3D screen

Figure: Matt Skerritt’s 3D walk on 7 (base 6), showing one million steps. But
3D random walks are not recurrent.

“A drunken man will find his way home, a drunken bird will get
lost forever.” (Kakutani)
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Three dimensional printing: 3D everywhere

NewScientist

Figure: The future is here ...

www.digitaltrends.com/cool-tech/the-worlds-first-plane-created-entirely-by-3d-printing-takes-flight/

www . shapeways .com/shops/3Dfractals
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@ Chaos games
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Chaos games: Move half-way to a (random) corner

Figure: Coloured by frequency — leads to random fractals.
Row 1: Champernowne C3, o3 5, random, o, 3. Row 2: Champernowne Cy,
7, random, o, 3. Row 3: Champernowne Cg, a3 5, random, o, 3.
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@ 2-automatic numbers
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Automatic numbers: Thue—Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but
fascinating rules...giving structured/boring walks:

Figure: Paper folding. The sequence of left and right folds along a strip of
paper that is folded repeatedly in half in the same direction. Unfold and read
‘right’ as ‘1’ and ‘left as‘0: 10110011100100
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Automatic numbers: Thue—Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but
fascinating rules...giving structured/boring walks:

‘(”(»uramgv "

Figure: Paper folding. The sequence of left and right folds along a strip of
paper that is folded repeatedly in half in the same direction. Unfold and read
‘right’ as ‘1’ and ‘left as‘0: 10110011100100

Thue-Morse constant (transcendental; 2-automatic, hence nonnormal):

™, = Z ﬁ where ¢(0) = 0, while #(2n) = t(n) and t(2n+1) = 1 —#(n)

n=1

0.01101001100101101001011001101001....
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Automatic numbers:  Thue—Morse and Paper-folding

Automatic numbers are never normal. They are given by simple but
fascinating rules...giving structured/boring walks:

AN

N

(a) 1,000 bits of Thue—Morse (b) 10 million bits of paper-
sequence. folding sequence.

Figure: Walks on two automatic and so nonnormal numbers.
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Automatic numbers: Turtle plots look great!

s

(a) Ten million digits of the paper- (b) One million digits of the paper-
folding sequence, rotating 60°. folding sequence, rotating 120° (a
dragon curve).

o, ¢
Py
(c) 100,000 digits of the Thue— (d) One million digits of =, rotating
Morse sequence, rotating 60° (a 60°.

Koch snowflake).

Figure: Turtle plots on various constants with different rotating angles in base
2—where ‘0’ yields forward motion and ‘1’ rotation by a fixed angle.
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@ Walks on the genome
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Genomes as walks: We are all base 4 numbers (ACGT/U)

Chromosome X
[1.0]
g=10,1
t —1,0]

a=[0,-1

>
?,/
5; gﬁ
>3
’%’ Chromosome 1
/ é e=10
{
g=l0.1

t=[-1.0
0,1
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Genomes as walks: We are all base 4 numbers (ACGT/U)

Chromosome X Y

c=[1,0) N
g=10,1 Y
t=[~1,0 /
~

a 0,1 ¥4 e
V2

A

i o Distance o asasion ?
{

The X Chromosome (34K) and Chromosome One (10K).
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Genomes as walks: We are all base 4 numbers (ACGT/U)

Chromosome X
c=[10]
g=10,1
t —1,0]

a 0,1

—

'
A
| PO
’%’ Chromosome 1 R v
/ é e=10 i s
C H Y
g=l0.1 L8
K ]

%

The X Chromosome (34K) and Chromosome One (10K).

® Chromosomes look less like 7 and more like concatenation
numbers?
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DNA for Storage: We are all base 4 numbers (ACGT/U

Shakespeare and Martin Luther King
demonstrate potential of DNA storage

All 154 Shakespeare sonnets have been spelled out in DNA to
demonstrate the vast potential of genetic data storage

Science ) Biochemistry and molecular biology

lan Sample. science correspondent
The Guardian, Thursday 24 January 2013
Jump to comments (...}

Figure: The potential for DNA storage (L) and the quadruple helix (R)
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The end with some fractal dessert
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The end with some fractal dessert
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