
Intro Comb Anal Prob Higher Dim Mahler Measures

Moments and Densities of Short Random Walks
in all Dimensions

Jonathan M. Borwein Frsc Faaas Fbas Faa Fams
Joint with Armin Straub, James Wan, (Christophe Vignat),

Wadim Zudilin, ...

Director, CARMA, the University of Newcastle

September 18–19, 2015
Revised: 13-09-15

JMB/JW Short Random Walks



Intro Comb Anal Prob Higher Dim Mahler Measures

From Mathematical Beauties, Calendar (August 2016)

JMB/JW Short Random Walks



Intro Comb Anal Prob Higher Dim Mahler Measures

From Mathematical Beauties, Calendar (August 2016)

• The (complex) moment function of a 4-step walk in the plane.

JMB/JW Short Random Walks



Intro Comb Anal Prob Higher Dim Mahler Measures

From Mathematical Beauties, Calendar (August 2016)

• The (complex) moment function of a 4-step walk in the plane.

JMB/JW Short Random Walks



Intro Comb Anal Prob Higher Dim Mahler Measures

Outline

1 Introduction

2 Combinatorics

3 Analysis

4 Probability

5 Higher Dimensions

6 Mahler Measures

JMB/JW Short Random Walks



Intro Comb Anal Prob Higher Dim Mahler Measures

I. INTRODUCTION

• An age old question: What is a walk?

• Also (self-avoiding) random walks, random migrations,
random flights.
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Abstract

Following Pearson in 1905, we first study the expected distance
and density of a two-dimensional walk in the plane with n unit
steps in random directions — what Pearson called a random walk.
We finish by examining our prior work in higher dimensions.

• We present recent results on the densities, pn, of n-step
random uniform random walks in the plane (d := 2ν + 2 = 2).

• For n ≥ 7 asymptotic formulas first developed by Raleigh are
largely sufficient to describe the density.

• For 2 ≤ n ≤ 6 this is far from true, as first investigated by
Pearson.

• We shall see remarkable new hypergeometric closed forms for
p3, p4 and precise analytic information for larger n.

• Heavy use is made of analytic continuation of the integral
(also of modern special functions (e.g., Meijer-G) and
computer algebra (CAS)).
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I. Random walk integrals — our starting point

For complex s

Definition (Moment function)

Wn(s) = Wn(0; s) :=

∫
[0,1]n

∣∣∣∣∣
n∑
k=1

e2πxki

∣∣∣∣∣
s

dx

• Wn is analytic precisely for <s > −2.

• Also, Wn(1) is the expectation.

Simplest case (obvious for geometric reasons):

W1(s) =

∫ 1

0

∣∣e2πix
∣∣s dx = 1.
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• Second simplest case:

W2(1) =

∫ 1

0

∫ 1

0

∣∣e2πix + e2πiy
∣∣ dxdy = ?

• Mathematica 7–10 and Maple 13–18 ‘think’ the answer is 0
(feature or bug?).

• There is always a 1-dimension reduction

Wn(s) =

∫
[0,1]n

∣∣∣∣ n∑
k=1

e2πxki

∣∣∣∣sdx
=

∫
[0,1]n−1

∣∣∣∣1 +

n−1∑
k=1

e2πxki

∣∣∣∣sd(x1, . . . , xn−1)

• So W2(1) = 4
∫ 1/2

0 cos(πx)dx = 4
π .
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n ≥ 3 highly nontrivial and n ≥ 5 still not well understood

• Similar problems often get much more difficult in five
dimensions and above — e.g., Bessel moments, Box integrals,
Ising integrals (work with Bailey, Broadhurst, Crandall , ...).

• In fact, W5(1) ≈ 2.0081618 was the best estimate we could
compute directly, on 256 cores at Lawrence Berkeley Labs.

• We have a general program to develop symbolic numeric
techniques for multi-dimensional integrals.

• Most results are published1 (ISSAC 2011 (prize), RAMA,
CMS 2012 (prize)). See
www.carma.newcastle.edu.au/~jb616/walks.pdf

www.carma.newcastle.edu.au/~jb616/walks2.pdf

www.carma.newcastle.edu.au/~jb616/densities.pdf and

www.carma.newcastle.edu.au/~jb616/dwalks.pdf

When the facts change, I change my mind. What do you do, sir?
— John Maynard Keynes in Economist, Dec 18, 1999.

1This and related talks are at ∼jb616/papers.html#TALKS
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One 1500-step ramble: ...a familiar picture

• 1D (and 3D) easy. Expectation of RMS distance is easy (
√
n).

• 1D or 2D lattice: probability one of returning to the origin.
Drunken men get home, birds do not (Kakutani)
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1000 three-step rambles: ... a less familiar picture?
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The long and the short of it
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A little history — — from a vast literature

L: Pearson posed question
(Nature, 1905).

R: Rayleigh gave large n asymptotics:
pn(x) ∼ 2x

n e
−x2/n (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.
The problem “is the same as that of the composition of n isoperiodic
vibrations of unit amplitude and phases distributed at random” he
studied in 1880 (diffusion equ’n, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C 7→ K), declined knighthood.

• UNSW: Donovan and Nuyens, WWII cryptography.

• Appear in quantum chemistry, in quantum physics as hexagonal and
diamond lattice integers, etc ...
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II. COMBINATORICS
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Wn(k) at even values

Even values are easier (combinatorial – no square roots).

k 0 2 4 6 8 10

W2(k) 1 2 6 20 70 252

W3(k) 1 3 15 93 639 4653

W4(k) 1 4 28 256 2716 31504

W5(k) 1 5 45 545 7885 127905

• Can get started by rapidly computing many values naively as
symbolic integrals.

• Observe that W2(s) =
(
s
s/2

)
for s > −1.

• MathWorld gives Wn(2) = n (trivial).

• Entering 1,5,45,545 in the OEIS now gives “The function
W5(2n) (see Borwein et al. reference for definition).”
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Wn(k) at odd integers

n k = 1 k = 3 k = 5 k = 7 k = 9

2 1.27324 3.39531 10.8650 37.2514 132.449

3 1.57460 6.45168 36.7052 241.544 1714.62

4 1.79909 10.1207 82.6515 822.273 9169.62
5 2.00816 14.2896 152.316 2037.14 31393.1

6 2.19386 18.9133 248.759 4186.19 82718.9

Memorize this number!

During the three years which I spent at Cambridge my time was wasted, as far as the academical

studies were concerned, as completely as at Edinburgh and at school. I attempted mathematics,

and even went during the summer of 1828 with a private tutor (a very dull man) to Barmouth, but

I got on very slowly. The work was repugnant to me, chiefly from my not being able to see any

meaning in the early steps in algebra. This impatience was very foolish, and in after years I have

deeply regretted that I did not proceed far enough at least to understand something of the great

leading principles of mathematics, for men thus endowed seem to have an extra sense. —

Autobiography of Charles Darwin
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Resolution at even values

• Even formula counts n-letter abelian squares xπ(x) of length
2k (Shallit-Richmond (2008) give asymptotics):

Wn(2k) =
∑

a1+...+an=k

(
k

a1, ..., an

)2

. (1)

• Known to satisfy convolutions:

Wn1+n2(2k) =

k∑
j=0

(
k

j

)2

Wn1(2j)Wn2(2(k − j)), so

W5(2k) =
∑

j

(
k
j

)2(2(k−j)
k−j

)∑
`

(
j
`

)2(2`
`

)
=
∑

j

(
k
j

)2∑
`

(2(j−`)
j−`

)(
j
`

)2(2`
`

)
• and recursions such as:

(k+2)2W3(2k+4)−(10k2+30k+23)W3(2k+2)+9(k+1)2W3(2k) = 0.
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• Wn(2k) satisfies an bn+1
2 c-term recursion and

⌊
n+3

2

⌋
distinct

iterated sums.

• Also

W3(1) = 3

∞∑
n=0

(
1/2

n

)(
−8

9

)n n∑
k=0

(
n

k

)(
−1

8

)k k∑
j=0

(
k

j

)3

= 3

∞∑
n=0

(−1)n
(

1/2

n

) n∑
k=0

(
n

k

)(
−1

9

)k k∑
j=0

(
k

j

)2(
2j

j

)

• Recursion gives better approximations than many methods of
numerical integration for many values of s.

• Tanh-sinh (doubly-exponential) quadrature works well for W3

but not so well for W4 ≈ 1.79909248.

• Quasi-Monte Carlo was not very accurate.
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III. ANALYSIS

Visualizing W4 in the complex plane
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Carlson’s theorem: ...from discrete to continuous

Theorem (Carlson (1914, PhD) )

Suppose f(z) is analytic of exponential growth for <(z) ≥ 0, and
its growth on the imaginary axis is bounded by ecy, |c| < π. If

0 = f(0) = f(1) = f(2) = . . .

then f(z) = 0 identically in the region.

• sin(πz) does not satisfy the conditions of the theorem, as it
grows like eπy on the imaginary axis.

• |Wn(ν; s)| ≤ n|<(s)| satisfies the conditions of the theorem
(and Wn(0; s) is in fact analytic for <(s) > −2 when n > 2).

• There is a lovely 1941 proof by Selberg of the bounded case.
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Analytic continuation

• So integer recurrences yield complex functional equations. Viz

(s+4)2W3(s+4)−2(5s2+30s+46)W3(s+2)+9(s+2)2W3(s) = 0.

• This gives analytic continuations of the ramble integrals to
the complex plane, with poles at certain negative integers
(likewise for all n).

• W3(s) has a simple pole at −2 with residue 2√
3π
, and other

simple poles at −2k with residues a rational multiple of Res−2.

“For it is easier to supply the proof when we have previously acquired, by
the method [of mechanical theorems], some knowledge of the questions
than it is to find it without any previous knowledge. — Archimedes.
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Odd lengths look like 3

W3(s) on [−6, 5
2 ]

• JW proved zeroes near to but not at integers: W3(−2n− 1) ↓ 0.
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Some even lengths look more like 4

L: W4(s) on [−6, 1/2]. R: W5 on [−6, 2] (T), W6 on [−6, 2] (B).

• The functional equation (with double poles) for n = 4 is

(s+ 4)3W4(s+ 4) − 4(s+ 3)(5s2 + 30s+ 48)W4(s+ 2)

+ 64(s+ 2)3W4(s) = 0

• Conjecture: multiple poles iff 4|n (proven for small n).
• Why is W4 positive on R?
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A discovery demystified

In particular, we had shown that

W3(2k) =
∑

a1+a2+a3=k

(
k

a1, a2, a3

)2

= 3F2

(
1/2,−k,−k

1, 1

∣∣∣∣4)︸ ︷︷ ︸
=:V3(2k)

where pFq is the generalized hypergeometric function. We
discovered numerically that: V3(1) = 1.57459− .12602652i

Theorem (Real part (similarly in all even dimensions))

For all integers k we have W3(k) = <(V3(k)).

We have a habit in writing articles published in scientific journals to make
the work as finished as possible, to cover up all the tracks, to not worry
about the blind alleys or describe how you had the wrong idea first.
. . . So there isn’t any place to publish, in a dignified manner, what you
actually did in order to get to do the work. — Richard Feynman (Nobel
acceptance 1966)
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Proof with hindsight

k = 1. From a dimension reduction, and elementary manipulations,

W3(1) =

∫ 1

0

∫ 1

0

∣∣1 + e2πix + e2πiy
∣∣ dxdy

=

∫ 1

0

∫ 1

0

√
4 sin(2πt) sin(2π(s+ t/2))− 2 cos(2πt) + 3 dsdt.

• Let s+ t/2→ s, and use periodicity of the integrand, to obtain

W3(1) =

∫ 1

0

{∫ 1

0

√
4 cos(2πs) sin(πt)− 2 cos(2πt) + 3 ds

}
dt.

The inner integral can now be computed because∫ π

0

√
a+ b cos(s) ds = 2

√
a+ b E

(√
2b

a+ b

)
.
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Proof continued

Here E(x) is the elliptic integral of the second kind:

E(x) :=

∫ π/2

0

√
1− x2 sin2(t) dx.

• After simplification,

W3(1) =
4

π2

∫ π/2

0
(2 sin(t) + 1)E

(
2
√

2 sin(t)

1 + 2 sin(t)

)
dt.

Now we recall Jacobi’s imaginary transform,

(x+ 1)E

(
2
√
x

x+ 1

)
= <(2E(x)− (1− x2)K(x))

and substitute. Here K(x) is the elliptic integral of the first kind.

• This is where < originates:

• e.g., V3(−1) = 0.896441− 0.517560i,W3(−1) = 0.896441.
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Proof completed

Using the integral definition of K and E, we can express W3 as a
double integral involving only sin. Set

Ω3(a) :=
4

π2

∫ π/2

0

∫ π/2

0

1 + a2 sin2(t)− 2 a2 sin2(t) sin2(r)√
1− a2 sin2(t) sin2(r)

dtdr,

so that

<(Ω3(2)) = W3(1). (2)

• Expand using the binomial theorem, evaluate the integral
term by term for small a — where life is easier — and use
analytic continuation to deduce

Ω3(2) = V3(1). (3)

• k = −1. A similar (and easier) proof obtains for W3(−1).
• As both sides satisfy the same 2-term recursion (computer

provable), we are done. QED
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A pictorial ‘proof’ shows Carlson’s theorem does not apply

W3(s)−<V3(s) on [0, 12]

• This was hard to draw when discovered, as at the time we had
no good closed form for W3(s). For s 6= −3,−5,−7, . . . , we
now have

W3(s) =
3s+3/2

2π
β

(
s+

1

2
, s+

1

2

)
3F2

(
s+2

2 , s+2
2 , s+2

2

1, s+3
2

∣∣∣∣14
)
.
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Closed forms

• We then confirmed 175 digits of

W3(1) ≈ 1.57459723755189365749 . . .

• Armed with a knowledge of elliptic integrals:

W3(1) =
16 3
√

4π2

Γ(1
3)6

+
3Γ(1

3)6

8 3
√

4π4
= W3(−1) +

6/π2

W3(−1)
,

W3(−1) =
3Γ(1

3)6

8 3
√

4π4
=

2
1
3

4π2
β2

(
1

3

)
.

Here β(s) := B(s, s) = Γ(s)2

Γ(2s) .

• Obtained via singular values of the elliptic integral and
Legendre’s identity.
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Closed forms

• We then confirmed 175 digits of
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IV. PROBABILITY
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H.E. Fettis (1963)

“On a [1906] conjecture

of Pearson.”
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The Bessel J function

Recall, the normalized Bessel function of the first kind is

jν(x) = ν!

(
2

x

)ν
Jν(x) = ν!

∑
m≥0

(−x2/4)m

m!(m+ ν)!
. (4)

With this normalization, we have jν(0) = 1 and

jν(x) ∼ ν!√
π

(
2

x

)ν+1/2

cos

(
x− π

2

(
ν +

1

2

))
as x→∞ on the real line.

• Note also that

j1/2(x) = sinc(x) = sin(x)/x

– which in part explains why analysis in 3-space is so simple.
More generally, all half-integer order jν(x) are elementary.
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Richer representations

1906. The influential Leiden mathematician J.C. Kluyver
(1860-1932) — supervisor of Kloosterman —published a
fundamental Bessel representation for the cumulative radial
distribution function (Pn) and density (pn) :

Pn(t) = t

∫ ∞
0

J1(xt) Jn0 (x) dx

pn(t) = t

∫ ∞
0

J0(xt) Jn0 (x)x dx (n ≥ 4) (5)

where Jn(x) is the Bessel J function of the first kind (see Watson
(1932, §49); 3-dim walks are elementary).

• From (7) below, we find

pn(1) = Res−2 (Wn+1) (n = 1, 2, . . .). (6)

• As p2(α) = 2
π
√

4−α2
, we check in Maple that the following

code returns R = 2/(
√

3π) symbolically:
R:=identify(evalf[20](int(BesselJ(0,x)^3*x,x=0..infinity)))
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A Bessel integral for Wn

• Also Pn(1) = J0(0)n+1

n+1 = 1
n+1 (A question of Pearson).

• Broadhurst used (5) to show for 2k > s > −n
2 that

Wn(s) = 2s+1−k Γ(1 + s
2)

Γ(k − s
2)

∫ ∞
0

x2k−s−1

(
−1

x

d

dx

)k
Jn0 (x)dx,

(7)
a useful oscillatory 1-dim integral (used below). Thence

Wn(−1) =

∫ ∞
0

Jn0 (x)dx, Wn(1) = n

∫ ∞
0

J1(x)J0(x)n−1 dx

x
.

(8)

Integrands for W4(−1) (blue) and
W4(1) (red) on [π, 4π] from (8).
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The densities for n = 3, 4 are ‘modular’

Let σ(x) := 3−x
1+x . Then σ is an involution on [0, 3] sending [0, 1] to [1, 3]:

p3(x) =
4x

(3− x)(x+ 1)
p3(σ(x)). (9)

So 3
4p
′
3(0) = p3(3) =

√
3

2π , p(1) =∞. We found:

p3(α) =
2
√
3α

π
(
3 + α2

) 2F1

 1
3
, 2
3

1

∣∣∣∣α2
(
9− α2

)2
(
3 + α2

)3
 =

2
√

3

π

α

AG3(3 + α2, 3
(
1− α2

)2/3) (10)

where AG3 is the cubically convergent mean iteration (1991):

AG3(a, b) :=
a + 2b

3

⊗(
b ·

a2 + ab + b2

3

)1/3

.

The densities p3 (L) and p4 (R)

JMB/JW Short Random Walks



Intro Comb Anal Prob Higher Dim Mahler Measures

The densities for n = 3, 4 are ‘modular’

Let σ(x) := 3−x
1+x . Then σ is an involution on [0, 3] sending [0, 1] to [1, 3]:

p3(x) =
4x

(3− x)(x+ 1)
p3(σ(x)). (9)

So 3
4p
′
3(0) = p3(3) =

√
3

2π , p(1) =∞. We found:

p3(α) =
2
√
3α

π
(
3 + α2

) 2F1

 1
3
, 2
3

1

∣∣∣∣α2
(
9− α2

)2
(
3 + α2

)3
 =

2
√
3

π

α

AG3(3 + α2, 3
(
1− α2

)2/3) (10)

where AG3 is the cubically convergent mean iteration (1991):

AG3(a, b) :=
a + 2b

3

⊗(
b ·

a2 + ab + b2

3

)1/3

. The densities p3 (L) and p4 (R)

JMB/JW Short Random Walks



Intro Comb Anal Prob Higher Dim Mahler Measures

Formula for the ‘shark-fin’ p4 (stimulated by S. Robins)

We ultimately deduce on 2 ≤ α ≤ 4 a hyper-closed form:

p4(α) =
2

π2

√
16− α2

α
3F2

(
1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣
(
16− α2

)3
108α4

)
. (11)

← p4 from (11) vs 18-terms of empirical
power series

X Proves p4(2) = 27/3π
3
√
3

Γ
(
2
3

)−6
=

√
3
π W3(−1) ≈ 0.494233 < 1

2

• Empirically, quite marvelously, we
found — and proved by a subtle use of
distributional Mellin transforms — that
on [0, 2] as well:

p4(α)
?
=

2

π2

√
16− α2

α
< 3F2

(
1
2 ,

1
2 ,

1
2

5
6 ,

7
6

∣∣∣∣
(
16− α2

)3
108α4

)
(12)

(Discovering this < brought us full circle.)
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The densities for 5 ≤ n ≤ 8 (and large n approximation)

1 2 3 4 5
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0.10

0.15

0.20

0.25

0.30

0.35

1 2 3 4 5 6

0.05

0.10

0.15

0.20

0.25

0.30

0.35

• Both p2n+4, p2n+5 are n-times continuously differentiable for x > 0

(pn(x) ∼ 2x
n e
−x2/n). So “four is small” but “eight is large.”

1 2 3 4 5 6 7
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0.30

2 4 6 8
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An elliptic integral harvest

Indeed, PSLQ found various representations including:

W4(1) =
9π

4
7F6

(
7
4 ,

3
2 ,

3
2 ,

3
2 ,

1
2 ,

1
2 ,

1
2

3
4 , 2, 2, 2, 1, 1

∣∣∣∣1
)
− 2π7F6

(
5
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1
4 , 1, 1, 1, 1, 1

∣∣∣∣1
)

=
π

4

∞∑
n=0

64(n+ 1)4 − 144(n+ 1)3 + 108(n+ 1)2 − 30(n+ 1) + 3

(n+ 1)3

(
2n
n

)6
46n

.

• Proofs rely on work by Nesterenko and by Zudilin. Inter alia:

2

∫ 1

0

K(k)2dk =

∫ 1

0

K ′(k)2dk =
(π

2

)4
7F6

(
5
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1
4 , 1, 1, 1, 1, 1

∣∣∣∣1
)
.

• We also deduce that (K
′
, E
′

are complementary integrals)

W4(−1) =
8

π3

∫ 1

0
K

2
(k)dk, W4(1) =

96

π3

∫ 1

0
E
′
(k)K

′
(k)dk − 8W4(−1).

• Much else about moments of products of elliptic integrals has
been discovered (with massive 1600 relation PSLQ runs)
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V. HIGHER DIMENSIONAL WALKS ... a sampler

ν := d
2 − 1

1 Even moments have a fine formula in all dimensions
• the iterations all generalise (poles are simpler for d > 2)

2 The Bessel and Meijer representations all generalise
• with Jν ‘replacing’ J0

3 Odd dimensions are easy-ish (closed form)
• half-order Bessel functions are elementary

4 Complete two and three step generalisations exist
• and in interesting ways

5 Four and five step densities put up more resistance!
• and in interesting ways
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V. Radial densities for 3, 4, 5 steps in dimensions 2 to 9

• For x > 0, pn(ν;x) is m-times continuously differentiable if
m < (n− 1)(ν + 1/2)− 1 (increases with ν and n).

•
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Va. Even moments ... what do they count?

Theorem (Even moments)

For all d = 2ν + 2 even moments Wn (ν; 2k) are given by

ν!n−1 (k + ν)!

(k + nν)!

∑
k1+···+kn=k

(
k

k1, . . . , kn

)(
k + nν

k1 + ν, . . . , kn + ν

)
.

For n = 2 we have

W2 (ν; 2k) =

(2(k+ν)
k+ν

)(
k+ν
ν

) .

So for ν = 1 and so d = 4, we have

W2 (1; 2k) = Ck+1,

the Catalan number of order k + 1. More generally Wn(ν, 2k) is
only fully integral for ν = 0, 1. Indeed ...
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Va. Combinatorics of even moments ... (BSV, Hare–McKay)

Theorem (BSV, 2015)

For given integer ν ≥ 0, let A(ν) be the infinite lower triangular
matrix with entries

Ak,j(ν) :=

(
k

j

)
(k + ν)!ν!

(k − j + ν)!(j + ν)!

for row indices k = 0, 1, 2, . . . and columns j = 0, 1, 2, . . . . Then
the moments Wn+1(ν; 2k) are given by the row sums of A(ν)n.

• A(1) is the integral Narayana triangle [A001263].
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Va. Narayana Triangle

A(1) :=



1 0 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 0
1 3 1 0 0 0 0 0
1 6 6 1 0 0 0 0
1 10 20 10 1 0 0 0
1 15 50 50 15 1 0 0
1 21 105 175 105 21 1 0
1 28 196 490 490 196 28 1
...

. . .


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Va.Divisibility properties of even moments ... also congruences

For integer ν ≥ 0, H&M (2015) define

rν := min

{
r > 0 : Ak,j(ν) ∈ 1

r
Z, j, k ≥ 0

}
.

so that r0 = r1 = 1 and r2 = 3.

Theorem

For ν ≥ 1 we have rν
∣∣ (2ν−1)!

ν! .

Theorem

For ν ≥ 1 we have
(

2ν−1
ν

) ∣∣ rν .

Conjecture (Proven for ν = 0, 1, 2, 3, 4)

For ν ≥ 1 we have rν =
(

2ν−1
ν

)
.
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Meijer-G functions (1936– )

Definition (Meijer-G)

Gm,np,q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣x) :=
1

2πi
×

∫
L

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏p

j=n+1 Γ(aj − s)
∏q
j=m+1 Γ(1− bj + s)

xsds.

• Contour L chosen so it lies between poles of Γ(1− ai − s)
and of Γ(bi + s).

• A broad generalization of hypergeometric functions —
capturing Bessel Y,K and much more.

• Important in CAS, they often lead to superpositions of
hypergeometric terms.
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Vb. Bessel and Meijer forms

Theorem (Meijer forms)

For all complex s, and ν = 0, 1/2, 1, . . ., with some restriction on
s, we have

W3(ν; s) = 22νν!2
Γ
(
s
2 + ν + 1

)
Γ
(

1
2

)
Γ
(
− s

2

)G2,1
3,3

(
1, 1 + ν, 1 + 2ν

1
2 + ν,− s

2 ,−
s
2 − ν

;
1

4

)
,

W4(ν; s) = 2s+4νν!3
Γ
(
s
2 + ν + 1

)
Γ
(

1
2

)2
Γ
(
− s

2

)
× G2,2

4,4

(
1, 1−s

2 − ν, 1 + ν, 1 + 2ν
1
2 + ν,− s

2 ,−
s
2 − ν,−

s
2 − 2ν

; 1

)
.

• These can be written in terms of hypergeometric functions; in
the limit for odd integers.
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Vc. Density in odd dimensions ... and hence also moments

Theorem (Convolution for density in odd dim., Garćıa-Pelayo 2012)

Assume the dimension d = 2m+ 1 is odd. Then, for all real x,

pn(m− 1/2;x) =
(2x)2mΓ(m)

Γ(2m)

(
− 1

2x

d

dx

)m
Pm,n(x) (13)

where Pm,n is the piecewise polynomial obtained from convolving

fm(x) :=
Γ(m+ 1/2)

Γ(1/2)Γ(m)

{(
1− x2

)m−1
if x ∈ [−1, 1]

0 otherwise

n− 1 times with itself.

• The expression above is both elegant and compact. It shows that in

odd dimensions the density is piecewise polynomial, but is difficult

to manipulate or compute with or without a CAS. It leads to ...
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Vc. Density in odd dimensions ... Rayleigh (1919) in 3-space

Theorem (Densities in odd dimensions, B–Sinnamon 2015)

Let n ≥ 2 and m ≥ 1. Then

pn(m− 1/2;x) =

(
Γ(2m)

2mΓ(m)

)n n∑
r=0

(
n

r

)
(−1)mrH(n− 2r + x)

×
m∑
k=1

(−2)k
(
m− 1

k − 1

)
(2m− 1− k)!

(2m− 1)!
xk

×
(m−1)n∑
j=0

(n− 2r + x)mn−1+j−k

(mn− 1 + j − k)!
[xj ]Cm(x)rCm(−x)n−r (14)

where H(x) is the Heaviside function and

Cm(x) :=

m−1∑
k=0

(m− 1 + k)!

2kk!(m− 1− k)!
xk = 2F0

(
m, 1−m; ; −x

2

)
.
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Vd. Moments of a three step walk in even dimensions

Theorem (Three step moments)

For all integers ν and n we have

W3(ν, n)=Re3F2

(
ν + 1

2 ,−n,−n− ν
ν + 1, 2 ν + 1

∣∣∣∣4) ,
and, all these lie in the vector space over Q generated by

A :=
3

16

21/3

π4
Γ6

(
1

3

)
and

1

π2A
.

This relies on discovery that

W3 (ν; 2n− 1) = 2ν2
W3 (ν − 1; 2n+ 3)− 3W3 (ν − 1; 2n+ 1)

(2n+ 6ν − 1)(2n+ 1)
. (15)

• Theorem fails in odd dim but (15) has a partner for n = 4
yielding all odd moments of 4-step walks in even dimensions.

JMB/JW Short Random Walks



Intro Comb Anal Prob Higher Dim Mahler Measures

Vd. Moments of a three step walk in even dimensions

Theorem (Three step moments)

For all integers ν and n we have

W3(ν, n)=Re3F2

(
ν + 1

2 ,−n,−n− ν
ν + 1, 2 ν + 1

∣∣∣∣4) ,
and, all these lie in the vector space over Q generated by

A :=
3

16

21/3

π4
Γ6

(
1

3

)
and

1

π2A
.

This relies on discovery that

W3 (ν; 2n− 1) = 2ν2
W3 (ν − 1; 2n+ 3)− 3W3 (ν − 1; 2n+ 1)

(2n+ 6ν − 1)(2n+ 1)
. (15)

• Theorem fails in odd dim but (15) has a partner for n = 4
yielding all odd moments of 4-step walks in even dimensions.

JMB/JW Short Random Walks



Intro Comb Anal Prob Higher Dim Mahler Measures

Vd. Moments of a three step walk in even dimensions

Theorem (OGF for even moments with 3 steps)

For integers ν ≥ 0 we have

∞∑
k=0

W3(ν; 2k)xk=
(−1)ν(

2ν
ν

) (1− 1/x)2ν

1 + 3x
2F1

( 1
3 ,

2
3

1 + ν

∣∣∣∣27x(1− x)2

(1 + 3x)3

)
−qν

(
1

x

)
, (16)

for |x| < 1/9, where qν(x) is a polynomial (that is, qν(1/x) is the
principal part of the hypergeometric term on the right-hand side).

• q0(x) = 0 and q1(x) = 1
2x2
− 1

x , etc.
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Vd. Density of a three step walk in all dimensions

Theorem (Three step density)

For any half-integer ν and x ∈ (0, 3), we have

p3(ν;x)

x
=

2
√

3

π

3−3ν(
2ν
ν

) x2ν(9− x2)2ν

3 + x2
2F1

(
1
3 ,

2
3

1 + ν
;
x2(9− x2)2

(3 + x2)3

)
. (17)

In addition, p3(ν;x)/x satisfies the functional equation

F (x) =

(
1 + x

2

)6ν+2

F

(
3− x
1 + x

)
.

found symbolically in odd dimensions.

General results for all n = 3, 4, 5 . . . and ν > 0 include :

p
(d−1)
n+1 (ν; 0) = (d− 1)! pn(ν; 1),

p′n(ν; 1) =
(2n) ν + n− 1

n+ 1
pn(ν; 1).
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Ve. Generalised Domb numbers ...and an OGF for (19)

We can prove W4(ν; 2k) =

22(ν+k) Γ
(
k + ν + 1

2

)
Γ (1 + ν)

√
πΓ (1 + k + 2 ν)

3F2

(
−k,−k − ν,−k − 2ν, 1

2 + ν

1 + ν, 1 + 2ν, 1
2 − k − ν

∣∣∣∣1
)
.

(18)

The Domb or diamond lattice numbers start: 1, 4, 28, 256, 2716,
31504, 387136, 4951552.... They are A002895 in the OEIS with ogf

1 + 4x2 + 28x4 + . . . =
1

1− 4x
2F1

( 1
6 ,

1
3

1

∣∣∣∣ 108x2

(1− 4x)3

)2

.

• For 4-steps in d = 4, 6 dim. (18) gives [A253095, 14-06-15]

1, 4, 22, 148, 1144, 9784, 90346, 885868, 9115276, ... (19)

1, 4, 20,
352

3
,
2330

3
,
16952

3
,
133084

3
, 370752, 3265208, ... (20)

which is what the Narayana analysis showed.
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1 + 4x2 + 28x4 + . . . =
1

1− 4x
2F1

( 1
6 ,

1
3

1

∣∣∣∣ 108x2

(1− 4x)3

)2

.

• For 4-steps in d = 4, 6 dim. (18) gives [A253095, 14-06-15]

1, 4, 22, 148, 1144, 9784, 90346, 885868, 9115276, ... (19)

1, 4, 20,
352

3
,
2330

3
,
16952

3
,
133084

3
, 370752, 3265208, ... (20)

which is what the Narayana analysis showed.
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Ve. Generalised Domb numbers ...and an ogf for (19)

It was known that

∞∑
k=0

W4(0; 2k)xk =
1

1− 16x
2F1

( 1
6 ,

1
3

1

∣∣∣∣ 108x

(16x− 1)3

)2

. (21)

We derived, as in (16), that

− 1

2x2
+

1

x
+

∞∑
n=0

W4(1; 2k)xk (22)

= (32x− 7)F 2
0 − (4x− 1)

[
(32x+ 3)F0F1 −

(
16x2 + 10x+

1

4

)
F 2

1

]
.

Here, we employ hypergeometrics:

Fλ :=
1

2 · 3λx(16x− 1)1−λ
dλ

dxλ
2F1

( 1
6 ,

1
3

1

∣∣∣∣ 108x

(16x− 1)3

)
.
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Vf. Five step walks ... now extended to all dimensions

• The functional equation for W5 = W5(0; ·) is:

225(s + 4)
2
(s + 2)

2
W5(s) = −(35(s + 5)

4
+ 42(s + 5)

2
+ 3)W5(s + 4)

+ (s + 6)
4
W5(s + 6) + (s + 4)

2
(259(s + 4)

2
+ 104)W5(s + 2). (23)

• We deduce the first two poles — and so all — are simple since

lim
s→−2

(s + 2)
2
W5(s) =

4

225
(285W5(0)− 201W5(2) + 16W5(4)) = 0

lim
s→−4

(s + 4)
2
W5(s) = −

4

225
(5W5(0)−W5(2)) = 0.

• We stumbled upon a proof, via Chowla-Selberg, that

r5,0 = p4(1) =Res−2(W5) =

√
15

3π
3F2

( 1
3 ,

2
3 ,

1
2

1, 1

∣∣∣∣−4

)
.

• And, originally numerically, but now proven using ν = 1, that

r5,1 := Res−4(W5) =
13

225
r5(1)− 2

5π4

1

r5(1)
.

Q. Is there a hyper-closed form for W5(∓1) ?
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Vf. Five step walks ... now extended to all dimensions

We obtain three differential relations for p5. Assisted by
Koutschan’s HolonomicFunctions package, we computed a
Gröbner basis for the ideal that they generate. From that, we find
there exists, in analogy with four steps, a relation

x2p5(ν + 1;x) = Ap5(ν;x) +Bp′5(ν;x) + Cp′′5(ν;x) +Dp′′′5 (ν;x),

with A,B,C,D polynomials of degrees 12, 13, 14, 15 in x (with
coefficients that are rational functions in ν).

• We conclude inductively that, for integers ν, the density
p5(ν;x) has a Taylor expansion at x = 0 whose Taylor
coefficients are recursively computable and lie in the Q-span
of

r5,0 =

√
5

40π4
Γ

(
1

15

)
Γ

(
2

15

)
Γ

(
4

15

)
Γ

(
8

15

)
and 1/(π4r5,0).

• It remains an open challenge, including in the planar case, to
obtain a more explicit description of p5(ν;x).
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Vf. Five step walks ... Pearson explained

0.5 1.0 1.5 2.0 2.5

0.2

0.4

0.6

0.8

Figure: The series (dotted) and p5(0;x).

The poles of W5 are simple, so no logarithmic terms are involved
in p5(ν, x). Computing a few more residues from the recursion
(23), near 0 we have

p5(0;x) = 0.329934x+ 0.006616x3 + 0.00026x5 + 0.000014x7 +O(x9)

(with each coefficient given to six digits of precision only),
explaining the strikingly straight shape of p5(0;x) on [0, 1].
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VI. OPEN PROBLEMS (Mahler measures, I)

Tantalizing parallels link the ODE methods we used for p4 to those
for the logarithmic Mahler measure of a polynomial P in n-space:

µ(P ) :=

∫ 1

0

∫ 1

0
· · ·
∫ 1

0
log |P

(
e2πiθ1 , · · · , e2πiθn

)
| dθ1 · · · dθn.

Indeed

µ

(
1 +

n−1∑
k=1

xk

)
= W

′
n(0). (24)

which we have evaluated in for n = 3 and n = 4 respectively in
terms of log-sine integrals.

• µ(P ) turns out to be an example of a period. When n = 1
and P has integer coefficients exp(µ(P )) is an algebraic
integer. In several dimensions life is harder.

• There are remarkable recent results — many more discovered
than proven — expressing µ(P ) arithmetically.
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Open problems (Mahler measures, II)

• µ(1 + x+ y) = L
′
3(−1) = 1

π Cl
(
π
3

)
(Smyth).

• µ(1 + x+ y + z) = 14 ζ
′
(−2) = 7

2
ζ(3)
π2 (Smyth).

• (24) recaptures both Smyth’s results.

• Deninger’s 1997 conjecture, proven by Rogers-Zudilin, is

µ(1 + x+ y + 1/x+ 1/y)
?
=

15

4π2
LE(2)

— an L-series value for an elliptic curve E with conductor 15.
• Similarly for (24) (n = 5, 6) conjectures of Villegas become:

W
′

5(0)
?
=

(
15

4π2

)5/2 ∫ ∞
0

{
η3(e−3t)η3(e−5t) + η3(e−t)η3(e−15t)

}
t3 dt

W
′

6(0)
?
=

(
3

π2

)3 ∫ ∞
0

η2(e−t)η2(e−2t)η2(e−3t)η2(e−6t) t4 dt

using Dedekind’s η: η(q) := q1/24
∑∞

n=−∞(−1)nqn(3n+1)/2.
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Thank you ...

Conclusion. We continue to be fascinated by this blend of
combinatorics, number theory, analysis, probability, and differential
equations, all tied together with experimental mathematics.

My younger collaborators (2010)
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