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e The (complex) moment function of a 4-step walk in the plane.
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|. INTRODUCTION

M‘mm &OM by T. McCracken
]

“What's fire?” “What's walking?”

e An age old question: What is a walk?
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|. INTRODUCTION

M‘mm &OM by T. McCracken
]

“What'’s fire?” “What's walking?”

e An age old question: What is a walk?
e Also (self-avoiding) random walks, random migrations,
random flights.
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Abstract

Following Pearson in 1905, we first study the expected distance
and density of a two-dimensional walk in the plane with n unit
steps in random directions — what Pearson called a random walk.
We finish by examining our prior work in higher dimensions.

e We present recent results on the densities, p,,, of n-step
random uniform random walks in the plane (d := 2v 4 2 = 2).

e For n > 7 asymptotic formulas first developed by Raleigh are
largely sufficient to describe the density.
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Abstract

Following Pearson in 1905, we first study the expected distance
and density of a two-dimensional walk in the plane with n unit
steps in random directions — what Pearson called a random walk.
We finish by examining our prior work in higher dimensions.

e We present recent results on the densities, p,,, of n-step
random uniform random walks in the plane (d := 2v 4 2 = 2).

e For n > 7 asymptotic formulas first developed by Raleigh are
largely sufficient to describe the density.

e For 2 < mn < 6 this is far from true, as first investigated by
Pearson.
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Abstract

Following Pearson in 1905, we first study the expected distance
and density of a two-dimensional walk in the plane with n unit
steps in random directions — what Pearson called a random walk.
We finish by examining our prior work in higher dimensions.

e We present recent results on the densities, p,,, of n-step
random uniform random walks in the plane (d := 2v 4 2 = 2).
For n > 7 asymptotic formulas first developed by Raleigh are
largely sufficient to describe the density.

For 2 < n < 6 this is far from true, as first investigated by
Pearson.

We shall see remarkable new hypergeometric closed forms for
p3, P4 and precise analytic information for larger n.
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Abstract

Following Pearson in 1905, we first study the expected distance
and density of a two-dimensional walk in the plane with n unit
steps in random directions — what Pearson called a random walk.
We finish by examining our prior work in higher dimensions.

We present recent results on the densities, p,,, of n-step
random uniform random walks in the plane (d := 2v 4 2 = 2).
For n > 7 asymptotic formulas first developed by Raleigh are
largely sufficient to describe the density.

For 2 < n < 6 this is far from true, as first investigated by
Pearson.

We shall see remarkable new hypergeometric closed forms for
p3, P4 and precise analytic information for larger n.

Heavy use is made of analytic continuation of the integral
(also of modern special functions (e.g., Meijer-G) and
computer algebra (CAS)).
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Intro

|. Random walk integrals — our starting point

For complex s

Definition (Moment function)

s

dx

n
6271':Eki

Wa(s) = Wa(0; 8) := /

[0,1]"

k=1

e IV, is analytic precisely for s > —2.
e Also, W;,(1) is the expectation.

Simplest case (obvious for geometric reasons):

1
Wi(s) = / ‘ezmx‘sdx =1.
0
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e Second simplest case:

1 rl
Wa(1) = / / |27 + €2™Y| dady = ?
0 JO
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e Second simplest case:

1 1
WQ(].) :/ / ‘627Tim+627riy dl’dy: ?
0 JO

o Mathematica 7-10 and Maple 13-18 ‘think’ the answer is 0
(feature or bug?).
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e Second simplest case:
1l , '
Wa(1) = / / |27 + €2™Y| dady = ?
0o Jo
o Mathematica 7-10 and Maple 13-18 ‘think’ the answer is 0

(feature or bug?).

e There is always a 1-dimension reduction
Wi = [
[0,1]™

N /[;),1]n—1

n

da

eQﬂ'mkz
1

k=

n—1 S
1 +Z€2mgkl d(xl,...,a;n_l)
k=1
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e Second simplest case:

1 1
:/ / ‘6271'7;(2 +627riy dxdy — ?
0 JO

o Mathematica 7-10 and Maple 13-18 ‘think’ the answer is 0
(feature or bug?).

e There is always a 1-dimension reduction

Wals) = /[011

27ra:kz dx

S
= / 1+Z€2ﬂxki d(z1,...,2p-1)
[O,l]n—l k=1
e So Wh(1 —4f0 cos(mx) x:%.
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Intro

n > 3 highly nontrivial and n > 5 still not well understood

e Similar problems often get much more difficult in five
dimensions and above — e.g., Bessel moments, Box integrals,
Ising integrals (work with Bailey, Broadhurst, | Crandall|, ...).

1This and related talks are at ~jb616/papers . htm1#TALKS
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www.carma.newcastle.edu.au/~jb616/walks.pdf
www.carma.newcastle.edu.au/~jb616/walks2.pdf
www.carma.newcastle.edu.au/~jb616/densities.pdf
www.carma.newcastle.edu.au/~jb616/dwalks.pdf

Intro

n > 3 highly nontrivial and n > 5 still not well understood

e Similar problems often get much more difficult in five
dimensions and above — e.g., Bessel moments, Box integrals,
Ising integrals (work with Bailey, Broadhurst, [ Crandall], ...).

e In fact, W5(1) ~ 2.0081618 was the best estimate we could
compute directly, on 256 cores at Lawrence Berkeley Labs.

e We have a general program to develop symbolic numeric
techniques for multi-dimensional integrals.

1This and related talks are at ~jb616/papers.htm1#TALKS
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Intro

n > 3 highly nontrivial and n > 5 still not well understood

e Similar problems often get much more difficult in five
dimensions and above — e.g., Bessel moments, Box integrals,
Ising integrals (work with Bailey, Broadhurst, [ Crandall], ...).

e In fact, W5(1) ~ 2.0081618 was the best estimate we could
compute directly, on 256 cores at Lawrence Berkeley Labs.

e We have a general program to develop symbolic numeric
techniques for multi-dimensional integrals.

e Most results are published! (ISSAC 2011 (prize), RAMA,
CMS 2012 (prize)). See
www.carma.newcastle.edu.au/~jb616/walks.pdf
www . carma.newcastle.edu.au/~jb616/walks2.pdf
www.carma.newcastle.edu.au/~jb616/densities.pdf and

www.carma.newcastle.edu.au/~jb616/dwalks.pdf

1This and related talks are at ~jb616/papers.htm1#TALKS
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Intro

n > 3 highly nontrivial and n > 5 still not well understood

e Similar problems often get much more difficult in five
dimensions and above — e.g., Bessel moments, Box integrals,
Ising integrals (work with Bailey, Broadhurst, [ Crandall], ...).

e In fact, W5(1) ~ 2.0081618 was the best estimate we could
compute directly, on 256 cores at Lawrence Berkeley Labs.

e We have a general program to develop symbolic numeric
techniques for multi-dimensional integrals.

e Most results are published! (ISSAC 2011 (prize), RAMA,
CMS 2012 (prize)). See
www.carma.newcastle.edu.au/~jb616/walks.pdf
www . carma.newcastle.edu.au/~jb616/walks2.pdf
www.carma.newcastle.edu.au/~jb616/densities.pdf and

www.carma.newcastle.edu.au/~jb616/dwalks.pdf

When the facts change, | change my mind. What do you do, sir?
— John Maynard Keynes in Economist, Dec 18, 1999.

1This and related talks are at ~jb616/papers.htm1#TALKS
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www.carma.newcastle.edu.au/~jb616/walks.pdf
www.carma.newcastle.edu.au/~jb616/walks2.pdf
www.carma.newcastle.edu.au/~jb616/densities.pdf
www.carma.newcastle.edu.au/~jb616/dwalks.pdf

Intro

One 1500-step ramble: ...a familiar picture
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Intro

One 1500-step ramble: ...a familiar picture

e 1D (and 3D) easy. Expectation of RMS distance is easy (y/n).
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Intro

One 1500-step ramble: ...a familiar picture

e 1D (and 3D) easy. Expectation of RMS distance is easy (y/n).
e 1D or 2D lattice: probability one of returning to the origin.
Drunken men get home, birds do not (Kakutani)
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Intro

1000 three-step rambles: ... a less familiar picture?
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The long and the short of it
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Intro

A little history — — from a vast literature

L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). pn(x) ~ 2%6_”"2/" (Nature, 1905).
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Intro

A little history — — from a vast literature

L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). pn(x) ~ 27””6_”"2/" (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.
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Intro

A little history — — from a vast literature

/ / ' \ =7y < K
L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). pn(x) ~ 27””6_”"2/" (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C +— K), declined knighthood.
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Intro

A little history — — from a vast literature

A= Ll

L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). pn(x) ~ 2%6_”"2/" (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.

The problem “is the same as that of the composition of n isoperiodic
vibrations of unit amplitude and phases distributed at random” he
studied in 1880 (diffusion equ’'n, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C' +— K), declined knighthood.
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Intro

A little history — — from a vast literature

; ))/{

/ ‘P4
L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). pn(x) ~ 2%6_”"2/" (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.

The problem “is the same as that of the composition of n isoperiodic
vibrations of unit amplitude and phases distributed at random” he
studied in 1880 (diffusion equ’'n, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C' +— K), declined knighthood.

e UNSW: Donovan and Nuyens, WWII cryptography.
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Intro

A little history — — from a vast literature

7 7

& AT
L: Pearson posed question R: Rayleigh gave large n asymptotics:
(Nature, 1905). pn(x) ~ 2%6_”"2/" (Nature, 1905).

John William Strutt (Lord Rayleigh) (1842-1919): discoverer of
Argon, explained why sky is blue.

The problem “is the same as that of the composition of n isoperiodic
vibrations of unit amplitude and phases distributed at random” he
studied in 1880 (diffusion equ'n, Brownian motion, ...)

Karl Pearson (1857-1936): founded statistics, eugenicist & socialist,
changed name (C' +— K), declined knighthood.

e UNSW: Donovan and Nuyens, WWII cryptography.

e Appear in quantum chemistry, in quantum physics as hexagonal and

diamond lattice integers, etc ...
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II. COMBINATORICS

REVERSE POLISH SAUSAGE
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Comb

W, (k) at even values

Even values are easier (combinatorial — no square roots).

(k[of2]4 [6 [8 [10 |
126 |20 |70 |25
315|093 | 639 | 4653
428 | 256 | 2716 | 31504
5 | 45 | 545 | 7885 | 127905

Sy

SEEE
—~| [
\_/S\_/\_/

o
===

e Can get started by rapidly computing many values naively as
symbolic integrals.
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Comb

W, (k) at even values

Even values are easier (combinatorial — no square roots).

|

k__|o0]2[4 6 [8 [10 |
6 [20 |70 | 252

2
2
3115|193 | 639 | 4653
4
5

Sy

28 | 256 | 2716 | 31504
45 | 545 | 7885 | 127905

0
1
1
1
1

S5 S
—~| [
T EZ|E

e Can get started by rapidly computing many values naively as
symbolic integrals.

e Observe that Wy(s) = (;2) for s > —1.
e MathWorld gives W,,(2) = n (trivial).
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Comb

W, (k) at even values

Even values are easier (combinatorial — no square roots).

(k [of2]4 |6 [8 |10 |
Wak) [1]2]6 |20 |70 | 252
Wi(k) | 1] 3] 15|93 | 639 | 4653
Wa(k) | 1] 4|28 256 | 2716 | 31504
Ws(k) | 1|5 | 45 | 545 | 7885 | 127905

e Can get started by rapidly computing many values naively as
symbolic integrals.

Observe that Wh(s) = (;2) for s > —1.

MathWorld gives W;,(2) = n (trivial).

Entering 1,5,45,545 in the OEIS now gives “The function
W5(2n) (see Borwein et al. reference for definition).”
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Comb

W, (k) at odd integers

in|k=1 |k=3 [k=5 |k=7 |k=9 |
2 [ 1.27324 | 3.39531 [ 10.8650 | 37.2514 | 132.449
1.57460 | 6.45168 | 36.7052 | 241.544 | 1714.62
1.79909 | 10.1207 | 82.6515 | 822.273 | 9169.62
2.00816 | 14.2806 | 152.316 | 2037.14 | 31393.1
2.19386 | 18.9133 | 248.759 | 4186.19 | 82718.9

ol W

JMB/JW Short Random Walks



Comb

W, (k) at odd integers

in|k=1 |k=3 [k=5 |k=7 |k=9 |
2 [ 1.27324 | 3.39531 [ 10.8650 | 37.2514 | 132.449
1.57460 | 6.45168 | 36.7052 | 241.544 | 1714.62
1.79909 | 10.1207 | 82.6515 | 822.273 | 9169.62
2.00816 | 14.2806 | 152.316 | 2037.14 | 31393.1
2.19386 | 18.9133 | 248.759 | 4186.19 | 82718.9

ol W

Memorize this number!
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Comb

W, (k) at odd integers

(k=1 [k=3 |k=5 |k=7 |k=9
1.27324 | 3.39531 | 10.8650 | 37.2514 [ 132.449
1.57460 | 6.45168 | 36.7052 | 241.544 | 1714.62
1.79909 | 10.1207 | 82.6515 | 822.273 | 9169.62
2.00816 | 14.2896 | 152.316 | 2037.14 | 31393.1
2.10386 | 18.9133 | 248.759 | 4186.19 | 82718.9

O W|INS

Memorize this number!

During the three years which | spent at Cambridge my time was wasted, as far as the academical
studies were concerned, as completely as at Edinburgh and at school. | attempted mathematics,
and even went during the summer of 1828 with a private tutor (a very dull man) to Barmouth, but
| got on very slowly. The work was repugnant to me, chiefly from my not being able to see any
meaning in the early steps in algebra. This impatience was very foolish, and in after years | have
deeply regretted that | did not proceed far enough at least to understand something of the great
leading principles of mathematics, for men thus endowed seem to have an extra sense. —

Autobiography of Charles Darwin
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Comb
Resolution at even values

e Even formula counts n-letter abelian squares xm(z) of length
2k (Shallit-Richmond (2008) give asymptotics):

Wa@k) = 3 (al,.]ia)Q' (1)

a1+...+an==k
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Comb
Resolution at even values

e Even formula counts n-letter abelian squares xm(z) of length
2k (Shallit-Richmond (2008) give asymptotics):

s 2t

e Known to satisfy convolutions:
k k 2
Worins(2) = 3 (5) Wi~ ), s

J=0

Wa(2k) = 35 () CEN),60)* () = 2, (5 S, CO ) (0)* ()
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Comb
Resolution at even values

e Even formula counts n-letter abelian squares xm(z) of length
2k (Shallit-Richmond (2008) give asymptotics):

s 2t

e Known to satisfy convolutions:
k

k 2
Warins(20) =3 j) W (2) Woy (2(k — 7)), 50
j=0
Ws(2k) = 5, ()" CED) S0 () = () S 9 () ()
e and recursions such as:
(k+2)2Ws3(2k+4)— (10,2 +30k+23) W5 (2k+2)4+9(k+1)>W3(2k) = 0.
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o W, (2k) satisfies an [ $1 |-term recursion and | %£2| distinct
iterated sums.
e Also

wo =S (7 (SO E0)

Jj=0

(D50 ) 50 ()

J
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o W, (2k) satisfies an [ $1 |-term recursion and | %£2| distinct
iterated sums.

2 (020 ) 20)

Jj=0

o (B2 () (8 () ()

J

Ws(1)

e Recursion gives better approximations than many methods of
numerical integration for many values of s.
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o W, (2k) satisfies an [ $1 |-term recursion and | %£2| distinct
iterated sums.

2 (020 ) 20)

Jj=0

o (B2 () (8 () ()

J

Ws(1)

e Recursion gives better approximations than many methods of
numerical integration for many values of s.

e Tanh-sinh (doubly-exponential) quadrature works well for W3
but not so well for W, ~ 1.79909248.
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o W, (2k) satisfies an [ $1 |-term recursion and | %£2| distinct
iterated sums.

2 (020 ) 20)

Jj=0

o (B2 () (8 () ()

J

e Also

Ws(1)

e Recursion gives better approximations than many methods of
numerical integration for many values of s.

e Tanh-sinh (doubly-exponential) quadrature works well for W3
but not so well for W, ~ 1.79909248.

Quasi-Monte Carlo was not very accurate.
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[11. ANALYSIS

Visualizing Wy in the complex plane

——
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Anal

Carlson’s theorem: ...from discrete to continuous

Theorem (Carlson (1914, PhD) )

Suppose f(z) is analytic of exponential growth for R(z) > 0, and
its growth on the imaginary axis is bounded by e, |c| < m. If

then f(z) = 0 identically in the region.

e sin(mz) does not satisfy the conditions of the theorem, as it
grows like €™ on the imaginary axis.
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Anal

Carlson’s theorem: ...from discrete to continuous

Theorem (Carlson (1914, PhD) )

Suppose f(z) is analytic of exponential growth for R(z) > 0, and
its growth on the imaginary axis is bounded by e, |c| < m. If

then f(z) = 0 identically in the region.

e sin(mz) does not satisfy the conditions of the theorem, as it
grows like €™ on the imaginary axis.

o |W,(v;s)| < nlG)l satisfies the conditions of the theorem
(and W, (0; s) is in fact analytic for R(s) > —2 when n > 2).
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Anal

Carlson’s theorem: ...from discrete to continuous

Theorem (Carlson (1914, PhD) )

Suppose f(z) is analytic of exponential growth for R(z) > 0, and
its growth on the imaginary axis is bounded by e, |c| < m. If

then f(z) = 0 identically in the region.

e sin(mz) does not satisfy the conditions of the theorem, as it
grows like €™ on the imaginary axis.

o |[W,(v;8)| < n®)l satisfies the conditions of the theorem
(and W, (0;s) is in fact analytic for R(s) > —2 when n > 2).

e There is a lovely 1941 proof by Selberg of the bounded case.
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Anal
Analytic continuation

e So integer recurrences yield complex functional equations. Viz

(5+4)*W3(s4+4)—2(552+305+46) W3 (s4+2)+9(s4+2)?W3(s) = 0.
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Anal
Analytic continuation

e So integer recurrences yield complex functional equations. Viz
(5+4)*W3(s4+4)—2(552+305+46) W3 (s4+2)+9(s4+2)?W3(s) = 0.

e This gives analytic continuations of the ramble integrals to
the complex plane, with poles at certain negative integers
(likewise for all n).

“For it is easier to supply the proof when we have previously acquired, by
the method [of mechanical theorems], some knowledge of the questions
than it is to find it without any previous knowledge. — Archimedes.

JMB/JW Short Random Walks



Anal
Analytic continuation

e So integer recurrences yield complex functional equations. Viz
(5+4)*W3(s5+4)—2(552+305+46) W3 (s42)+9(s542)° W3(s) =

e This gives analytic continuations of the ramble integrals to
the complex plane, with poles at certain negative integers

(likewise for all n).

2

e Ws(s) has a simple pole at —2 with residue , and other

simple poles at —2k with residues a rational muItlpIe of Res_s.

“For it is easier to supply the proof when we have previously acquired, by
the method [of mechanical theorems], some knowledge of the questions
than it is to find it without any previous knowledge. — Archimedes.
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Odd lengths look like 3

3

e JW proved zeroes near to but not at integers: W5(—2n —1) | 0.
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Odd lengths look like 3

3

e JW proved zeroes near to but not at integers: W5(—2n —1) | 0.
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Anal
Some even lengths look more like 4

NN

L: Wy(s) on [—6,1/2]. R: W5 on [—6,2] (T), Ws on [—6, 2] (B).
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Anal
Some even lengths look more like 4

L T

L: Wy(s) on [—6,1/2]. R: W5 on [—6,2] (T), Ws on [—6, 2] (B).
e The functional equation (with double poles) for n =4 is
(s +4)Wy(s+4) — 4(s+3)(5s% + 30s + 48)Wy(s + 2)
+ 64(s +2)3Wy(s) =0
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Anal
Some even lengths look more like 4

-

L: Wy(s) on [—6,1/2]. R: W5 on [—6,2] (T), Ws on [—6, 2] (B).
e The functional equation (with double poles) for n =4 is
(s +4)Wy(s+4) — 4(s+3)(5s% + 30s + 48)Wy(s + 2)
+ 64(s +2)3Wy(s) =0

e Conjecture: multiple poles iff 4|n (proven for small n).
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Anal
Some even lengths look more like 4

-

L: Wy(s) on [—6,1/2]. R: W5 on [—6,2] (T), Ws on [—6, 2] (B).
e The functional equation (with double poles) for n =4 is
(s +4)Wy(s+4) — 4(s+3)(5s% + 30s + 48)Wy(s + 2)
+ 64(s +2)3Wy(s) =0
e Conjecture: multiple poles iff 4|n (proven for small n).

e Why is Wy positive on R?
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A discovery demystified

In particular, we had shown that

k 2 1/2,—k, —k
W3(2k): Z <(11,(12,a3> :3F2< 171 ‘4>

a1+az+az=k

~~

=:V3(2k)

where , I, is the generalized hypergeometric function. We
discovered numerically that: V3(1) = 1.57459 — .12602652¢

Theorem (Real part (similarly in all even dimensions))
For all integers k we have Ws(k) = R(Va(k)). }
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A discovery demystified

In particular, we had shown that

k 2 1/2,—k, —k
W3(2k): Z <a1aa‘27a3> :3F2< 171 ‘4>

a1+az+az=k

=:V3(2k)

where , I, is the generalized hypergeometric function. We
discovered numerically that: V3(1) = 1.57459 — .12602652¢

Theorem (Real part (similarly in all even dimensions))
For all integers k we have Ws(k) = R(Va(k)). }

We have a habit in writing articles published in scientific journals to make
the work as finished as possible, to cover up all the tracks, to not worry
about the blind alleys or describe how you had the wrong idea first.

... So there isn’t any place to publish, in a dignified manner, what you
actually did in order to get to do the work. — Richard Feynman (Nobel
acceptance 1966)
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Proof with hindsight

k = 1. From a dimension reduction, and elementary manipulations,

1 r1
Wg(l) — /(; /O ‘1+€27rzx+e27rzy|d$dy

- /1 /1 V4sin(2rt) sin(27(s + t/2)) — 2 cos(2xt) + 3 dsdt.
0 0
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Proof with hindsight

k = 1. From a dimension reduction, and elementary manipulations,

1 r1
Wg(l) — /(; /O ‘1+62wzx+e2ﬁzy|d$dy

- /1 /1 V4sin(2rt) sin(27(s + t/2)) — 2 cos(2xt) + 3 dsdt.
0 0

e Let s+1¢/2 — s, and use periodicity of the integrand, to obtain

Wy(1) = /0 1 { /0 /T cos(2ns) sin(ed) ~ Zeos(@n®) 13 ds} dr.

The inner integral can now be computed because

/OmdzszQ/%)
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Anal
Proof continued

Here E(x) is the elliptic integral of the second kind:

E(z) = /()7?/2 \/1 — 22sin?(t) du.

e After simplification,

Wy(1) = - / " sin() + 1)E (”S’m(t)> at
0

o2 1 + 25sin(?)
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Anal
Proof continued

Here E(x) is the elliptic integral of the second kind:

E(z) = /()7?/2 \/1 — 22sin?(t) du.

e After simplification,

1muy—4/wa%m@+nE<22“““>m
0

o2 1 + 25sin(?)

Now we recall Jacobi's imaginary transform,

(x+nE<§%%):m@E@y_u—x%K@»

and substitute. Here K (x) is the elliptic integral of the first kind.

JMB/JW Short Random Walks



Anal
Proof continued

Here E(x) is the elliptic integral of the second kind:

E(z) = /07r/2 \/1— 22sin?(t) da.

e After simplification,

I%ﬂy—4/wi%m@+nE<22$Mﬂ>&
0

o2 1 + 25sin(?)

Now we recall Jacobi's imaginary transform,

(x+nE<3ﬁ§):m@E@y_u—x%K@»

z+1

and substitute. Here K (x) is the elliptic integral of the first kind.
e This is where R originates:
o eg., Va(—1) = 0.896441 — 0.5175604, W3 (—1) = 0.896441.
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Proof completed

Using the integral definition of K and E, we can express W3 as a
double integral involving only sin. Set

w/2 /2 _ 2 .9 . 9
4 / / 1+ a®sin?(t) — 2a?sin?(t) sin?(r) dedr,
7T V1 — a?sin?(t) sin?(r)

so that
R(Q23(2)) = Wa(1). (2)
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Proof completed

Using the integral definition of K and E, we can express W3 as a
double integral involving only sin. Set

w/2 /2 _ 2 .9 . 9
4 / / 1+ a®sin?(t) — 2a?sin?(t) sin?(r) dedr,
7T V1 — a?sin?(t) sin?(r)

so that
R(Q23(2)) = Wa(1). (2)

e Expand using the binomial theorem, evaluate the integral
term by term for small a — where life is easier — and use
analytic continuation to deduce

Q3(2) = V3(1). (3)
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Proof completed

Using the integral definition of K and E, we can express W3 as a
double integral involving only sin. Set

w/2 /2 _ 2 .9 . 9
4 / / 1+ a®sin?(t) — 2a?sin?(t) sin?(r) dedr,
7T V1 — a?sin?(t) sin?(r)

so that
R(Q23(2)) = Wa(1). (2)

e Expand using the binomial theorem, evaluate the integral
term by term for small a — where life is easier — and use
analytic continuation to deduce

Q3(2) = V3(1). (3)

e k= —1. A similar (and easier) proof obtains for W3(—1).
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Proof completed

Using the integral definition of K and E, we can express W3 as a
double integral involving only sin. Set

/2 m)2 — 2a?sin?(t) sin®
[ [ i),
. V1 — a?sin?(t) sin?(r)

so that
R(Q23(2)) = Wa(1). (2)

e Expand using the binomial theorem, evaluate the integral
term by term for small a — where life is easier — and use
analytic continuation to deduce

Q3(2) = V3(1). (3)

e k= —1. A similar (and easier) proof obtains for W3(—1).
e As both sides satisfy the same 2-term recursion (computer
provable), we are done. QED
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Anal

A pictorial ‘proof’ shows Carlson’s theorem does not apply

Ws(s) — RV3(s) on [0,12]

202

204
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Anal

A pictorial ‘proof’ shows Carlson’s theorem does not apply

Ws(s) — RV3(s) on [0,12]

202

204

e This was hard to draw when discovered, as at the time we had
no good closed form for W3(s). For s # —3,—=5,—7,... , we

now have
1
1)

3s+3/2 1 1 542 s4+2 542
_ 20 2 2
W3(S) = ﬁ <S+ 5,8‘*’ 2> 3F2 543

27 1,55



Anal
Closed forms

e We then confirmed 175 digits of

Ws5(1) ~ 1.57459723755189365749 . . .
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Anal
Closed forms

e We then confirmed 175 digits of
Ws5(1) =~ 1.57459723755189365749 . . .

e Armed with a knowledge of elliptic integrals:

16472 3T(1)0 6/m2
W0 = Fg g =0

JMB/JW Short Random Walks



Anal
Closed forms

e We then confirmed 175 digits of
Ws5(1) =~ 1.57459723755189365749 . . .

e Armed with a knowledge of elliptic integrals:

1647 6 6/m>
Ws(1) = ré)ﬁ + 8\}7)74 W3(—1)+—W3/( 7
3046 23 1
Wa(—1) = o = 58 (3)
Here 5(s) := B(s,s) = %

e Obtained via singular values of the elliptic integral and
Legendre's identity.
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Prob

V. PROBABILITY

It can be readily shown that

©

P () = f o Bt [ 1" oy (1.2)

o

where J {y) is the Bessel function of the first kind of order k. Pearson tabu-
lated F,()/2 for n<7, for r ranging betweon 0 end n (all that is nec-
essary), He used a graphieal procedure in getting his results, and remarked that
for n =5 the function a‘ppeal‘ed to be constant over the range between 0 and 1.
He states; ‘From r=0 to r=L (here 1) the graphical construction, however
carefully reinvestigated, did not permit of our considering the curve to be anything

but a straight line. . . . Even if it is not absolutely true, it exemplifies the

extraordinary power of such integrals of J products to give extremely close ap-

H.E. Fettis (1963)
“On a [1906] conjecture

"
obteined by a Monte Certo procedure. 'lhe function Fy(r) was computed for r <1 of Pearson.
on the Remington-Rand 1103 computer. The results are given in Table 1, and although

proximations to such simple forms as horizontal lines.’

Greenwood and Duncan (Reference (4]) later extended Pearson’ s work for n=6(1)24,

and more recently Scheid (Reference [5]) gave results for lower values of n (2 to 6)

the function is not constant, it differs from 1/3 by less than 0034 in this range.
This settles Pearson's conjecture, The table given on page 51 may help investiga-

tors of Mente Carle techniques to compare their results with the known values,

Since the function F,(r) is so nearly constant in the range betwecn 0 and I,
B/ Short Random Walks




Prob
The Bessel J function

Recall, the normalized Bessel function of the first kind is

v —562 m
Ju(z) = V! <2> Jy(x) =! Z (M) (4)

x

With this normalization, we have j,(0) = 1 and

4 () o3 0+2)

as £ — oo on the real line.
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Prob
The Bessel J function

Recall, the normalized Bessel function of the first kind is

v —562 m
Ju(z) = V! <2> Jy(x) =! Z (M) (4)

x

With this normalization, we have j,(0) = 1 and

4 () o3 0+2)

as £ — oo on the real line.
e Note also that
Jij2(z) = sinc(x) = sin(z)/x

— which in part explains why analysis in 3-space is so simple.
More generally, all half-integer order j,(z) are elementary.
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Prob
Richer representations

1906. The influential Leiden mathematician J.C. Kluyver
(1860-1932) — supervisor of Kloosterman —published a
fundamental Bessel representation for the cumulative radial
distribution function (P,,) and density (p,,) :

Po(t) =t /0 () I (@) da

pn(t) =t /000 Jo(zt) Jy(x)xdx (n > 4) (5)

where J,,(x) is the Bessel J function of the first kind (see Watson
(1932, §49); 3-dim walks are elementary).

e From (7) below, we find

pn(1) = Res_o (Wy41) (n=1,2,...). (6)
e As pa(a) = m/427 we check in Maple that the following

code returns R = 2/(v/37) symbolically:
R:=identifyv(evalf|20](int(BesselJ(0,x) "3*x.x=0..infinit
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Prob
A Bessel integral for W,

e Also P,(1) = % = n%q (A question of Pearson).
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Prob
A Bessel integral for W,

e Also P,(1) = JOESEH = n%q (A question of Pearson).
sl \\ P
' l\; / e Integrands for Wy(—1) (blue) and
4y Wy(1) (red) on [r, 47] from (8).
|
-
e \\ ’/
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Prob
A Bessel integral for W,

e Also P,(1) = % = n%q (A question of Pearson).

 Broadhurst used (5) to show for 2k > s > —% that

L1+35) [ 1d\*
Wn(s)=2s+1—kM / g2hms—l (- d> Jo(z)d,
0

T(k—3) zde

(7)

a useful oscillatory 1-dim integral (used below). Thence

[e.e] o0 d
Wn(-1) = / Ji(z)dz, W,(1)=n / J1($)Jo(a7)”_1§.
0 0

""‘A\\ (8)
F S Integrands for Wy(—1) (blue) and

| Y Wa4(1) (red) on [m, 47] from (8).

P
g 5 ' 83 .
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Prob

The densities for n = 3,4 are ‘modular’

Let o(x) := i’jr—i Then o is an involution on [0, 3] sending [0, 1] to [1, 3]:
ps(z) = (3_93%]93(0(%» (9)

So %pg(O) =p3(3) = 2—‘/3,]3(1) = 00. We found:

The densities p3 (L) and ps (R)

Y
r{\ o /

oY
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Prob

The densities for n = 3,4 are ‘modular’

Let o(x) := i’jr—i Then o is an involution on [0, 3] sending [0, 1] to [1, 3]:
Pi(@) = Gy o)) ©)

So 2p4(0) = p3(3) = T@,p(l) = 0o. We found:
pale) = %Qﬂ (;13 M) N 277£AG3(3+042,:(1 “aayrsy 0

where AGg is the cubically convergent mean iteration (1991):

u2+ab+b2)1/3

®(r =
The densities p3 (L) and ps (R)

AG3(a,b) :=

a+ 2b
3

%
r(\ o /

N
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Prob

Formula for the ‘shark-fin' py (stimulated by S. Robins)

We ultimately deduce on 2 < o < 4 a hyper-closed form:

2 V16— a2 111116 - a?)’
P 6 @ 3F2<2 2 2( a) . (11)

pa(a) = 507
26 108 a4

2 o

)
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Prob

Formula for the ‘shark-fin' py (stimulated by S. Robins)

We ultimately deduce on 2 < o < 4 a hyper-closed form:

2 V16— a2 111116 - a?)’
P 6 @ 3F2<2 2 2( a) . (11)

pa(a) = 507
26 108 a4

2 o

)

) < p4 from (11) vs 18-terms of empirical
| power series
_ 23 26 _
v Proves py4(2) = W L) "=
VB (1) ~ 0.494233 <

e Empirically, quite marvelously, we
found — and proved by a subtle use of
distributional Mellin transforms — that
on [0,2] as well:
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Prob

Formula for the ‘shark-fin' py (stimulated by S. Robins)

We ultimately deduce on 2 < o < 4 a hyper-closed form:

2 V16— a2 111116 - a?)’
P 6 @ 3F2<2 2 2( a) . (11)

pa(a) = 507
26 108 a4

2 o

)

< p4 from (11) vs 18-terms of empirical
1 power series
_ 23 26 _
v Proves py4(2) = W L) "=
VB (1) ~ 0.494233 <

e Empirically, quite marvelously, we
found — and proved by a subtle use of
distributional Mellin transforms — that
on [0,2] as well:

(16 - on) > (12)

Discovering this R brought us full circle.
JMB/JW Short Random Walks
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Prob

The densities for

5 <n < 8 (and large n approximation)

P 035 7\
03k ~ ¥
D 030 /
030fF N / \
\ 3\
/J \ 025 /) \
025F , N p )
P \ p 3
00f A\ 020 y A\
/ A \\
ok 015 \
P 3
p 3
010F 0.10
00sF 005
1 2 3 4 5 1 2 3 4 5 6
7 030f
030fF 4 N\ 7
// v // N
4 A\ 025fF p A
[ p 3 y A\
N
3\ y \
3 020F
020F \ R
3\ 3\
3\ )
0150 \ 01sf A
N 3
o0k \ 010F
00sf 005
1 2 3 4 5 6 7 2 4 6 8
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Prob

The densities for 5 < n < 8 (and large n approximation)

Lo 035 N\
03k ~ ¥
N 030 .
030f N /7 N\
y N 025 / 3

0250 y N /1 R

/, \\ 020 y \\
020f N ¥, \

/ N \\
ossf 015 \
p 3
010F 0.10
005, 005
1 2 3 4 5 1 2 3 4 5 6

e Both poy, 44, Pant5 are n-times continuously differentiable for z > 0
2 i, - " oo - "
(pn(x) ~ 2,,—1%*“5 /m, So “four is small” but “eight is large.
L 030
0.30F 4 N //
/ \\ 025f / N
0251 p, \\ // \\
020F \\ 020 \\
01sf \\ 015¢ \\\
0.10F \\ 0101
005} 005,
I P PR T S 2 3 B s
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Prob
An elliptic integral harvest

Indeed, PSLQ found various representations including:

o o (1355553 AN
W 1 — —F ) b b b b b 1 _2 F b ) b b b b 1
1) O 899911 el L1
o] n\ 6
EZ A(n 4+ 1)* —144(n + 1)® +108(n + 1)2 = 30(n + 1) + 3 (*")
4 = (n+1)3 46n
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Prob
An elliptic integral harvest

Indeed, PSLQ found various representations including:

97 7333111 5111111
W4(1) — _7F6 432 22222212121 —27T7F6 41212121212121
RE) 47ty b
6

>N 64(n + 1)1 — 144(n + 1)3 +108(n +1)2 = 30(n + 1) +3 (°)
z:: (n+1)3 46n "

Proofs rely on work by Nesterenko and by Zudilin. Inter alia:

1
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Prob
An elliptic integral harvest

Indeed, PSLQ found various representations including:

97 7333111 5111111
W4(1) — _7F6 432 22222212121 —27T7F6 41212121212121
RE) 47ty b
6

>N 64(n + 1)1 — 144(n + 1)3 +108(n +1)2 = 30(n + 1) +3 (°)
z:: (n+1)3 46n "

Proofs rely on work by Nesterenko and by Zudilin. Inter alia:

1
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Prob
An elliptic integral harvest

Indeed, PSLQ found various representations including:

97 7333111 5111111
Wil = T plT222222)) _9 p (14222222222
4(1) 470\ 2929911 el L1
0o n\ 6
Ty 64(n+ 1)* — 144(n + 1) +108(n + 1)2 = 30(n + 1) + 3 (*")
1 3 6n °
14 (n+1) 4
e Proofs rely on work by Nesterenko and by Zudilin. Inter alia:
1 1 a4 5111111
2 Kdek:/K’dek:(—> Fo[ P22z,
\/O ( ) 0 ( ) 2 e %7171a1,1,1
e We also deduce that (K’,El are complementary integrals)

8 1, 9% 1, ’
Wya(—-1) = 71'73/0 K*(k)dEk, Wy (1) = 7r73/0 E' (k)K" (k)dk — 8 W4(—1).
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Prob
An elliptic integral harvest

Indeed, PSLQ found various representations including:

9r 7333111 5111111
Wil = T plT222222)) _9 p (14222222222
4(1) 170\ 8990911 TR L1,

0o n\ 6
Ty 64(n+ 1)* — 144(n + 1) +108(n + 1)2 = 30(n + 1) + 3 (*")
1 3 6n °

4 = (n+1) 4
e Proofs rely on work by Nesterenko and by Zudilin. Inter alia:
1 1 4 5111111

2/ K(k)Qdk:/ K’(k)Qdk:(f> 72 B A I

0 0 2 Zvlvlal,l,l
e We also deduce that (K’,El are complementary integrals)

Wa(—1) = 7% /01 K2(k)dk, Wy(l) = %2 /01 E'(k)K'(k)dk — 8 W4(—1).

Much else about moments of products of elliptic integrals has
been discovered (with massive 1600 relation PSLQ runs)
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Higher Dim

V. HIGHER DIMENSIONAL WALKS ... a sampler

@ Even moments have a fine formula in all dimensions
e the iterations all generalise (poles are simpler for d > 2)
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Higher Dim

V. HIGHER DIMENSIONAL WALKS ... a sampler

@ Even moments have a fine formula in all dimensions

e the iterations all generalise (poles are simpler for d > 2)
@ The Bessel and Meijer representations all generalise

e with J, ‘replacing’ Jy
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Higher Dim

V. HIGHER DIMENSIONAL WALKS ... a sampler

@ Even moments have a fine formula in all dimensions

e the iterations all generalise (poles are simpler for d > 2)
@ The Bessel and Meijer representations all generalise

e with J, ‘replacing’ Jy
©® 0Odd dimensions are easy-ish (closed form)

o half-order Bessel functions are elementary
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Higher Dim

V. HIGHER DIMENSIONAL WALKS ... a sampler

@ Even moments have a fine formula in all dimensions
e the iterations all generalise (poles are simpler for d > 2)
@ The Bessel and Meijer representations all generalise
e with J, ‘replacing’ Jy
©® Odd dimensions are easy-ish (closed form)
o half-order Bessel functions are elementary
O Complete two and three step generalisations exist
e and in interesting ways
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Higher Dim

V. HIGHER DIMENSIONAL WALKS ... a sampler

@ Even moments have a fine formula in all dimensions
e the iterations all generalise (poles are simpler for d > 2)
@ The Bessel and Meijer representations all generalise
e with J, ‘replacing’ Jy
©® Odd dimensions are easy-ish (closed form)
o half-order Bessel functions are elementary
O Complete two and three step generalisations exist
e and in interesting ways
@ Four and five step densities put up more resistance!
e and in interesting ways
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Higher Dim

V. Radial densities for 3,4, 5 steps in dimensions 2 to 9

JMB/JW Short Random Walks



Higher Dim

V. Radial densities for 3,4, 5 steps in dimensions 2 to 9

e For x >0, p,(v;x) is m-times continuously differentiable if
m < (n—1)(r+1/2) — 1 (increases with v and n).
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Higher Dim

Va. Even moments ... what do they count?
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Higher Dim

Va. Even moments ... what do they count?

Theorem (Even moments)
For all d = 2v + 2 even moments W, (v; 2k) are given by

-1 (k+v)! Z ( k >< k+ nv )
' (k+ny)!k1+~~-+kn:k ki,....ko ) \k1+v,....kn+v)
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Higher Dim

Va. Even moments ... what do they count?

Theorem (Even moments)
For all d = 2v + 2 even moments W, (v; 2k) are given by

-1 (k+v)! Z ( k >< k+ nv )
' (k+ny)!k1+~~-+kn:k ki,....ko ) \k1+v,....kn+v)

For n = 2 we have
(Q(k-i-u))
k+v

W2 (V; Qk) = (k+u) .

So for v =1 and so d = 4, we have
W (152k) = Ciya,

the Catalan number of order k + 1. More generally W, (v, 2k) is
only fully integral for v = 0, 1. Indeed ...
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Higher Dim

Va. Combinatorics of even moments .. (BSV, Hare-McKay)

Theorem (BSV, 2015)

For given integer v > 0, let A(v) be the infinite lower triangular
matrix with entries

[k (k+v)lv!
Api(v) == <]> (k—j+v)(j+v)

for row indices k = 0,1,2,... and columns j = 0,1,2,.... Then
the moments Wy, 11(v; 2k) are given by the row sums of A(v)".
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Higher Dim

Va. Combinatorics of even moments .. (BSV, Hare-McKay)

Theorem (BSV, 2015)

For given integer v > 0, let A(v) be the infinite lower triangular
matrix with entries

[k (k+v)lv!
Api(v) == <]> (k—j+v)(j+v)

for row indices k = 0,1,2,... and columns j = 0,1,2,.... Then
the moments Wy, 11(v; 2k) are given by the row sums of A(v)".

<

o A(1) is the integral Narayana triangle [A001263].
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Higher Dim
Va. Narayana Triangle

10 0 0 0 0 0 0
11 0 0 0 0 0 0
13 1 0 0 0 0 0
16 6 1 0 0 0 0
A= |1 10 20 10 1 0 0 0
115 50 50 15 1 0 0
1 21 105 175 105 21 1 0
1 28 196 490 490 196 28 1
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Higher Dim

Va.Divisibility properties of even moments ... also congruences

For integer v > 0, H&M (2015) define
1
T, 1= min {T‘ >0:Ay;(v) € -Z,j, k> 0} .
r

so that o =r; = 1 and ry = 3.
Theorem J

Forv > 1 we have r, ’ w
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Higher Dim

Va.Divisibility properties of even moments ... also congruences

For integer v > 0, H&M (2015) define
1
T, 1= min {T‘ >0:Ay;(v) € -Z,j, k> 0} .
T

so that o =r; = 1 and ry = 3.
Theorem

Forv > 1 we have r, ’ w

Theorem

For v > 1 we have (2”;1) | .
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Higher Dim

Va.Divisibility properties of even moments ... also congruences

For integer v > 0, H&M (2015) define
1
T, 1= min {T‘ >0:Ay;(v) € -Z,j, k> 0} .
T

so that o =r; = 1 and ry = 3.
Theorem

Forv > 1 we have r, ’ w

Theorem

For v > 1 we have (2”;1) | .

Conjecture (Proven for v =0, 1,2,3,4)

21/—1)'

Forv >1 Wehaver,,:( .

4
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Higher Dim

Meijer-G functions (1936 )

Definition (Meijer-G)

1><
% | =
21

[ AT [T T(-a+s)
- z°ds.
H] n+1 — ) j=m+1 (- bj +5)
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Higher Dim

Meijer-G functions (1936 )

Definition (Meijer-G)

1><
% | =
21

[ AT [T T(-a+s)
- z°ds.
H] n+1 — ) j=m+1 (- bj +5)

e Contour L chosen so it lies between poles of I'(1 — a; — s)
and of T'(b; + s).
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Higher Dim

Meijer-G functions (1936 )

Definition (Meijer-G)

[ AT [T T(-a+s)
- z°ds.
H] n+1 — ) j=m+1 (- bj +5)

e Contour L chosen so it lies between poles of I'(1 — a; — s)
and of T'(b; + s).

e A broad generalization of hypergeometric functions —
capturing Bessel Y, K and much more.
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Higher Dim

Meijer-G functions (1936 )

Definition (Meijer-G)

1><
% | =
21

/ O T -a+s)
H] n+1 S) ?:m—‘rl F(l - b] + S) .

e Contour L chosen so it lies between poles of I'(1 — a; — s)
and of T'(b; + s).

e A broad generalization of hypergeometric functions —
capturing Bessel Y, K and much more.

e Important in CAS, they often lead to superpositions of
hypergeometric terms.
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Higher Dim
Vb. Bessel and Meijer forms

Theorem (Meijer forms)

For all complex s, and v =0,1/2,1, ..., with some restriction on
s, we have

res+v+1 1
Ws(v;s) = 22"1/!2—(2 )Gz’l( 11’1+V8’1+82V ;_)
r( bn—g-i-v
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Higher Dim
Vb. Bessel and Meijer forms

Theorem (Meijer forms)

For all complex s, and v =0,1/2,1, ..., with some restriction on
s, we have

F(§ 2.1 11—|—I/1+2V 1
Wsa(v;s) = 22122 QG2 (1 ’ ! ;=
FOTED O frugg-v

r

Wy(v;s) = 257413
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Higher Dim
Vb. Bessel and Meijer forms

Theorem (Meijer forms)

For all complex s, and v =0,1/2,1, ..., with some restriction on
s, we have

res+v+1 1
Ws(v;s) = 22”;/!2_(21 S)Gg’é( 11,1+Vs,1+$2u ;_)
F(5T(-3) >\ gtr—5-3-v'4

F'+v+1

Wy(v;s) = 257413 (122 )

S

L (3)°T(=3)

1—s
2,2 L3 —vy1+v,14+2v
< (g T

e These can be written in terms of hypergeometric functions; in
the limit for odd integers.
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Higher Dim

Vc. Density in odd dimensions ... and hence also moments

Theorem (Convolution for density in odd dim., Garcia-Pelayo 2012)

Assume the dimension d = 2m + 1 is odd. Then, for all real z,

(2:U)2mI‘(m)< 1 d

T@m) > 1B l8) (13)

e = 1) 25) = 2x dx

where P, ,, is the piecewise polynomial obtained from convolving

b @)= Dt 1/2) {(1—m) ifze[-1,1]

" T(1/2)T(m) o otherwise

n — 1 times with itself.
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Higher Dim

Vc. Density in odd dimensions ... and hence also moments

Theorem (Convolution for density in odd dim., Garcia-Pelayo 2012)

Assume the dimension d = 2m + 1 is odd. Then, for all real z,

(2x)2mF(m)< 1 d

T@m) > 1B l8) (13)

e = 1) 25) = 2x dx

where P, ,, is the piecewise polynomial obtained from convolving

- T(1/2)T(m)

fn() = I'(m+1/2) {él - 5U2)m—1 ifv e [.—1, 1]
otherwise

n — 1 times with itself.

v

e The expression above is both elegant and compact. It shows that in
odd dimensions the density is piecewise polynomial, but is difficult
to manipulate or compute with or without a CAS. It leads to ...
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Higher Dim

Vc. Density in odd dimensions .. Rayleigh (1919) in 3-space

Theorem (Densities in odd dimensions, B-Sinnamon 2015)
Letn >2 and m > 1. Then

where H(x) is the Heaviside function and

m—1
- (m—-14+k)! oz
Cm(@) := kzo Flm 1= R°  2f0 <m’1_m’ ’_5)’
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Higher Dim

Vd. Moments of a three step walk in even dimensions

Theorem (Three step moments)
For all integers v and n we have

1/+%,—n,—n—u

Wg(l/, n):Re3FQ ( s 1’21/_'_ 1

1),

and, all these lie in the vector space over Q generated by

3213 /1 1
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Higher Dim

Vd. Moments of a three step walk in even dimensions

Theorem (Three step moments)
For all integers v and n we have

1/+%,—n,—n—1/

Wg(l/, n):Re3FQ ( s 1’21/—|- 1

1),

and, all these lie in the vector space over Q generated by

3213 /1 1
A= E_ﬂ"l I <§> and _7'['2A.
This relies on discovery that

_ 9,2 Ws(v—1;2n+3) —3W5 (v —1;2n+1)
B (2n+6v—1)(2n +1)

W3 (v;2n—1) . (15)

e Theorem fails in odd dim but (15) has a partner for n =4
yielding all odd moments of 4-step walks in even dimensions.
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Higher Dim

Vd. Moments of a three step walk in even dimensions

Theorem (OGF for even moments with 3 steps)

For integers v > 0 we have

(- (1—-1/2)* L2 1972(1 — x)?
ZWg v; 2k) k= ®) 1+ 2F1<13 31/ (1+3x)3>

a0 (i) (16)

for |x| < 1/9, where q,(x) is a polynomial (that is, q,(1/x) is the
principal part of the hypergeometric term on the right-hand side).
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Higher Dim

Vd. Moments of a three step walk in even dimensions

Theorem (OGF for even moments with 3 steps)

For integers v > 0 we have

(- (1—-1/2)* L2 1972(1 — x)?
ZWg v; 2k) k= ®) 1+ 2F1<13 31/ (1+3x)3>

a0 (i) (16)

for |x| < 1/9, where q,(x) is a polynomial (that is, q,(1/x) is the
principal part of the hypergeometric term on the right-hand side).

o qo(z) =0and qi(z) = 525 — 1, etc.

222 !
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Higher Dim

Vd. Density of a three step walk in all dimensions

Theorem (Three step density)

For any half-integer v and x € (0,3), we have

. —3v ,.2v 2\2v 2 2\2
pg(l/,ac):2\/§32 5 (9—£E2) 2F1< 3,2 ;m(Q—m)> (17)
a T (V”) 3+« I+v '’ (3+2a2)3

In addition, ps(v;x)/x satisfies the functional equation

o= (1) (32),

found symbolically in odd dimensions.
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Higher Dim

Vd. Density of a three step walk in all dimensions

Theorem (Three step density)

For any half-integer v and x € (0,3), we have

. —3v ,.2v 2\2v 2 2\2
pg(z/,ac):2\/§32 5 (9—x2) 2F1< 3,2 ;m(Q—m)> (17)
a T (V”) 3+« I+v '’ (3+2a2)3

In addition, ps(v;x)/x satisfies the functional equation

o= (1) (32),

found symbolically in odd dimensions.

General results for all n =3,4,5... and v > 0 include :

Pt (v50) = (d = D)p, (v 1),
2n)v+n—1
1y = Bk,
pa(v;l) nt 1 pn(v;1)
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Higher Dim

Ve. Generalised Domb numbers  ...and an OGF for (19)

We can prove Wy (v;2k) =
2(y+k)I‘(k—|—V—i—%)I’(1+y)3 , —k‘,—k—l/,—k—QV,%—f—I/l .
VAl (1+k+2v) l+v,1+20,3—k—v
(18)

2
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Higher Dim

Ve. Generalised Domb numbers  ...and an OGF for (19)

We can prove Wy (v;2k) =
2(V+k)I‘(k—|—V+%)I’(1+V)3 , —k‘,—k—l/,—k—QV,%—f—Vl .
VAl (1+k+2v) l+v,1+20,3—k—v
(18)

The Domb or diamond lattice numbers start: 1,4, 28, 256, 2716,
31504, 387136,4951552.... They are A002895 in the OEIS with ogf

108 22 >2
(1—4z)*)

2

1 11
14422 +282%+... = F (63
+4x° + 282 + 1—4x2 1(1
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Higher Dim

Ve. Generalised Domb numbers  ...and an OGF for (19)

We can prove Wy(v;2k) =
2(V+k)F(k+l/+%)F(1+l/)3 , —k,—k—u,—k—Qu,%+y O
VIl (1+k+2v) 14,1420, —k—v
(18)

The Domb or diamond lattice numbers start: 1,4, 28,256, 2716,
31504, 387136,4951552.... They are A002895 in the OEIS with ogf

108 2 >2
(1—4z)*)
e For 4-steps in d = 4,6 dim. (18) gives [A253095, 14-06-15]

1,4,22,148,1144,9784, 90346, 885868, 9115276, ... (19)
1.4.20, @’ 2330’ 16952’ 133084

3 3 3 3

which is what the Narayana analysis showed.

JMB/JW Short Random Walks

2

1 11
1+422+282+... = F (63
+4x°+ 282" + 1_4$2 1( 1

,370752, 3265208, ... (20)



Higher Dim

Ve. Generalised Domb numbers ...and an ogf for (19)

It was known that

11
9 o F 673
ZW“O S T 1(1
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Higher Dim

Ve. Generalised Domb numbers ...and an ogf for (19)

It was known that

11
) o F 673
Zmo Pk = L 1<1

We derived, as in (16), that

11
53t +;;W4 (1;2k)2* (22)

1
= (320 —T)F2 — (4x — 1) [(32:0 +3)FyFy — (1630 + 10z + ) Fl]

Here, we employ hypergeometrics:

L@
F\ = LR (®
AT 2 30 (162 — 1)1 A dah 1( 1

108
(162 —1)3 )~
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Higher Dim

VT. Five step walks ... now extended to all dimensions

e The functional equation for W5 = W5(0; -) is:

225(s 4+ 4)%(s + 2)? Wi (s) = —(35(s + 5)* + 42(s + 5) + 3) W5 (s + 4)
+ (s +6) Ws(s+6) + (s +4)2(259(s + 4)% + 104) W5 (s + 2). (23)

Q. Is there a hyper-closed form for W5(F1) ?



Higher Dim

VT. Five step walks ... now extended to all dimensions

e The functional equation for W5 = W5(0; -) is:

225(s 4+ 4)%(s + 2)? Wi (s) = —(35(s + 5)* + 42(s + 5) + 3) W5 (s + 4)
+ (s +6) Ws(s+6) + (s +4)2(259(s + 4)% + 104) W5 (s + 2). (23)

e We deduce the first two poles — and so all — are simple since

4
lim (s + 2)2Ws(s) = — (285 W5(0) — 201 W5(2) + 16 W5(4)) = 0
s——2 225

Jlim (s + D2 W(s) = — o (W5 (0) — Wa(2)) = 0.

Q. Is there a hyper-closed form for W5(F1) ?



Higher Dim

VT. Five step walks ... now extended to all dimensions

e The functional equation for W5 = W5(0; -) is:

225(s + 4)% (s + 2)2 W5 (s) = —(35(s + 5)* + 42(s + 5)% + 3)Ws (s + 4)
+ (s +6) Ws(s+6) + (s +4)2(259(s + 4)% + 104) W5 (s + 2). (23)

e We deduce the first two poles — and so all — are simple since

4
lim (s + 2)2Ws(s) = — (285 W5(0) — 201 W5(2) + 16 W5(4)) = 0
s——2 225

Jlim (s + D2 W(s) = — o (W5 (0) — Wa(2)) = 0.

e We stumbled upon a proof, via Chowla-Selberg, that

V15 121
= pa(1) =Res_o(Ws) = L2 4B, (33724,
0 = p4(1) =Res_2(Ws) 5 3 2( 11 >

Q. Is there a hyper-closed form for W5(F1) ?



Higher Dim

VT. Five step walks ... now extended to all dimensions

e The functional equation for W5 = W5(0; -) is:

225(s + 4)% (s + 2)2 W5 (s) = —(35(s + 5)* + 42(s + 5)% + 3)Ws (s + 4)
+ (s +6) Ws(s+6) + (s +4)2(259(s + 4)% + 104) W5 (s + 2). (23)

e We deduce the first two poles — and so all — are simple since
Jim (s 4+ 2)2Ws5(s) = %5 (285 W5 (0) — 201 W5(2) + 16 W5(4)) =0

Jlim (s + D2 W(s) = — o (W5 (0) — Wa(2)) = 0.

e We stumbled upon a proof, via Chowla-Selberg, that

Ji5 121
= p4(1) =Res_o(W5) = ——3F» | 37372 |4 .
0 = pa(1) es_o(Ws) 37732<1,1
e And, originally numerically, but now proven using v = 1, that
13 2 1

(1) = =

51 = Res_4(W5) = 57(47‘57(1)‘

225"

Q. Is there a hyper-closed form for W5(F1) ?



Higher Dim

VT. Five step walks ... now extended to all dimensions

e The functional equation for W5 = W5(0; -) is:

225(s + 4)% (s + 2)2 W5 (s) = —(35(s + 5)* + 42(s + 5)% + 3)Ws (s + 4)
+ (s +6) Ws(s+6) + (s +4)2(259(s + 4)% + 104) W5 (s + 2). (23)

e We deduce the first two poles — and so all — are simple since
Jim (s 4+ 2)2Ws5(s) = %5 (285 W5 (0) — 201 W5(2) + 16 W5(4)) =0

Jlim (s + D2 W(s) = — o (W5 (0) — Wa(2)) = 0.

e We stumbled upon a proof, via Chowla-Selberg, that

Ji5 121
= p4(1) =Res_o(W5) = ——3F» | 37372 |4 .
0 = pa(1) es_o(Ws) 37732<1,1
e And, originally numerically, but now proven using v = 1, that
13 2 1

(1) = =

51 = Res_4(W5) = 57(47‘57(1)‘

225"

Q. Is there a hyper-closed form for W5(F1) ?



Higher Dim

VT. Five step walks ... now extended to all dimensions

We obtain three differential relations for ps. Assisted by
Koutschan's HolonomicFunctions package, we computed a
Grobner basis for the ideal that they generate. From that, we find
there exists, in analogy with four steps, a relation

o?ps(v + 1;2) = Aps(v; ) + Bpk(v; ) + Cpl(v; ) + D2 (v; x),

with A, B, C, D polynomials of degrees 12,13,14, 15 in x (with
coefficients that are rational functions in v).
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Higher Dim

VT. Five step walks ... now extended to all dimensions

We obtain three differential relations for ps. Assisted by
Koutschan's HolonomicFunctions package, we computed a
Grobner basis for the ideal that they generate. From that, we find
there exists, in analogy with four steps, a relation

/11

o?ps(v + 1;2) = Aps(v; ) + Bpk(v; ) + Cpl(v; ) + D2 (v; x),

with A, B, C, D polynomials of degrees 12,13,14, 15 in x (with
coefficients that are rational functions in v).

e We conclude inductively that, for integers v, the density
ps(v; ) has a Taylor expansion at x = 0 whose Taylor
coefficients are recursively computable and lie in the QQ-span

U ONONONS

and 1/(7‘(’47'570).
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Higher Dim

VT. Five step walks ... now extended to all dimensions

We obtain three differential relations for ps. Assisted by
Koutschan's HolonomicFunctions package, we computed a
Grobner basis for the ideal that they generate. From that, we find
there exists, in analogy with four steps, a relation

2*ps(v + 12) = Aps(vi @) + Bpj(vi ) + Cp(v; x) + Dpy (v ),
with A, B, C, D polynomials of degrees 12,13,14, 15 in x (with
coefficients that are rational functions in v).

e We conclude inductively that, for integers v, the density
ps(v; ) has a Taylor expansion at x = 0 whose Taylor
coefficients are recursively computable and lie in the QQ-span

o= et (35) 7 (5) 7 (5) 7 (55)
and 1/(mlr5 ).

e It remains an open challenge, including in the planar case, to
obtain a more explicit description of p5(v; x).
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Higher Dim

Vf. Five step walks ... Pearson explained

o8

06
v"

u"'

04

02

0‘.5 110 115 210 215
Figure: The series (dotted) and ps(0; x).

The poles of W5 are simple, so no logarithmic terms are involved
in ps(v, ). Computing a few more residues from the recursion
(23), near 0 we have

ps(0; ) = 0.329934 z 4+ 0.006616 ° + 0.00026 2° 4 0.000014 27 4 O(z?)

(with each coefficient given to six digits of precision only),
explaining the strikingly straight shape of p(0; ) on [0, 1].
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Mahler Measures

VI. OPEN PROBLEMS (Mahler measures, I)

Tantalizing parallels link the ODE methods we used for p4 to those
for the logarithmic Mahler measure of a polynomial P in n-space:

1 1 1 A }
M(P) ::/ / / log\P (627”91,"‘ 7627r7,9n)’d91_“d9n.
0 JO 0
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Mahler Measures

VI. OPEN PROBLEMS (Mahler measures, I)

Tantalizing parallels link the ODE methods we used for p4 to those
for the logarithmic Mahler measure of a polynomial P in n-space:

1 1 1 A }
,U(P) ::/ / / log\P (627”91,"‘ 7627r7,9n)’d91_“d9n.
0 JO 0

Indeed
n—1
m (1 +> ;pk> =W, (0). (24)
k=1

which we have evaluated in for n = 3 and n = 4 respectively in
terms of log-sine integrals.
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Mahler Measures

VI. OPEN PROBLEMS (Mahler measures, I)

Tantalizing parallels link the ODE methods we used for p4 to those
for the logarithmic Mahler measure of a polynomial P in n-space:

1 1 1 A }
,U(P) ::/ / / log\P (eQﬂ"Lel"'. 7627r7,9n)’d91_“d9n.
0 JO 0

Indeed
n—1
M (1 + Z‘Tk> =W, (0). (24)
k=1

which we have evaluated in for n = 3 and n = 4 respectively in
terms of log-sine integrals.
e 1(P) turns out to be an example of a period. When n =1
and P has integer coefficients exp(u(P)) is an algebraic
integer. In several dimensions life is harder.
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Mahler Measures

VI. OPEN PROBLEMS (Mahler measures, I)

Tantalizing parallels link the ODE methods we used for p4 to those
for the logarithmic Mahler measure of a polynomial P in n-space:

1 1 1 A }
,U(P) ::/ / / log\P (eQﬂ"Lel"'. 7627r7,9n)’d91_“d9n.
0 JO 0

Indeed
n—1
M (1 + Z‘Tk> =W, (0). (24)
k=1

which we have evaluated in for n = 3 and n = 4 respectively in
terms of log-sine integrals.

e 1(P) turns out to be an example of a period. When n =1
and P has integer coefficients exp(u(P)) is an algebraic
integer. In several dimensions life is harder.

e There are remarkable recent results — many more discovered
than proven — expressing u(P) arithmetically.
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Mahler Measures

Open problems (Mahler measures, Il)

p(l+a+y) = Ly(—1) = L CI1(5) (Smyth).
,u(l~|—x+y~|—z)—14§( 2) = T <3 (Smyth).

\/
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Mahler Measures

Open problems (Mahler measures, Il)

o u(l+z+y)=Ly(—1) =L CL(Z) (Smyth).
o p(l4+z+y+z2)=14¢(-2) = T <3 (Smyth).

2

o (24) recaptures both Smyth's results.
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Mahler Measures

Open problems (Mahler measures, Il)

o p(1+z+y)=Ly(—1) = LCI(5) (Smyth).
o p(1+z+y+2) =14 (-2) = 43 (Smyth).
o (24) recaptures both Smyth's results.
e Deninger's 1997 conjecture, proven by Rogers-Zudilin, is

15
M(1+x+y+1/x+1/y)l4—LE( )

— an L-series value for an elliptic curve E with conductor 15.
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Mahler Measures

Open problems (Mahler measures, Il)

o p(1+z+y)=Ly(—1) = LCI(5) (Smyth).
o p(1+z+y+2) =14 (-2) = 43 (Smyth).
o (24) recaptures both Smyth's results.
e Deninger's 1997 conjecture, proven by Rogers-Zudilin, is

15
M(1+x+y+1/x+1/y)l4—LE( )

— an L-series value for an elliptic curve E with conductor 15.
e Similarly for (24) (n = 5,6) conjectures of Villegas become:

W.(0) = (ZW)S/Q/ (PP e™™) + 0’ (e (e )} 3 dt

wio = (E) [ e e e e

2
using Dedekind'’s : 7(q) := ¢'/?* 3200 (—1)g"Bnt1)/2,



Mahler Measures

Thank you

My younger collaborators (2010)



Mahler Measures
Thank you ...

Conclusion. We continue to be fascinated by this blend of
combinatorics, number theory, analysis, probability, and differential
equations, all tied together with experimental mathematics.

My younger collaborators (2010)
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