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L ucas’ Functions

The Lucas functions u, and v, are defined by

u,=u,(p, q) =(a"-p")/(a-p)

and
v, = Vy(p, Q)= a"+p",

where a and S are the zeros of the polynomial
x?-px+q, and p, g are rational integers and (p, q)=1.



Some Simple Observations

We have u,=0, u,=1,

Upty1 =PUp-qUp_q

The sequence {u,}is a divisibility

sequence. Thatis, u,, [ u, whenever m/nand
u_#0.

For example, the Fibonacci numbers {F,_} satisfy
F.,=F  ,+F, and F_[F,whenever m [ n.




Addition Formulas

22Uy, =V u,+u,v,, 2v, =v, v, +A4u,u,

Here A =(a-B)?=p*-4q.
When n=m, we get the duplication formulas:
u, =uyv,, 2v,=v7~*+Au?.

Note that Lucas’ theory involved two functions.



Multiplication Formulas

These are formulas that express u,,, and v, in terms of u,, v, and p, gq.

We have
[m/2]
u_fu =2.C(i) guAm/2-i ym-2i+1 (m odd)
i=0
and
[m/2]
Vi = 2C (1 )(-1) g v, 2,
=0

where C(j) =m(m-j-1)!/(!(m-2j)!).



The Law of Apparition for {u,}

Let r be any prime such that rfZq.

Ite=(4/r), thenr| u,.,.



The law of Repetition for {u}

If r*||u,, then



Lucas (Théorie des Nombres)

The theory of [linear] recurrent sequences is an inexhaustible
mine which contains all the properties of numbers; by
calculating the successive terms of such sequences,
decomposing them into their prime factors and seeking out
by experimentation the laws of apparition and repetition of
the prime numbers, one can advance in a systematic manner
the study of the properties of numbers and their application
to all branches of mathematics.



Lucas’ Fundamental Theorem

Let N be an odd positive integer and T= N-1 or N+1.

Theorem (Lucas). If Nfuyand Ntur,, for all d such that
0<d<t and d/T, then Nis a prime.

Theorem (Lehmer). If Nfur and Nfur . for each distinct
prime divisor r of T, then Nis a prime.

Theorem. If Nfu; and N/uT/uT/r for each distinct
prime divisor r of T, then Nis a prime.




Applications

Lucas was particularly interested in how these functions
could be employed in proving the primality of certain large
integers, and as part of his investigations succeeded in
demonstrating that the Mersenne number 2147-1 is a
prime.

This was a most remarkable achievement, and is one of the
first important results of what we now call computational
number theory. In modern parlance, a problem that
formerly required exponential time to solve was solved by
Lucas in polynomial time.



Lucas’ Ideas 1878

[t was Lucas himself who wished to generalize his sequences.

In 1878 he wrote,

“We have further indicated a first generalization of the
principal idea of this memoir in the study of recurrence
sequences which arise from the symmetric functions of the
roots of algebraic equations of the third and fourth degree
and, more generally, of the roots of equations of any degree
with rational coefficients.”



Lucas’ Ideas 1891

“We believe that, by developing these new methods
[concerning higher-order linear recurrence sequences]|, by
searching for the addition and multiplication formulas of the
numerical functions which originate from the recurrence
sequences of the third or fourth degree, and by studying in a
general way the laws of the residues of these functions for
prime moduli..., we would arrive at important new
properties of prime numbers.”



One of Lucas’ Approaches

Lucas showed that

n-1 — 2 _ 2

q um-num+n_ un um-lum+1 le un-lun+1
_AN2An-1 — 2 v 2
A q um-num+n_ Vn Vm-lvm+1 Vm Vn-IVn+1'

If we put Anzq“(”'l)/zun, then

A,.A :AHZAm-lAm+1 - AmZAn-lAn-/-l .

m-n‘ *m-+n

Lucas, who was a geometer, saw this in a 1862 publication of
Moutard concerning a certain problem involving the
Poncelet polygons.



Properties of Moutard’s Function

[t A, =0, A,=1 and the next three terms of this
recurrence are certain fixed functions of a, b, ¢, then
e A isasymmetric polynomial of degree n-1in
ab,c

e A €Z(n>0)

e {A_}is adivisibility sequence

o If a=+b, then A,=q"@Vu_(p, q), where p =2,
g=>b-.



Why was Lucas Unsuccessful?

Lucas believed that solutions of
Aa,.A :AHZAm-JAm+1 - AmZAn-lAn+1

m-n‘ “m-+n

would satisty linear recurrences of order 3 or
4, but except for some rather uninteresting
cases this is generally not so. (Ward 1948)



1.

3.

4.

5.

Fundamental Properties of Lucas’
Functions

There are two functions of an integer parameter n
(v,and u,);

Both functions are integer valued for n>0 and both
satisfy linear recurrences (of order two);

One of the functions produces a divisibility sequence;
There are addition formulas;

There are multiplication formulas.



Divisibility Sequences

A sequence {A } € 7 (n>0) is said to be a linear
divisibility sequence of order j if {A,} satisties a
linear recurrence

11cA

An+ —Cq A

J n4j- 21 tGA,, {c} € 7,

n+j

and A, [ A, whenever m [ nandA, #0.

We usually put 4,=0 and we may assume that 4, =1.



Linear Divisibility Sequences of
order Three

Conjecture (Hall, 1936)
The only linear divisibility sequences of order three

dare.

An:nzan-l’ An: nun(pl CI]I An:un(pl q]2,

where a is a rational integer or (Ward 1955) there
are only a finite number of prime divisors of {4 }.



A Theorem

Theorem (Bézivin, Pettdo and van der Poorten)

If {A,}is alinear divisibility sequence, then there is a
linear recurrence sequence {B,}and a non negative
integer r such that

Bn:HrH(a'jn' bi")/ (e By,

and A4,/B, tfor n=1,2,3.... Here a;, §; (1=1,2,3...) are
algebraic numbers.



An Observation

Ifwe put I"=0, and yi:ai/ﬂi [i=1,2,...,k], A: ﬁl ﬁZ"' ﬁk’
we have

B,=A"UI(y"-1)/(v-1),

where y, (i=1,2,....k) and A are algebraic numbers.



Pierce Functions

In an early attempt to find functions with properties similar
to those of u, and v,, Pierce (1916) considered

A =I(1-y"), S,=H(1+y"),

where the products are taken over the zeros y, (i=1,...,k)

of a polynomial of degree k with rational integral coefficients.

Unfortunately, we cannot get u,, from 4,



An Extension

We can extend Pierce’ s idea to produce the
functions

U=A"11(1-y")/(1-y,), V =A"II(1+y}),

where Ay, (i=1,...,.k) are simply algebraic numbers
selected such that the sequence {U,} is constrained
to be a linear divisibility sequence.




A Diophantine Problem

What constraints on A,y; (i=1,...,k) are necessary and sufficient
for {U,_} to be a linear divisibility sequence?

Put Q= A4 Y1V Vies

W=Vt 1 Vi ke Haye ty)  (i=1.2,.K),
where e; is the ith elementary symmetric function of k

variables.
Theorem. If V,,Q, Qk;(i=1,2,..,k) are all integers, then U,V _
are integers for all n>0 and {U,} is a divisibility sequence.




The Case of k=1

If we put
p=A(y;+1), =A%y,

we find that p and g must be rational integers and

Us=u,(pq) V,=v,(pq)

Here a= A, p=Ay;.



The Case of k =2

Here we put
Pi=AY11Y2), P AMA+YYs), Q=A% y,ys.

We must have Q a rational integer; p,, p, the zeros of
x*-P,x+P,, where P,and P, are rational integers; and

U,=(a;"+B;"-a,"-B," V(a; +B;-a,-B,),
Vi=a; "+ [+ a" + 50,

n

where «;, B; are the zeros of x?- px+Q for i=1,2.



Here both {U,} and {V } satisty

Xneqa =P X537 (P2+2Q)X,,,,+P;0X

n+1

02X,

These {U,} and {V } sequences are discussed
in W. and Guy (2011).

They possess the 5 basic properties of Lucas
functions. There is also a law of apparition, a law of
repetition and a Fundamental Theorem.



The Case of k=3

In this case we put
P1=AV: +V2V3) P2=AY2 +Y1V3) P3=A(V3 +ViV2)
P= A1+ y1v2v3), Q= A yv,v3.

We must have @ a rational integer and p,, p,, p;, P4

the zeros of
4 3 2
X*-Px?+P,x“-P;x+P,,

where P, P,, P,,P, are rational integers.



Expressions for U, and V/,

Here we have

Uy=(a;"-p;"+a" - B+ az" = 3"+ a =" )

(a;-p; +ay- P+ az=ps +a,-p,),
Vi=a; "+ [+ + N+ ay S+ a6,

where «;, . are the zeros of x*- px+Q for i=1,2,3,4.



Conditions that {U_} be a Divisibility
Sequence

In order for {U }to be a divisibility sequence, itis
necessary and sufficient that P,/P;and that

P,=(P3/P)*+8Q(P3/P)+QP*-4P,Q.

Here both {U _}and {V }satisfy

Xir8 =P1X,17-(P214Q) Xy 16 (P31 3QP) X, 5 -
(P,+2QP,+6Q°)X,,, +Q(P;+3QP,) X, ;-Q° (P,+4Q) X,

+Q°P. X, -Q*X, .



In fact, if we put
R3=P12'2P2'8Q,

then Qy;, Q/v; (1=1,2,3) must be the six zeros of

x0-R x°+(3QR,+R,)Qx*-Q? (Ry+2R )x’
+Q°(3QR,+R,)x* -Q*R ;x+Q°.



An Example

If we put Q=1, P;=56, P,=668, P;=56(44)=2464,
and P,=44°+8(44)+56°- 4(668)=2752,

we get {U, }=
0,1, 56,2415, 100352, 4140081, 170537640,

7022359583, 289143013376, 11905151192865,
490179860527896 ...

This is OEIS A003696, the number of spanning trees
in P, XP,.



The Law of Apparition

Here we put
A=(a;-p; +a,-Pr+ a3 B3 +a, - ,34)2: P12'4P2+8P3/P1 :

Let g(x)=x3-R,x?+QR,x-Q°R, and let D denote the
discriminant of g (x).
Suppose ris a prime such that r #2QD and put

e=(4/r).

If g (x) is irreducible modulo r, put t=r 3-¢;
otherwise, put t=r- . Then r[U..



A Problem

Unfortunately, there does not seem to be a pair of duplication
formulas for U,and V.

These are formulas that express U,,and V, intermsof U, V,
and Q, P, P,, P;, P,.

We do have U,,= U,V, , but we cannot find a formula for V,,.

n " n’

This means that there can be no multiplication formulas in
this case.



Some Divisibility Sequences of

order 6

We have seen that {U,} and {V } satisty a linear

recurrence of degree 8. However, Hall(1933) noted the
divisibility sequence {4,}: 0,1,1,1,5,1,7,8,5,19,11,23,35,27,...
where

An+6='An+5+An+4+ 3An+3+A A A

n+2 “‘n+l1 “'n
Also, Elkies (unpublished) notes

01,1,2,7,5 20, 27,49, 106,155,331, 560, 1013, 1917, 3310,
6223, ...

Here

An+6:'An+5+2A + 54 +2An+2'An+1'An'

n+4 n+3



A special Case of U,

If we consider the case of y;y, y; =1, we then get

Us=(a;"-B;"+a,"-B,"+a3" - 5" V(a; -B; +a,-B,+a3-F3),

where @, 8=Q, a, =Qy; (i=1,2,3) and Q (=R?) is the square of a
rational integer. Here A=R.

In this case a;, B, are the zeros of x?- 0,x+R? and o, (i=1,2,3) are
the zeros of x*-S,x°+S,x+S,, where S, S,, S,, R are rational
integers such that

S,=RS%-2RS,-4R>.



Here {U } is a linear divisibility sequence of order 6.
Indeed, in this case both {U, } and {V -2R"} satisty
X691 Kn+5 ~(5243Q)X 14 #(53120Q51)X 13 -Q(S+3Q) X,
+Q°S XX,

For Hall's sequence, we have S;=-1, §,=-4, $;=5, Q=R=1 and
for Elkies’ sequence S;=-1, S,=-5, $;=7, Q=R=1.



Another Example

Let P, Q' R"be arbitrary integers. If we put

S,=PQ"-3R’, S,=P®R+Q"-5P'Q'R'+3R",
S;=R(P?Q?-2Q3-2P3R'+4P'QR-R?), Q = R?,

then

U, =(a"-g")(B"-y")(Y"-a")/ [(a-B)(B-Y)(v-@)],

where a, 5,y are the zeros of x>-Px°+Q’x-R".
This sequence {U,} is discussed in detail by Mueller, Roettger
and W.(2009).



Results For the Special Case

In this case we have the duplication formulas
U,,=(W,+2RMU, , 2W, =W 2+ AU *-4R"W,
where we put W_=V_-Z2R" and 4=S5,%-45,+RS,;-12R-.

All of the major results concerning Lucas functions have their
analogues for the U, and I, functions mentioned above.

This includes the addition and multiplication formulas, the
laws of apparition, repetition and Lucas’ Fundamental
Theorem, when we assume that gcd(S,, S,, S5 R)=1.



Law of Repetition

Suppose ris a prime such that r does not divide 6DR.
Suppose further that rA//Un.

If r/W_-6R", then r**3¢|U u;

otherwise, r**#/|U, .



Law of Apparition

Let f(x)=x3-S,x*+S,x-S; and let D denote the
discriminant of f(x).

Suppose ris a prime such that r 2ZRD and put
e=(4/r).

If f(x) is irreducible modulo r, put t= ré+ er+1;
otherwise, put t=r- €. Then r/U..



Fundamental Theorem

Let Nbe a positive integer such that (N,6)=1. Put
=N?+N+1 or N°-N+1.

Theorem. If N/U, and N/U,/U,,. for each
distinct prime divisor r of T, then Nis a

prime.



Another Version

Theorem. Suppose (N,6)=1. Put T=N°#+N+1, and suppose
that T =3t, where t is a rational integer.

If W,=-3Rtand AU = -27Rt (mod N)

and N does not divide U, a for each distinct prime g which
divides t, then Nis a prime.



An Application

We let ube any fixed integer and put

K (=K )=(u?+u+1)2°"+(2u+1)2"+1.

Let n >1and L (=L )=(uv’+u+1)2"+u.
Note that L°+L+1 =vK, where v=u?+u+1.

Furthermore, let g (= 1 (mod 3)) be a prime such that
L@D/3 isnot 1 (mod q).

Define r by 4q=r°+27s".



A Simple Theorem

Theorem

Suppose
KE=K,)=(u?+u+1)2°"+(2u+1)2"+1.

If 2">u?+3/u/+3 and Sis selected such that (K/S) =-1,
then Kis a prime if and only if

SK-D/2 = .1 (mod K).



A Primality Theorem

Theorem. Let u(#-1) be a fixed odd integer and
suppose that

K=K )=(u?+u+1)22n+(2u+1)2"+1

is prime. If we put S,=-3qr, 5,= -2 7q>+3r¢q®, R=rq,
then L =(u+u+1)2"+u is a prime if and only if
(U,,L)=1, W,=-3Rtand AU/ = -27R?t (mod L), where

3t=L°+L+1.



Examples

K, and L, are both prime for

u=237, n=407
u=-257, n=417
u=-407, n=533
u=289, n=819



Conclusion

LLucas was correct about the existence of fourth
order analogues of his functions.

He seems to have been wrong about third order
analogues.

However, there exist sixth order analogues in

which the zeros of a cubic polynomial play an
important role.

There likely exist further analogues for k>3, but
probably more than 2 functions would be
required.



Question

Can we characterize all of the linear divisibility sequences of
order 4 or 6 or 8?

Note that for any s

Upre=PUp+s _(Q'S) un+4-psun+3-q(q-s) Upy2o +q2pun+1 'qgun



