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Why Focus on Continued Fractions?

“It is notorious that it is generally damnably difficult to explicitly

compute the continued fraction of a quantity presented in some

other form...”

— VDP (1992)

I VDP loved continued fractions

I They feature in at least 1/4 of all his published papers...

I ...including his most-cited papers

I He obtained many interesting and novel results about them
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VDP’s Continued Fraction Themes

I Use the 2× 2 matrix formulation of continued fractions

I Work with continued fractions of formal Laurent series; then
“specialize” by setting X = c

I or reduce mod p

I Use tools to manipulate expansions; e.g., Raney’s theorem

I Use the “folding lemma” of Mendès France
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I a continued fraction is an object of the form
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I a continued fraction is an object of the form

α = a0 +
b1

a1 +
b2

a2 + · · ·

I A continued fraction is said to be simple if the numerators bi

are all 1. In this case we abbreviate it by [a0, a1, a2, . . .].

I For real numbers α, the simple continued fraction expansion is
essentially unique if the partial quotients ai are integers ≥ 1
for i ≥ 1;

I rational numbers have terminating expansions;
irrational numbers have infinite, nonterminating expansions;
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Expansions for quadratic numbers

I an expansion is ultimately periodic iff it is the root of a
quadratic equation.
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Expansions for quadratic numbers

I an expansion is ultimately periodic iff it is the root of a
quadratic equation.

I Examples:

I
√

2 = [1, 2, 2, 2, . . .];

I
√

7 = [2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, . . .];

I 9+2
√

39
15 = [1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, . . .].
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Expansions of some famous numbers

Some familiar numbers have expansions with an obvious pattern:

I e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .];
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Expansions of some famous numbers

Some familiar numbers have expansions with an obvious pattern:

I e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . .];

I e1/2 = [1, 1, 1, 1, 5, 1, 1, 9, 1, 1, 13, . . .];

I tan 1 = [1, 1, 1, 3, 1, 5, 1, 7, 19, 1, 11, . . .];

I tanh 1 = [0, 1, 3, 5, 7, 9, 11, 13, . . .];

I e2 = [7, 2, 1, 1, 3, 18, 5, 1, 1, 6, 30, 8, 1, 1, 9, . . .]
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Expansions of some famous numbers

But for some numbers no one knows an easy-to-describe pattern:

I π = [3, 7, 15, 1, 292, . . .];

I
3
√
2 = [1, 3, 1, 5, 1, 1, 4, 1, 1, 8, . . .];

I γ = [0, 1, 1, 2, 1, 2, 1, 4, 3, 13, . . .];

I ζ(3) = [1, 4, 1, 18, 1, 1, 1, 4, 1, 9, . . .]

I log 2 = [0, 1, 2, 3, 1, 6, 3, 1, 1, 2, 1, 1, 1, . . .]
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My introduction to VDP: Apéry and ζ(3)

“A proof that Euler missed ... Apéry’s proof of the irrationality of
ζ(3)” Math. Intelligencer 1 (1979), 195–203.
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“A proof that Euler missed ... Apéry’s proof of the irrationality of
ζ(3)” Math. Intelligencer 1 (1979), 195–203.

- VDP’s most cited paper (60 citations on MathSciNet; 295 on
Google Scholar)
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“A proof that Euler missed ... Apéry’s proof of the irrationality of
ζ(3)” Math. Intelligencer 1 (1979), 195–203.

- VDP’s most cited paper (60 citations on MathSciNet; 295 on
Google Scholar)

- a breathless account of Apéry’s June 1978 lecture at the Journées

Arithmétiques announcing a proof the irrationality of ζ(3)

- typical VDP style, e.g.,

“Though there had been earlier rumours of his [Apéry] claiming a
proof, scepticism was general. The lecture tended to strengthen
this view to rank disbelief. Those who listened casually, or who
were afflicted with being non-Francophone, appeared to hear only
a sequence of unlikely assertions.”
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A continued fraction for ζ(3)

In that paper:

ζ(3) =
6

5−
1

117−
64

535−
729

1436−
4096

3105− · · ·
where the general term is
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In that paper:

ζ(3) =
6

5−
1

117−
64

535−
729

1436−
4096

3105− · · ·
where the general term is

− n6

34n3 + 51n2 + 27n + 5
.
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A continued fraction for ζ(2)

Also in that paper:

ζ(2) =
π2
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=
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3 +
1
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69 +
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256

223 + · · ·
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A continued fraction for ζ(2)

Also in that paper:

ζ(2) =
π2

6
=

5

3 +
1

25 +
16

69 +
81

135 +
256

223 + · · ·
where the general term is

+
n4

11n2 + 11n + 3
.

Red herring or open problem?
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Convergents

I define p−2 = 0; p−1 = 1; q−2 = 1; q−1 = 0, and

pn = anpn−1 + pn−2

qn = anqn−1 + qn−2

for n ≥ 0.
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I define p−2 = 0; p−1 = 1; q−2 = 1; q−1 = 0, and

pn = anpn−1 + pn−2

qn = anqn−1 + qn−2

for n ≥ 0.

I then pn/qn = [a0, a1, . . . , an].

I the converse is true under suitable hypotheses.

I therefore
[
pn pn−1

qn qn−1

]

=

[
pn−1 pn−2

qn−1 qn−2

] [
an 1
1 0

]

.
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I this idea is apparently due to Hurwitz (c. 1917), Frame
(1949), and Kolden (1949), independently — but popularized
by VDP

I take the transpose to get

[
pn qn

pn−1 qn−1

]

=

[
an 1
1 0

] [
an−1 1
1 0

]

· · ·
[
a0 1
1 0

]

I and so qn/qn−1 = [an, an−1, . . . , a1], a theorem due to Galois
in 1829.
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− pn−1
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=

(−1)n+1

qn−1qn

and hence

∑

1≤i≤n
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=
∑
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− pi−1
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− pn−1
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=

(−1)n+1

qn−1qn

and hence

∑

1≤i≤n

(−1)n+1

qn−1qn

=
∑

1≤i≤n

(
pi

qi

− pi−1

qi−1

)

=
pn

qn

− p0

q0
;

I Therefore
pn

qn

= a0 +
∑

1≤i≤n

(−1)n+1

qn−1qn
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Convergents

I now, letting n→∞, we see that if θ = [a0, a1, a2, . . .] is
irrational, then

θ = a0 +
∑

i≥1

(−1)n+1

qn−1qn

.
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Continued Fractions for Algebraic Numbers

Theorem. (Bombieri & VDP, 1995) Let γ > 1 be the unique
positive zero of the polynomial f (X ), and suppose

γ = [a0, a1, . . .].
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Theorem. (Bombieri & VDP, 1995) Let γ > 1 be the unique
positive zero of the polynomial f (X ), and suppose

γ = [a0, a1, . . .].

Then under some technical conditions we have an+1 = bγn+1c
where pn/qn denotes the n’th convergent and

γn+1 =
(−1)n+1

q2
n

f ′(pn/qn)

f (pn/qn)
−qn−1

qn

+
(−1)n
q2
n

∑

β 6=γ: f (β)=0

(
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− β
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.

15 / 55



Continued Fractions for Algebraic Numbers

Theorem. (Bombieri & VDP, 1995) Let γ > 1 be the unique
positive zero of the polynomial f (X ), and suppose

γ = [a0, a1, . . .].

Then under some technical conditions we have an+1 = bγn+1c
where pn/qn denotes the n’th convergent and

γn+1 =
(−1)n+1

q2
n

f ′(pn/qn)

f (pn/qn)
−qn−1

qn

+
(−1)n
q2
n

∑

β 6=γ: f (β)=0

(
pn

qn

− β

)−1

.

Example. Let f (X ) = X 3 − 2. Then

3
√
2 = [1, a1, a2, . . .]

with

an+1 =

⌊
(−1)n+1

qn

3p2
n

p3
n − 2q3

n

− qn−1

qn

⌋

for n ≥ 0.
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Some Unusual Continued Fraction Expansions

2
∑

n≥0

2−2n

= [1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, . . .]
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n≥0

2−2n

= [1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, . . .]

(bounded partial quotients)

∑

n≥2

2−Fn = [0, 1, 10, 6, 1, 6, 2, 14, 4, 124, 2, 1, 2, 2039,

1, 9, 1, 1, 1, 262111, 2, 8, 1, 1, 1, 3, 1, 536870655,

4, 16, 3, 1, 3, 7, 1, 140737488347135, . . .].

(large partial quotients are close to powers of 2)
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Some Unusual Continued Fraction Expansions
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∑

n≥1

10−n! = [0, 9, 11, 99, 1, 10, 9, 999999999999, 1, 8, 10, 1, 99, 11,

9,

72
︷ ︸︸ ︷

99999999999999 · · · 999999999999999999, . . .]

(Liouville’s transcendental number)

∑

i≥0

(−1)i
bi

= [0, 1, 1, 1, 22, 32, 142, 1292, 252982, . . .]

where b0 = 1, and bn+1 = b2
n + bn for n ≥ 0. (Cahen’s constant)

Each of these can be viewed as specializations of continued
fractions for elements of Q((X−1)): formal Laurent series.
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Formal Power Series and Continued Fractions

Theorem. (Artin, 1924)
Let n be an integer. Any formal power series

f (X ) =
∑

−∞<i≤n

biX
i ∈ Q((X−1))
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Formal Power Series and Continued Fractions

Theorem. (Artin, 1924)
Let n be an integer. Any formal power series

f (X ) =
∑

−∞<i≤n

biX
i ∈ Q((X−1))

can be expressed uniquely as a continued fraction

f (X ) = a0 +
1

a1 +
1

a2 + · · ·

= [a0, a1, a2, . . .]

where ai ∈ Q[X ] for i ≥ 0 and deg ai > 0 for i > 0.
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An Example

f (X ) :=
1√

X 2 − 1
=
∑

k≥0

2−2k

(
2k

k

)

X−2k−1
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An Example

f (X ) :=
1√

X 2 − 1
=
∑

k≥0

2−2k

(
2k

k

)

X−2k−1

= X−1 +
1

2
X−3 +

3

8
X−5 +

5

16
X−7 +

35

128
X−9 + · · ·

= [0, X , −2X , 2X , −2X , 2X , −2X , . . .]

Here are the first few convergents to the continued fraction for f :

n 0 1 2 3 4

an 0 X −2X 2X −2X
pn 0 1 −2X −4X 2 + 1 8X 3 − 4X

qn 1 X −2X 2 + 1 −4X 3 + 3X 8X 4 − 8X 2 + 1
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An Example (continued)

It can be proved that

I pn(X ) = (−1)bn/2c Un−1(X );
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An Example (continued)

It can be proved that

I pn(X ) = (−1)bn/2c Un−1(X );

I qn(X ) = (−1)bn/2c Tn(X );

where T and U are the Chebyshev polynomials of the first and
second kinds, respectively.
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The Folding Lemma

Lemma. Let

I w denote the word a1, a2, . . . , an,
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The Folding Lemma

Lemma. Let

I w denote the word a1, a2, . . . , an,

I let −w denote the word w with all terms negated, and

I let wR denote the reversed word.

Then

pn

qn

+
(−1)n
xq2

n

= [a0, w , x − qn−1

qn

] = [a0, w , x , −wR ].
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Proof of the Folding Lemma

Proof. We have

[a0,w , x − qn−1/qn]↔
[
pn pn−1

qn qn−1

] [
x − qn−1/qn 1

1 0

]
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Proof of the Folding Lemma

Proof. We have

[a0,w , x − qn−1/qn]↔
[
pn pn−1

qn qn−1

] [
x − qn−1/qn 1

1 0

]

=

[
xpn − (pnqn−1 − pn−1qn)/qn pn

xqn qn

]
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Proof of the Folding Lemma

Proof. We have

[a0,w , x − qn−1/qn]↔
[
pn pn−1

qn qn−1

] [
x − qn−1/qn 1

1 0

]

=

[
xpn − (pnqn−1 − pn−1qn)/qn pn

xqn qn

]

↔ pn

qn

+
(−1)n
xq2

n

.
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Application of the folding lemma

Define
hn(X ) = X

∑

0≤i≤n

X−2i ∈ Q(X−1).
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Application of the folding lemma

Define
hn(X ) = X

∑

0≤i≤n

X−2i ∈ Q(X−1).

We find

h1(X ) = 1 + X−1 = [1,X ]

h2(X ) = 1 + X−1 + X−3 = [1,X ,−X ,−X ]

h3(X ) = [1,X ,−X ,−X ,−X ,X ,X ,−X ]

h4(X ) = [1,X ,−X ,−X ,−X ,X ,X ,−X ,
−X ,X ,−X ,−X ,X ,X ,X ,−X ].

In general, by the Folding Lemma, if

hi (X ) = [1, Y ],

then
hi+1(X ) = [1, Y , −X , −Y R ].
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Continued fractions and folding paper

So — as explained in VDP’s 2nd most cited paper, entitled
FOLDS! — the terms of this continued fraction are given by
folding a piece of paper repeatedly, then unfolding and reading the
sequence of folds as “up” or “down”.
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Symmetry in continued fractions

FOLDS! also contains the following beautiful proof of H. J. S.
Smith of Fermat’s two-square theorem:
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from 2 to (p − 1)/2; so some integer x is paired with itself.
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Symmetry in continued fractions

FOLDS! also contains the following beautiful proof of H. J. S.
Smith of Fermat’s two-square theorem:

Let p = 4k + 1 be a prime. Consider the continued fraction
expansion of p/n for 2 ≤ n ≤ (p − 1)/2:

p

n
= [a1, . . . , ar ].

Then a1 ≥ 2 and ar ≥ 2. By the result mentioned previously,

[ar , . . . , a1] =
p

n′

for some integer n′ with 2 ≤ n′ ≤ (p − 1)/2.

This gives an involution of the (p − 1)/2− 1 = 2k − 1 numbers
from 2 to (p − 1)/2; so some integer x is paired with itself.

Then
p

x
= [a1, . . . , ar ] = [ar , . . . , a1].
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Symmetry in continued fractions

If it’s a palindrome of odd length, say

[b1, . . . , bs , b, bs , . . . , b1]
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then, using the pairing

[b1, . . . , bs ]↔
[

a a′

b b′

]

we see

p

x
= [b1, . . . , bs , c, bs , . . . , b1]↔

[
a a′

b b′

] [
b 1
1 0

] [
a b

a′ b′

]

=

[
a2c + 2aa′ abc + ab′ + a′b′

abc + ab′ + a′b b2c + 2bb′

]

,
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Symmetry in continued fractions

If it’s a palindrome of odd length, say

[b1, . . . , bs , b, bs , . . . , b1]

then, using the pairing

[b1, . . . , bs ]↔
[

a a′

b b′

]

we see

p

x
= [b1, . . . , bs , c, bs , . . . , b1]↔

[
a a′

b b′

] [
b 1
1 0

] [
a b

a′ b′

]

=

[
a2c + 2aa′ abc + ab′ + a′b′

abc + ab′ + a′b b2c + 2bb′

]

,

a contradiction, since we cannot have
p = a2c + 2aa′ = a(ac + 2a′).
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Symmetry in continued fractions

So the palindrome must be of even length, say,

p

x
= [b1, . . . , bs , bs , . . . , b1]↔

[
a a′

b b′

] [
a b

a′ b′

]

=
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So the palindrome must be of even length, say,

p

x
= [b1, . . . , bs , bs , . . . , b1]↔

[
a a′

b b′

] [
a b

a′ b′

]

=

[
a2 + a′

2
ab + a′b′
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2

]
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Symmetry in continued fractions

So the palindrome must be of even length, say,

p

x
= [b1, . . . , bs , bs , . . . , b1]↔

[
a a′

b b′

] [
a b

a′ b′

]

=

[
a2 + a′

2
ab + a′b′

ab + a′b′ b2 + b′
2

]

,

expressing p as the sum of two squares.
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Symmetry in continued fractions

So the palindrome must be of even length, say,

p

x
= [b1, . . . , bs , bs , . . . , b1]↔

[
a a′

b b′

] [
a b

a′ b′

]

=

[
a2 + a′

2
ab + a′b′

ab + a′b′ b2 + b′
2

]

,

expressing p as the sum of two squares.

Taking the determinant, we get p(b2 + b′
2)− x2 = 1, or x2 ≡ −1

(mod p) — so we get a square root of −1 (mod p), for free!
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Specialization

The expansion

X
∑

0≤i≤n

X−2i

= [1,X ,−X ,−X ,−X ,X ,X ,−X ,−X ,X ,−X ,−X , . . .

= [a0, a1, a2, . . .]

is atypical in several respects:
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Specialization

The expansion

X
∑

0≤i≤n

X−2i

= [1,X ,−X ,−X ,−X ,X ,X ,−X ,−X ,X ,−X ,−X , . . .

= [a0, a1, a2, . . .]

is atypical in several respects:

I the partial quotients ai have integer coefficients;

I the coefficients lie in a finite set;

I the partial quotients (except the first) are all linear monomials
in X .

I the partial quotients are given by a finite automaton
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A MSD-first automaton for the partial quotients

1

X-X -X X

0

1

0

1
0

1 0
0

1

1
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Specialization

Now “specialize”, setting X = 2. We get

2
∑

i≥0

2−2i

= [1, 2,−2,−2,−2, 2, 2,−2,−2, 2, · · · ],
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−2’s somehow.
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Specialization

Now “specialize”, setting X = 2. We get

2
∑

i≥0

2−2i

= [1, 2,−2,−2,−2, 2, 2,−2,−2, 2, · · · ],

which is an “illegal” expansion ... so we need to “remove” the
−2’s somehow.

This can be done with the following

Lemma.

[a,−b, c] = [a− 1, 1, b − 2, 1, c − 1];

[a, 0, b] = [a+ b].
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Application of the Folding Lemma

Thus

2
∑

i≥0

2−2i

= [1, 2,−2,−2,−2, 2, 2,−2,−2, 2,−2, · · · ]
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Application of the Folding Lemma

Thus
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∑

i≥0

2−2i

= [1, 2,−2,−2,−2, 2, 2,−2,−2, 2,−2, · · · ]

= [1, 1, 1, 0, 1,−3,−2, 2, 2,−2,−2, 2,−2, · · · ]
= [1, 1, 2,−3,−2, 2, 2,−2,−2, 2,−2, · · · ]
= [1, 1, 1, 1, 1, 1,−3, 2, 2,−2,−2, 2,−2, · · · ]
= [1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2,−2,−2, 2,−2, · · · ]
= [1, 1, 1, 1, 2, 1, 1, 1, 2,−2,−2, 2,−2, · · · ]
= [1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1,−3, 2,−2, · · · ]
= [1, 1, 1, 1, 2, 1, 1, 1, 1, 2,−3, 2,−2, · · · ]
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Application of the Folding Lemma

Thus

2
∑

i≥0

2−2i

= [1, 2,−2,−2,−2, 2, 2,−2,−2, 2,−2, · · · ]

= [1, 1, 1, 0, 1,−3,−2, 2, 2,−2,−2, 2,−2, · · · ]
= [1, 1, 2,−3,−2, 2, 2,−2,−2, 2,−2, · · · ]
= [1, 1, 1, 1, 1, 1,−3, 2, 2,−2,−2, 2,−2, · · · ]
= [1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2,−2,−2, 2,−2, · · · ]
= [1, 1, 1, 1, 2, 1, 1, 1, 2,−2,−2, 2,−2, · · · ]
= [1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 0, 1,−3, 2,−2, · · · ]
= [1, 1, 1, 1, 2, 1, 1, 1, 1, 2,−3, 2,−2, · · · ]
= [1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1,−2, · · · ]
· · ·
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Application of the Folding Lemma

More generally, we have the following

Theorem. (VDP and JOS, 1990)
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Application of the Folding Lemma

More generally, we have the following

Theorem. (VDP and JOS, 1990)

Let a0 = 1, ai = ±1 for i ≥ 1.

Then the number
2
∑

i≥0

ai2
−2i

is transcendental and its continued fraction expansion consists
solely of 1’s and 2’s.
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Liouville’s Transcendental Number

Let fn(X ) =
∑

1≤k≤n
X−k!, and define f (X ) = f∞(X ).
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In 1851, Liouville proved that f (b) is transcendental for all integers
b ≥ 2.

We can apply the folding Lemma to this number; we get
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f2(X ) = [0, X , −1, −X ] = [0, X − 1, X + 1]

f3(X ) = [0, X − 1, X + 1, X 2, −X − 1, −X + 1]
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Liouville’s Transcendental Number

Let fn(X ) =
∑

1≤k≤n
X−k!, and define f (X ) = f∞(X ).

In 1851, Liouville proved that f (b) is transcendental for all integers
b ≥ 2.

We can apply the folding Lemma to this number; we get

f1(X ) = [0, X ]

f2(X ) = [0, X , −1, −X ] = [0, X − 1, X + 1]

f3(X ) = [0, X − 1, X + 1, X 2, −X − 1, −X + 1]

f4(X ) = [0, X − 1, X + 1, X 2, −X − 1, −X + 1, −X 12,

X − 1, X + 1, −X 2, −X − 1, −X + 1]
...
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Liouville’s Transcendental Number

Hence, we get

f (X ) = [0, X − 1, X + 1, X 2, −X − 1, −X + 1, −X 12,

X − 1, X + 1, −X 2, −X − 1, −X + 1, −X 72, . . .]
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where the large partial quotients are

n!− 2(n − 1)! = (n − 2)(n − 1)!.
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An Unusual Continued Fraction

2−1 + 2−2 + 2−3 + 2−5 + 2−8 + 2−13 + · · ·+ 2−Fn + · · ·
= [0, 1, 10, 6, 1, 6, 2, 14, 4, 124, 2, 1, 2, 2039,

1, 9, 1, 1, 1, 262111, 2, 8, 1, 1, 1, 3, 1, 536870655,

4, 16, 3, 1, 3, 7, 1, 140737488347135, . . .].
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A Fibonacci Power Series

Similarly

X−1 + X−2 + X−3 + X−5 + X−8 + · · ·+ X−Fn + · · ·+
= [0, X − 1, X 2 + 2X + 2, X 3 − X 2 + 2X − 1,

−X 3 + X − 1, −X , −X 4 + X , −X 2,

−X 7 + X 2, −X − 1, X 2 − X + 1, X 11 − X 3,

−X 3 − X , −X , X , X 18 − X 5, −X , X 3 + 1, X ,

−X , −X − 1, −X + 1, −X 29 + X 8, X − 1, . . .]
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−X 3 + X − 1, −X , −X 4 + X , −X 2,

−X 7 + X 2, −X − 1, X 2 − X + 1, X 11 − X 3,

−X 3 − X , −X , X , X 18 − X 5, −X , X 3 + 1, X ,

−X , −X − 1, −X + 1, −X 29 + X 8, X − 1, . . .]

What’s going on here?

“We remark that to our surprise, and horror, continued fraction

expansion of formal power series appears to adhere to the cult of

Fibonacci.” – VDP (1998)
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Theorem. (VDP & JOS, 1993). Let (Fn) be the sequence of
Fibonacci numbers defined by F0 = 0, F1 = 1, and
Fn+2 = Fn+1 + Fn for n ≥ 0.
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n−3].

and

s∞ = X−1 + X−2 + · · ·+ X−Fn + · · · = lim
n→∞

[0, gh],

where
gn = fn−1, 0,−fn−5,−X Ln−5 , f R

n−5, 0,−fn−4.
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The Fibonacci power series

Corollary. A polynomial p is a partial quotient in the expansion of
the Fibonacci power series if and only if p or −p occurs in the
following list:

X + 1;

X 2 ± X + 1;

X 2 + 2X + 2;

X 3 + 1;

X 3 + X ;

X 3 − X + 1;

X 3 − X 2 + 2X − 1;

X Fn ;

X Ln+2 ;

X Ln+1 − X Fn

for n ≥ 1.
38 / 55



The Fibonacci power series

By specialization we get

39 / 55



The Fibonacci power series

By specialization we get

Corollary. The large partial quotients

2039, 262111, 536870655, 140737488347135, . . .

39 / 55



The Fibonacci power series

By specialization we get

Corollary. The large partial quotients

2039, 262111, 536870655, 140737488347135, . . .

in the continued fraction expansion of

2−1 + 2−2 + 2−3 + 2−5 + 2−8 + · · ·

39 / 55



The Fibonacci power series

By specialization we get

Corollary. The large partial quotients

2039, 262111, 536870655, 140737488347135, . . .

in the continued fraction expansion of

2−1 + 2−2 + 2−3 + 2−5 + 2−8 + · · ·

differ by 1 from the numbers

2Lh+1 − 2Fh

for h ≥ 4.
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An open question

Let f (X ) =
∑

n≥0
anX

−n ∈ Q[[X−1]], where an ∈ {0, 1}.
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n≥0
anX

−n ∈ Q[[X−1]], where an ∈ {0, 1}.

Give necessary and sufficient conditions for the continued fraction
of f (X ) to have only polynomials with integer coefficients in its
continued fraction expansion.

Now let’s go back to h(X ) = X
∑

i≥0 X
−2i

...
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Convergents to h(X )

Here is a table of the first few convergents to h(X ):

n an pn(X ) qn(X )

0 1 1 1

1 X X + 1 X

2 −X −X 2 − X + 1 −X 2 + 1

3 −X X 3 + X 2 + 1 X 3

4 −X −X 4 − X 3 − X 2 − 2X + 1 −X 4 − X 2 + 1

5 X −X 5 − X 4 − X 2 + X + 1 −X 5 + X

6 X −X 6 − X 5 − X 4 − 2X 3 −X 6 − X 4 + 1
−X + 1

7 −X X 7 + X 6 + X 4 + 1 X 7

8 −X −X 8 − X 7 − X 6 − 2X 5 −X 8 − X 6 − X 4 + 1
−X 4 − 2X 3 − 2X + 1

9 X −X 9 − X 8 − X 6 − X 5 −X 9 − X 5 + X

−X 4 − 2X 2 + X + 1

Note: the coefficients of qn(X ) all appear to lie in {0,±1}.
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Denominators of the Convergents

n an(X ) qn(X )

0 1 1

1 X X

2 −X −X 2 + 1

3 −X X 3

4 −X −X 4 − X 2 + 1

5 X −X 5 + X

6 X −X 6 − X 4 + 1

7 −X X 7

8 −X −X 8 − X 6 − X 4 + 1

9 X −X 9 − X 5 + X

10 −X X 10 − X 8 − X 4 − X 2 + 1

11 −X −X 11 + X 3

12 X −X 12 + X 10 − X 8 − X 2 + 1

13 X −X 13 − X 9 + X

14 X −X 14 − X 12 − X 8 + 1
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Properties of the Denominators of the Convergents

Theorem. (Allouche, Lubiw, Mendès France, VDP, JOS)
All of the coefficients of the denominators of the convergents to
X
∑

i≥0 X
−2i

lie in {0,±1}.

Proof. (Sketch)

I The low-order terms of q2k+n−1(X ) (i.e., those of degree
< 2k) are exactly the same as those of q2k−n−1(X );

I The high-order terms of q2k+n−1(X ) are, up to a change of

signs of individual terms, equal to X 2k

qn−1(X );
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A Converse: The Continuant Tree

We can obtain a converse to the preceding theorem.

Define an infinite labeled binary tree T with root r and node n

labeled L(n), as follows:

I L(r) = 1;

I L(left(n)) = XL(n) + L(parent(n));

I L(right(n)) = −XL(n) + L(parent(n)).

The paths in this tree consist of the consecutive denominators of
the convergents to the continued fraction

[1,±X ,±X ,±X , . . .].
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The convergents

Theorem.

If a path in T consists entirely of polynomials with coefficients in
{0,±1}, then it is the sequence of denominators of convergents to
a formal power series of the form

X
∑

i≥0

±X−2i

.
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The convergents for h(X )

Theorem. (A, L, MF, vdP, S)
Let

h(X ) = X
∑

i≥0

X−2i

= [a0, a1, a2, . . .]

and set pn/qn = [a0, a1, a2, . . . , an]. Then
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The convergents for h(X )

Theorem. (A, L, MF, vdP, S)
Let

h(X ) = X
∑

i≥0

X−2i

= [a0, a1, a2, . . .]

and set pn/qn = [a0, a1, a2, . . . , an]. Then

(a) q2n+1(X ) = Xqn(X
2);

(b) q2n(X ) = (−1)n(qn(X
2)− qn−1(X

2));

(c) The polynomial q2n+1(X ) is odd;

(d) The polynomial q2n(X ) is even.
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The Coefficient Table is Automatic

Theorem. (Allouche, Lubiw, Mendès France, VDP, JOS)
Define cm,n = [X n]qm(X ), the coefficient of the X n term in the
polynomial qm(X ). Then the double sequence (table) (cm,n)m,n≥0

is automatic.

Here is what a small portion of this infinite table looks like:

m\n 0 1 2 3 4 5 6 7 8 9

0 1 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 0
2 1 0 −1 0 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0
4 1 0 −1 0 −1 0 0 0 0 0
5 0 1 0 0 0 −1 0 0 0 0
6 1 0 0 0 −1 0 −1 0 0 0
7 0 0 0 0 0 0 0 1 0 0
8 1 0 0 0 −1 0 −1 0 −1 0
9 0 1 0 0 0 −1 0 0 0 −1
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A LSD-First Automaton for the Coefficients of the
Denominators of the Convergents

[0,0],[0,1],
[1,0],[1,1]

[0,0],[1,1]

[1,0]

[0,1]

[0,0]

[1,0]

[1,0]

[1,0], [0,1]

1

01

0

-1

-1

0

[1,1]

[1,1]

[0,1]

[1,1]
[0,0]

[1,1]

[0,1]

[0,0][0,0]

[1,1]

[1,0]
[0,1]

[1,0]
[0,0]

[0,0]

[0,1]
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More General Results

We can also consider the formal power series

gε(X ) :=
∑

i≥0

εiX
−2i

hε(X ) := Xgε(X )

where εi = ±1.
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corresponding sequence of partial quotients is 2-automatic;

I The denominators of the convergents to gε(X ) and hε(X )
have all their coefficients in the set {0,±1};

I The sign sequence (εi )i≥0 is ultimately periodic iff the double
sequence of coefficients of the denominators of the
convergents is 2-automatic. 49 / 55



An Open Question

Let the Fibonacci numbers be defined by F0 = 0, F1 = 1, and
Fn = Fn−1 + Fn−2 for n ≥ 2. VDP and JOS considered the
continued fraction for the formal power series

r(X ) =
∑

i≥2

X−Fi = X−1 + X−2 + X−3 + X−5 + X−8 + · · · .
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X−Fi = X−1 + X−2 + X−3 + X−5 + X−8 + · · · .

We proved the partial quotients all have integer coefficients.

Numerical experiments suggest that the denominators of the
convergents have all their coefficients in {0,±1}.

Can this be proved?
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VDP’s Hadamard Quotient Theorem

Theorem. Let K be a field of characteristic 0. Suppose
∑

n≥0 bnX
n and

∑

n≥0 cnX
n in K [[X ]] are the expansions of

rational functions with cn 6= 0 for all n ≥ n0. If the quotients bn/cn
all belong to a finitely generated ring over Z, then

∑

n≥n0

bn

cn
X n is

the expansion of a rational function.
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all belong to a finitely generated ring over Z, then

∑

n≥n0

bn

cn
X n is

the expansion of a rational function.

Proof outline by vdp in 4 papers (1982–84).

Full details written down by Robert Rumely (68 pages!) in
1986–87.
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Application of the Hadamard Quotient Theorem

Theorem. (H. W. Lenstra, Jr., and JOS)
Let θ be an irrational real number with simple continued fraction
expansion θ = [a0, a1, . . .] and convergents pn/qn for n ≥ 0. Then
the following four conditions are equivalent:
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Application of the Hadamard Quotient Theorem

Theorem. (H. W. Lenstra, Jr., and JOS)
Let θ be an irrational real number with simple continued fraction
expansion θ = [a0, a1, . . .] and convergents pn/qn for n ≥ 0. Then
the following four conditions are equivalent:
(a) (pn)n≥0 satisfies a linear recurrence with constant coefficients;
(b) (qn)n≥0 satisfies a linear recurrence with constant coefficients;
(c) (an)n≥0 is ultimately periodic;
(d) θ is a quadratic irrational.

Since then, a better proof was found by Andrew Granville that
does not depend on HQT, and generalizations by Bézivin.
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Some VDP-isms

“This appears to raise a metaphysical problem until continued
fractions come to the rescue.”
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“This appears to raise a metaphysical problem until continued
fractions come to the rescue.”

“In this report I sanitise (in the sense of ‘bring some sanity to’) the
arguments of earlier reports...”

(in a paper about Schneider’s continued fraction expansions) “Let
it be clearly said that Schneider’s continued fraction barely
warrants even the present limited effort.”

“This example is likely to have first been noticed by persons
excessively interested in Fibonacci numbers.”

(about refereeing) “Happily, here there is no tradition that it is
wrong to be scathing when that is appropriate.”
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Farewell VDP
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An electronic copy of these slides can be found at
http://www.cs.uwaterloo.ca/~shallit
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