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Generalized exponential polynomials

Skolem-Mahler-Lech Theorem
If an exponential polynomial has infinitely many integer zeros, then
all but finitely many of such zeros form a finite union of arithmetic
progressions.
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Skolem-Mahler-Lech Theorem
Generalized exponential polynomials

Factorization Theorem
Integer zeroes

A generalized exponential polynomial

F (x) =
m∑

i=1

Pi(x)A
Q(x)
i ,

where Ai ’s are distinct elements of C \ {0}, Pi(x) ∈ C[x ] \ {0} and
Q(x) ∈ Z[x ] \ Z.

Does the classical Skolem-Mahler-Lech assertion remains valid for
generalized exponential polynomials?
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Integer zeroes

Factorization Theorem
If F has infinitely many integer zeros, then there exist T ∈ N and a
subset E ⊆ {0,1, . . . ,T − 1} such that

F (x) =

(∏
r∈E

(
ηQ(x) − ηQ(r)

)mr

)
G(x),

where η is a primitive T th root of unity, mr ∈ N, and G is a generalized
exponential polynomial but with finitely many integer zeros.

This factorization generalizes the one for ordinary exponential
polynomials, i.e., those with Q(x) = x , due to Shapiro in 1959.
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Skolem-Mahler-Lech Theorem
Generalized exponential polynomials

Factorization Theorem
Integer zeroes

Outline of Proof .

Lemma

If F has infinitely many integer zeros, then for each i ∈ {1, . . . , k},
there exists j 6= i such that AiA−1

j is a root of unity,
and there exists T ∈ N such that for each r ∈ {0, . . . ,T − 1},
we have either F (xT + r) = 0 for all x ∈ Z, or there are only finitely
many x ∈ Z for which F (xT + r) = 0.

Denote by C1, ...,Cm, all those Ai (i = 1, . . . , k) having the
property that none of the Ck C−1

` is a root of unity for k 6= `.

Write Ai = Ckiη
si (i = 1, . . . , k), where η is a primitive T -th root

of unity, and si ∈ N.
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Thus,

F (x) =
m∑

k=1

CQ(x)
k

nk∑
i=1

Hi(x)ηsi,k Q(x),

where nk ∈ N, Hi ’s are polynomials, and si,k ∈ N.

If r ∈ {0, . . . ,T − 1} is such that F (xT + r) has infinitely many
integer zeros, then so does

m∑
k=1

CQ(xT+r)
k

nk∑
i=1

Hi(xT+r)ηsi,k Q(xT+r) =
m∑

k=1

CQ(xT+r)
k

nk∑
i=1

Hi(xT+r)ηsi,k Q(r).

Since Ck C−1
l are not roots of unity for k 6= l , all the coefficients

nk∑
i=1

Hi(xT + r)ηsi,k Q(r)

are zero
and

∑nk
i=1 Hi(x)ηsi,k Q(r) is also zero.
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Skolem-Mahler-Lech Theorem
Generalized exponential polynomials

Factorization Theorem
Integer zeroes

Thus, F can be written as

F (x) =
m∑

k=1

CQ(x)
k

( nk∑
i=1

Hi(x)ηsi,k Q(x) −
nk∑

i=1

Hi(x)ηsi,k Q(r)

)

=
m∑

k=1

CQ(x)
k

nk∑
i=1

Hi(x)
(
ηsi,k Q(x) − ηsi,k Q(r)

)
.

Since ηQ(x) − ηQ(r) divides each factor ηsi,k Q(x) − ηsi,k Q(r), we get

F (x) =
(
ηQ(x) − ηQ(r)

)
G(x),

where G is a generalized exponential polynomial of the same
form

∑m
k=1 CQ(x)

k
∑nk

i=1Hi(x)ηmi,k Q(x).

The desired factorization follows in a finite number of similar
repeated operations.
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Skolem-Mahler-Lech Theorem
Generalized exponential polynomials

Factorization Theorem
Integer zeroes

Theorem
If a generalized exponential polynomial has infinitely many integer
zeros, then all but finitely many of such zeros form a finite union of
arithmetic progressions.
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Skolem-Mahler-Lech Theorem
Generalized exponential polynomials

Factorization Theorem
Integer zeroes

Outline of proof. From the factorization theorem,

F (x) =

(∏
r∈E

(
ηQ(x) − ηQ(r)

)mr

)
G(x),

To determine the integer zeros of F (x), we must solve ηQ(x)−Q(r) = 1.

This means Q(x)−Q(r) is a multiple of T .

We need to find all integral solutions (x , y) of the Diophantine
equation

Q(x)−Q(r) = yT
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Skolem-Mahler-Lech Theorem
Generalized exponential polynomials

Factorization Theorem
Integer zeroes

Let Q(x) = anxn + an−1xn−1 + ...+ a1x + a0. Then

yT = Q(x)−Q(r)

= an(xn − rn) + an−1(xn−1 − rn−1) + ...+ a1(x − r)

= (x − r)
[
an(xn−1 + xn−2r + · · ·+ rn−1) + · · ·+ a1

]
.

Thus, x − r = kT1, where T1 is a positive divisor of T and k ∈ Z,
and then

f (k) := an((kT1 + r)n − rn) + ...+ a1((kT1 + r)− r) = yT . (1)

Write T = pα1
1 pα2

2 · · · p
αs
s .

To solve (1) is equivalent to solving the system of congruences

f (k) ≡ 0 (mod pαi
i ) (i = 1,2, . . . , s). (2)
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Skolem-Mahler-Lech Theorem
Generalized exponential polynomials

Factorization Theorem
Integer zeroes

To solve
f (k) ≡ 0 (mod pαi

i ) (2i)
we consider first the congruence

f (k) ≡ 0 (mod pi). (3)

It has at most n integral solutions mod pi .

For each solution k0 (mod pi ) of (3), the number of integral solutions
of (2i) corresponding to k0 is at most pi .

This means the solutions of (2i) are composed from a finite number of
airthmetic progressions.

From the fact that

the intersection of any pair of arithmetic progressions, if nonempty, is
again an arithmetic progression,

the proof is completed.
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Skolem-Mahler-Lech Theorem
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Factorization Theorem
Integer zeroes

Example. The generalized exponential polynomial

F (x) = 1−

(
1
2
+

√
3

2
i

)
e
π
3 i(x3+x2+x) −

(
1
2
−
√

3
2

i

)
e−

π
3 i(x3+x2+x)

with Q(x) = x3 + x2 + x

can be factored as

F (x) =
(

e
π
3 i(x3+x2+x) − 1

)(
e
π
3 i(x3+x2+x) + e

π
3 i
)

e
4
3πie−

π
3 i(x3+x2+x)

with η = e
π
3 i is a primitive 6th root of unity, r = 0, and

G(x) =
(

e
π
3 i(x3+x2+x) + e

π
3 i
)

e
4
3πie−

π
3 i(x3+x2+x).
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Skolem-Mahler-Lech Theorem
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Factorization Theorem
Integer zeroes

Find the integral solutions of

Q(x)−Q(r) = (x − r)(x2 + xr + r2 + x + r + 1) = 6y . (4)

If T1 = 1, then (4) becomes f (k) := k3 + k2 + k = 6y .
We need to solve the system

f (k) ≡ 0 (mod 2) and f (k) ≡ 0 (mod 3).

The set of integral solutions of the former is the progression
(2`1)`1 .
The set of integral solutions of the latter are the progressions
(3`2)`2 or (3`2 + 1)`2 .
Hence, the set of integer zeros of F (x) for T1 = 1 is

{(2`1)`1 ∩ (3`2)`2} ∪ {(2`1)`1 ∩ (3`2 + 1)`2} = (6`)` ∪ (6`+ 4)`.

The other cases of T1 are treated similarly.
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{(2`1)`1 ∩ (3`2)`2} ∪ {(2`1)`1 ∩ (3`2 + 1)`2} = (6`)` ∪ (6`+ 4)`.

The other cases of T1 are treated similarly.
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Finally we get

T1 The integer zeros of F (x)
1 (6`)` ∪ (6`+ 4)`
2 (6`)` ∪ (6`+ 4)`
3 (6`)`
6 (6`)`
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Example. The generalized exponential polynomial

F (x) = 1− e
π
2 ix2
− e

π
3 ix2

+ e
5π
6 ix2

,

can be factorized as

F (x) =
(

e
π
6 ix2
− 1
)(

e
π
6 ix2
− e

2π
3 i
)(

e
π
2 ix2

+ e
π
3 i(x2+1) − e

π
6 ix2

+ e
4π
3 i
)

where η = e
π
6 i is a primitive 12th root of unity, r ∈ {0,2}, and

G(x) = e
π
2 ix2

+ e
π
3 i(x2+1) − e

π
6 ix2

+ e
4π
3 i .
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Find the integral solutions of

Q(x)−Q(r) = x2 − r2 = (x − r)(x + r) = 12y , (5)

so

x − r = k1T1

x + r = k2
12
T1

where T1 is a positive divisor of 12.

The set of x from the integral solutions of (5) is

(T1k1 + r)k1
∩ (12k2/T1 − r)k2

.
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The set of x from the integral solutions of (5) is

(T1k1 + r)k1
∩ (12k2/T1 − r)k2

.

O. Phuksuwan Integer zeroes of generalized exponential polynomials



Skolem-Mahler-Lech Theorem
Generalized exponential polynomials

Factorization Theorem
Integer zeroes

T1 x
1 (12− 12n)n
2 (6− 6n)n

r = 0 3 (12− 12n)n
4 (12− 12n)n
6 (6− 6n)n
12 (12− 12n)n

T1 x
1 (10− 12n)n
2 (4− 6n)n

r = 2 3 (2− 12n)n
4 (10− 12n)n
6 (2− 6n)n
12 (2− 12n)n
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Thank you.
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