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Cauchy numbers

The Cauchy numbers of the first kind, denoted by ¢, are
introduced by the integral of the falling factorial:

cn:/Olaz(w—1)...(w—n+1)dw:n!/01 (:>dm.

The generating function of the Cauchy numbers of the first
kind ¢, is given by
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Euler numbers

Euler numbers FE,,

2 > n
= E. —
et —1 nZ::O " n!

Euler polynomials E, (z)
2e%®? > ™
o1 2B
n=0
Multiple Euler numbers 87(:’)

2 T > ™
) = (mZ
<ea:/2 + e—a:/2> - T;]gn n! .
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Similar numbers and polynomials

The Bernoulli polynomials of the order r (r is an integer)
denoted by B(¥)(z) are defined by

T r ) "
Tz r
<e“’ — 1> © = ZOB" (2) n!’
n—=

If z =0, B¥)(2) = B is the Bernoulli number of the
order r.
If z=0and k = 1, BYY) = B, is the ordinary Bernoulli
number.




Poly-Cauchy numbers
00000@000000000

Introduction

N6rlund’s number B(") (1954, Nérlund)

T > z"
=Y B,
14+ x)In(1 + ) Z " n!

n=0
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T > z"
=Y B,
14+ x)In(1 + ) Z " n!

n=0
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N6rlund’s number B(") (1954, Nérlund)

T > z"
=Y B,
14+ x)In(1 + ) Z " n!

n=0

Bernoulli number of the second kind b,

In fact, b, = ¢, /n!, where ¢, is the Cauchy number of the
first kind.
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z(1+4 x)* >
In(1 4+ x) nz:OlI’ n(z)2"
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Jordan’s polynomial ¥, (z) (1965, Jordan)

z(1+4 x)* >

Z v, (z)x"

In(1+z) ‘=

Carlitz’ polynomial 3(%)(z) (1961, Carlitz)

k [e o) n
e 2y = 32 40 ()T
<ln(1+w)> 1+ nzoﬂn ( )n'
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Jordan’s polynomial ¥, (z) (1965, Jordan)

z(1+4 x)* >

Z v, (z)x"

In(1+z) ‘=

Carlitz’ polynomial 3(%)(z) (1961, Carlitz)

k [e o) n
e 2y = 32 40 ()T
<ln(1+w)> 1+ nzoﬂn ( )n'

In fact, BN (2) = n!¥,(2).
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The Bernoulli polynomials of the second kind b,,(2)

z(1+4 x)* >
In(1 +x) =2 bn (Z)i'

n=0
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The Bernoulli polynomials of the second kind b,,(2)

z(1+4 x)* >
In(1 +x) =2 bn (z)i

n=0

Degenerate Bernoulli polynomials 3,, (A, z) (1956, Carlitz)

2(1+Ax)ps & o B
fESY =T ;ﬂﬁm(*vz)n, Ap=1).
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Korobov polynomials of the first kind K,, (2001, Korobov;
2003, Ustinov)

gr(l + x)? > z"
T N KL (2) .
14+=z)9-1 nZ:‘T) (2) n!
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Korobov polynomials of the first kind K,, (2001, Korobov;
2003, Ustinov)

gr(l + x)? > z"
T N KL (2) .
14+=z)9-1 nZ:‘T) (2) n!

Korobov polynomilas of the second kind k,, (2003, Ustinov)

x(1 4 qxz)?/1 > x™
= kn(z)—.
(1+qz)/a—1 nz_o &)
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Harmonic numbers H, := > %
_In(1-=x) >
- 5 e

1—=x

Generalized harmonic numbers

H(n,r) := 215n0+n1+__'+nr5n(n0n1 coeng)T(n>1,
r > 0) (1997, Gertsch; 1997 Santmyer)

CO" WA =)™ S i,y

n=r—+1

1—=x
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The (unsigned) Stirling numbers of the first kind | |
(In(1 4+ x))™ > nem | P ] "
WD _ S e [ 2] 2

m! m| n!
=m
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The (unsigned) Stirling numbers of the first kind | |
(In(1 4+ x))™ > nem | P ] "
UF D™ _ S ()

m! m| n!

n=m

The Stirling numbers of the second kind { " }

(e —1)™ 2 (n) z"
m! N Z mJ n!’
n=m
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as coefficients of the rising factorial

(@+1)...(z+n—1)= i ["}xm.
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The (unsigned) Stirling numbers of the first kind [ ] arise
as coefficients of the rising factorial

(@+1)...(z+n—1)= i ["}xm.

m=0

The Stirling numbers of the second kind {" } are
determined by

RS -
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There are many identities about the Bernoulli numbers.
They are much related to the (unsigned) Stirling numbers of
the first kind [ ] and the Stirling numbers of the second
kind { " }. Some of them are

n

DI R

e o 3 ()

m=0
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In 1997 M. Kaneko introduced the poly-Bernoulli numbers
B(k) py

Lig(1 —e™®) _ iB(k)ﬁ,
1—e® o " nl
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In 1997 M. Kaneko introduced the poly-Bernoulli numbers
B(k) py

Lig(1 —e™®) _ i g
1—e® o nop’
where -
zm
Lig(z) = Y —
k
m=1 m

is the k-th polylogarithm function. When k =1, BE) is the
classical Bernoulli number with Bgl) =1/2.
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The generating function of the poly-Bernoulli numbers are
also written in terms of iterated integrals:

1 z 1 z 1 T oz
e®. dxdz...dx
et —1 Jg e —1Jg et —1Jg e —1———

k—1

_ i BT
= " n!

k—1



Poly-Cauchy numbers
00000000000000e

Introduction

The generating function of the poly-Bernoulli numbers are
also written in terms of iterated integrals:

1 z 1 z 1 T oz
e®. dxdz...dx
et —1 Jg e —1Jg et —1Jg e —1———

k—1

_ i BT
= " n!

k—1

An explicit formula for Bflk) is given by

B = (1" 3 {Z}m (n>0,k>1). (1)

m=0
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Poly-Cauchy numbers of the first kind

Let n and k be integers with ¢ > 0 and k > 1. Define the
poly-Cauchy numbers cg") by the following.

1 1
cﬁlk):n!/.--/ (wlxz"'mk>dx1dac2...dack.
0 0 n
—_——

k
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Poly-Cauchy numbers of the first kind

Let n and k be integers with ¢ > 0 and k > 1. Define the
poly-Cauchy numbers cg") by the following.

1 1
Cge):n!/ / (wlxz'“wk>dm1dw2...dwk.
0 0 n
k

The Cauchy numbers ¢, = CS) can be expressed in terms of
the (unsigned) Stirling numbers of the first kind [ ]:

w-cr S50

m=0
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The poly-Cauchy numbers cflk) can be also expressed in
terms of the Stirling numbers of the first kind [ ™ ]. This is

n
m
considered as an analogous identity to the identity (1).
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Poly-Cauchy numbers of the first kind

The poly-Cauchy numbers cflk) can be also expressed in
terms of the Stirling numbers of the first kind [ ™ ]. This is

n
m
considered as an analogous identity to the identity (1).

(=nm™

=0 3 [ ] e

m=0
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Poly-Cauchy numbers of the first kind

By using Theorem 1, we get

c(()k)zl,
1
k
Cg)zzik,
# _ 1 1
2T Tk T gk
® 2 3 1
63 = 7 — 9
2k 3k ' 4k
6 11 6 1
e =+ o+

2k T gk 4k ' 5k’
® 24 50 35 10 1

S o gt T T
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Poly-Cauchy numbers of the first kind

Denote the polylogarithm factorial function Lifg(z) by

zm

m!(m + 1)k’

Lif(2) := Y _

m=0
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Denote the polylogarithm factorial function Lifg(z) by

zm

m!(m + 1)k’

Lif(2) := Y _

m=0

Then, we get the generating function of the poly-Cauchy
numbers. We may define the poly-Cauchy numbers by this
generating function.
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Poly-Cauchy numbers of the first kind

Denote the polylogarithm factorial function Lifg(z) by

zm

m!(m + 1)k’

Lif(2) := Y _

m=0

Then, we get the generating function of the poly-Cauchy
numbers. We may define the poly-Cauchy numbers by this
generating function.

Theorem 2
The generating function of the poly-Cauchy numbers cg“) is
given by the following:

n

Lify(In(1+2)) = > e®

n!

n=0
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Poly-Cauchy numbers of the first kind

The generating function of the Cauchy numbers of the first

kind ¢, is also given by

x > n
Cn— -
In(1 + ) nzz:o n!



Poly-Cauchy numbers
0000e0

Poly-Cauchy numbers of the first kind

The generating function of the Cauchy numbers of the first
kind ¢, is also given by

ln(l Z Cn

The generating function of the poly-Cauchy numbers in
Theorem 2 can be written in the form of iterated integrals.
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Poly-Cauchy numbers of the first kind

The generating function of the Cauchy numbers of the first
kind ¢, is also given by

ln(l + a:) Z Cn

n=0

The generating function of the poly-Cauchy numbers in
Theorem 2 can be written in the form of iterated integrals.

Corollary 1
For k£ > 2 we have

1 x 1 x 1 x @

dzdx
nG+e) Jo GteymGte) o TGte)InGt®) o G +=)nGte)
—il

k—1

oo n

=3 (k) ®

= C,’_L 7' .
n=0 el
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Poly-Cauchy numbers of the second kind

The Cauchy numbers of the second kind é, is defined by
1/—x
Cp = n!/ ( )da:
0 n
1
= / (—z)(—x—1)...(—x —n+1)dz
0
1
= (0" [ (@), da,
0
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Poly-Cauchy numbers of the second kind

The Cauchy numbers of the second kind é, is defined by
1/—x
Cp = n!/ ( )dw
0 n
1
= / (—z)(—x—1)...(—x —n+1)dz
0
1
= (0" [ (@), da,
0

where (), = xz(x +1)...(x +n — 1) (n > 1) is the rising
factorial with (x), = 1.
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Poly-Cauchy numbers of the second kind

The Cauchy numbers of the second kind é, is defined by

én = ! /01 (:;c)dac
_ /01(_@(_3@ —1)...(—z —n+1)dz
= - [ @), do.

where (), = xz(x +1)...(x +n — 1) (n > 1) is the rising
factorial with (x), = 1.

We call the Cauchy numbers ¢,, as the Cauchy numbers of
the first kind, in order to distinguish with those of the
second kind.
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Similarly to the poly-Cauchy numbers of the first kind, we
define the poly-Cauchy numbers of the second kind as
follows.

(k) = ’n,'/ / < 1T >d$1d$2...dwk.
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Poly-Cauchy numbers of the second kind

The Cauchy numbers of the second kind é,, = 67(11) is
expressed in terms of the Stirling numbers of the first kind:

m=0 m
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Poly-Cauchy numbers of the second kind

The Cauchy numbers of the second kind é,, = 67(11) is
expressed in terms of the Stirling numbers of the first kind:

n 1
A(l) = (=1 n n:| .
Cn (=1) Z {m m + 1

m=0

The poly-Cauchy numbers of the second kind ég“) can be also
expressed in terms of the Stirling numbers of the first kind.
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Poly-Cauchy numbers of the second kind

The Cauchy numbers of the second kind é,, = 67(11) is
expressed in terms of the Stirling numbers of the first kind:

wcr g2t

m=0 m

The poly-Cauchy numbers of the second kind ég“) can be also
expressed in terms of the Stirling numbers of the first kind.

Theorem 4

@ $ [t

m=0
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Poly-Cauchy numbers of the second kind

By using Theorem 4, we get

e =1,
1
~(k
Cg ) = ——2k 5
(k) 1 1
® 2 3 1
ST T m
6 11 6 1
e =+ o+
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Poly-Cauchy numbers of the second kind

In similar manners to the results in Theorem 2, Corollary 1
and Theorem 3 about the poly-Cauchy numbers of the first
kind ¢(*), we can obtain the following corresponding results
about the poly-Cauchy numbers of the second kind é,(l’“).
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Poly-Cauchy numbers of the second kind

In similar manners to the results in Theorem 2, Corollary 1
and Theorem 3 about the poly-Cauchy numbers of the first
kind ¢(*), we can obtain the following corresponding results
about the poly-Cauchy numbers of the second kind é,(l’“).

Theorem 5

The generating function of the poly-Cauchy numbers 651’“) is
given by the following:

oo mn

Lify(—In(1+z)) = > &=,

e n!

where
oo Zm
Lifg(z) = _.
#() mz=:0 m!(m + 1)k
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Poly-Cauchy numbers of the second kind

The generating function of the Cauchy numbers of the
second kind &, = &) is given by

T A(l)i
14+ z)In(1 4+ x) Z '

n=0
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Poly-Cauchy numbers of the second kind

The generating function of the Cauchy numbers of the
second kind &, = &) is given by

A(l)i
1+ =) ln(l + x) Z '

n=0

The generating function of the poly-Cauchy numbers of the
second kind can be also written in the form of iterated
integrals by putting z = —In(1 4 x) in

= L[

dzdz .dz
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Poly-Cauchy numbers of the second kind

Corollary 2
For k£ > 2 we have

L * ! /m - * i dede ... dx
In1+ =) Jo (1+=)In(1+ =) Jo 14+z)in(l1+=z) Jo 1+ 2)2In(1 + ) ———m—
k—1

k—1

(==} n
=3 a(R) 2
= Cn 1 .
n=0 el
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Poly-Cauchy numbers of the second kind

Corollary 2
For k£ > 2 we have

1 g 1 x 1 x

In1+z)Jo A+=)In(1+=z)/o

x

. dede ... dx
14+z)in(l1+=z) Jo 1+ 2)2In(1 + ) ———m—

k—1
k—1

Theorem 6
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There are some relations between the poly-Cauchy numbers
of the first kind and those of the second kind.
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Relations between two kinds of poly-Cauchy numbers

There are some relations between the poly-Cauchy numbers
of the first kind and those of the second kind.

For n > 1 we have
Capd) 5 (o)
n! _m:1 m—1) m!’
I
n! _m:1 m—1) m!’
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Relations between poly-Bernoulli numbers and poly-Cauchy numbers

There are relations between poly-Bernoulli numbers and
poly-Cauchy numbers.

Theorem 8

For n > 1 we have

B =3 > m { P {77 e,

=1 m=1

) = Z Z (G 1)" i ["] [77] B®.

=1 m=1 m
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Duality theorem
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Relations between poly-Bernoulli numbers and poly-Cauchy numbers

Duality theorem

It is known that the duality theorem holds for poly-Bernoulli
numbers. Namely,

B(M = B,(c_") for n,k > 0. J
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Relations between poly-Bernoulli numbers and poly-Cauchy numbers

Duality theorem

It is known that the duality theorem holds for poly-Bernoulli
numbers. Namely,

be_k) = B,(e_n) for n,k > 0. J

It is due to the symmetric formula:

ok—o LK T e tev—erty’
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Relations between poly-Bernoulli numbers and poly-Cauchy numbers

However, the duality theorem does not hold for poly-Cauchy
numbers. In fact, we have
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Relations between poly-Bernoulli numbers and poly-Cauchy numbers

However, the duality theorem does not hold for poly-Cauchy
numbers. In fact, we have

oco oo az"y .
22 e =+,

eY

oo (o o) i x y
Z chl k)aﬁ - (1 z)e’




polylogarithm factorial functions

r 1 ]
Lif_,,(m):emZ{;il}xﬂ (r=0,1,2,...).

Jj=0



polylogarithm factorial functions

~ 1
@ =e > [T

}a:j (r=0,1,2,...).
§=0

We have the record for the first some values r.

Lify(x) = €%,
Lif_4(x) = (1 + x)e”,
Lif_5(x) = (1 + 3z + x?)e®,
Lif_3(z) = (1 + Tz + 6z + z°)e”,
Lif_4(z) = (1 + 15z + 2522 + 1023 + x%)e®,
Lif_5(x) = (1 + 31z + 9022 + 6523 + 152* + 25)e®.



polylogarithm factorial functions

For k > 2
d 1
lek(Z) = —Lik_l(z) 9
dz z

% Lig—1(t
Lik(2) :/ Ll()dt;
0 t

{0}



polylogarithm factorial functions

For k > 2
d 1
lek(Z) = —Lik_l(z) 9
dz z

% Lig—1(t
Lik(2) :/ Ll()dt;
0 t

{0}

on the other hand,
d . .
— (zLifg(z)) = Lifg_1(2),
dz

SO
1 z
Lifs(z) = = / Lifs_1 (£)dt .
zJo



polylogarithm factorial functions

For k > 2
d 1
lek(Z) = —Lik_l(z) 9
dz z

# Lig—1(t
Lig(2) :/ Ll()dt;
0 t

{0}

on the other hand,
d . .
— (zLifg(z)) = Lifg_1(2),
dz

SO
1 z
Lifs(z) = = / Lifs_1 (£)dt .
zJo

In addition, Li; (z) = —In(1 — z) and Lif1(z) = (e* — 1) /=z.
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Poly-Cauchy polynomials of the first kind

Define the poly-Cauchy polynomials of the first kind cg“)(z)
by
1 1 /x1x9...x — 2
cfzk)(z)zn!/ / ( )dmldmz...dmk.
0 0 n
k
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Poly-Cauchy polynomials of the first kind

Define the poly-Cauchy polynomials of the first kind cg“)(z)
by

1 1 _
C,(zk)(z) = n!/ / (mlmz...xk z)dmldmz...dwk.
0 0

n
k

The first several polynomials are
k
cf” () =1,

1
() = o — =

1 1 2
() = gy + o5 + (1— 2k>z+z2»



Poly-Cauchy polynomials

(k) 6 11 6 1 22 18 4
a@D=—gtm - awtw T 6w tE 53

18 6\ , 4\ ., .
+11—27k+37kz+6—27kz+z.



Poly-Cauchy polynomials

) 6 11 6 1 22 18 4
Cy4 (Z):_27k+37k_47k+?+ 6 — —+_ - —

2k 3k 4k
18 6 4
2 3 4
+<11_2k+3k>z +<6_2k>z + =z~

If k =1, then c(!)(2) = cn(2) are the Cauchy polynomials
of the first kind.



Poly-Cauchy polynomials

) 6 11 6 1 22 18 4
Cy4 (Z):_27k+37k_47k+?+ 6 — —+_ - —

2k 3k 4k
18 6 4
2 3, .4
If k =1, then c(!)(2) = cn(2) are the Cauchy polynomials

of the first kind. If z = 0, then c(¥)(0) = c(®) are the
poly-Cauchy numbers of the first kind.



Poly-Cauchy polynomials

Theorem 9

0= £ 2] E (7)o

m=0 =0




Poly-Cauchy polynomials

©e =3 [ ’"Z( >(m(——)i-1)k

m=0

Theorem 10
The generating function of the poly-Cauchy polynomials of
the first kind c(*¥)(2) is given by

Lifg(In(1 4+ =)) _ > B (&
Ly 7;) P




Poly-Cauchy polynomials

Corollary 3
For k£ > 2 we have

1

aram
L /‘m L /:x: L ® z dedz ...dz
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Poly-Cauchy polynomials

Corollary 3
For k£ > 2 we have

1

EEESEe
L ® L /m L ® z dedz ...dz
InA+ @) Jo (1+=)In(1+ =) Jo (1+2)In(1+=) Jo (14 «)In(l + ) ~—-~—"
k—1
k—1
= 5 )"
_ngocn (z) = °

Theorem 11
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Poly-Cauchy polynomials

Poly-Cauchy polynomials of the second kind

Define the poly-Cauchy polynomials of the second kind
¢k (2) by

A(k)(z) = n! / / ( T1T2 - The F z> dridxs...dxy .



Poly-Cauchy polynomials

Poly-Cauchy polynomials of the second kind

Define the poly-Cauchy polynomials of the second kind
¢k (2) by

(k)(z)—nv/ / ( T12 - mk+z>dw1daz2...dmk.

The first several polynomials are
A(k
c(() )(z) =1,

1
&) (2) = ok + 2,
1

1 2
égk)(z)zzk—i—gk—<1+2k>z+z ,



Poly-Cauchy polynomials

2 3 1 6 3
agk)(z): ————— +(2++>z

2k 3k 4k 2k~ 3k
3
—<3+2k>z2+z3,
k), . 6 11 6 1 22 18 4
G @ =gt tatm (St tata)?

18 6\ , 4\ 5 .
+11+?+§Z—6+?Z+Z.



Poly-Cauchy polynomials

A 2 3 1 6 3
P =-2 - - 4k+(2+2k+3k>z

2k 3k
3 2 3
—<3+2k>z + 2z,
~(k) _6 11 6 1 22 18 4
G @ =gt tatm (St tata)?
18 6 9 4 3 4
+ 11+?+§ z5 — 6+? Z+Z.

If k =1, then &) (2) = é,(z) are the Cauchy polynomials
of the second kind.



Poly-Cauchy polynomials

A 2 3 1 6 3
P =-2 - - 4k+(2+2k+3k>z

2k 3k
3 2 3
—<3+2k>z + 2z,
~(k) _6 11 6 1 22 18 4
G @ =gt tatm (St tata)?
18 6 9 4 3 4
+ 11+?+§ z5 — 6+? Z+Z.

If k =1, then &) (2) = é,(z) are the Cauchy polynomials
of the second kind. If z = 0, then &%) (0) = &%) are the
poly-Cauchy numbers of the second kind.



=3 [0S ()i e




Poly-Cauchy polynomials

Theorem 12

@ = 2]y (1)

m=0 1=0

Theorem 13
The generating function of the poly-Cauchy polynomials of

the second kind &%) (2) is given by

(1 + z)?Lifg(— In(1 + ) = i a;@(z)f:: :

n=0




Poly-Cauchy polynomials

Corollary 4
For k > 2 we have

14+ =2)*x
1 x 1 @« 1 @« @
/ dedz ... d=z
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Poly-Cauchy polynomials

Corollary 4
For k > 2 we have

1+ =z)*x
1 x 1 /w 1 x @
dedz ... dz
In1+e)Jo A+=a)lm@+=2)Jo ~~(A+a)lnl+2) Jo @ +=2)2n1+ ) ———"t—
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Poly-Cauchy polynomials

Relations between two kinds of poly-Cauchy polynomials

Theorem 15

For n > 1 we have

c<k>(z) : <n - 1>é(n’f’<Z>

()" —=——




Poly-Cauchy polynomials

Appell sequences

It is known that for an integer k and a positive integer n,
the poly-Bernoulli polynomials satisfy

d k
EBr(Lk)(z) =nB® (2).



Poly-Cauchy polynomials

Appell sequences

It is known that for an integer k and a positive integer n,
the poly-Bernoulli polynomials satisfy

d k
aB,(f)(z) =nB® (2).

The poly-Cauchy polynomials cg“) do not satisfy the similar
identity.



Poly-Cauchy polynomials

Theorem 15

n—1
) = o T e

®(z) m>1),




Poly-Cauchy polynomials

Theorem 15

n—1
) = o T e

®(z) m>1),

nl(l)

A<k>(z)—( 1)n—1 vz mf(k)(z) (n>1).




A more generalization

Poly-Cauchy numbers with g parameter (by Mari Yokohama)

Let g be a real number with g # 0. Define the poly-Cauchy
numbers with g parameter (of the first kind) cﬂft)] by

1 1
Cﬁ;’f.g:/o/o (371932---$k)($1$2...:l:k—q)
—

k
oo (1. .. — (N — 1)q)dxrdxs . . . doy



A more generalization

Poly-Cauchy numbers with g parameter (by Mari Yokohama)

Let g be a real number with g # 0. Define the poly-Cauchy
numbers with g parameter (of the first kind) cﬂft)z by

1 1
Cglkz,:/ / (wlwziﬂk)(ilflwzzlrk—q)
) 0 0

k
oo (1. .. — (N — 1)q)dxrdxs . . . doy

(k)

Hence, if ¢ =1, then ¢,,; = cg“) are the poly-Cauchy

numbers.



A more generalization

Poly-Cauchy numbers with g parameter cgft)] can be
expressed in terms of the (unsigned) Stirling numbers of the

first kind [ ].

n
m

Theorem 16
For a real number g # 0




A more generalization

Theorem 17

The generating function of the poly-Cauchy numbers with g

parameter cﬁl’fg is given by

In(1 > n
Lif, (“(JF‘J‘”)) =3 @ (g #0).
n=0

q n!




A more generalization

The generating function of the poly-Cauchy numbers with q
parameter in Theorem 17 can be also written in the form of
iterated integrals as that of the poly-Cauchy numbers.
Corollary 5

For k£ > 2 we have

q @ q /“B q = q((1+ qz)'/9 — 1)
In(1+qz) Jo (1+ g=)In(1 + qz) Jo (1 + qz)In(1 + q=) Jo (1 + q=z)In(1 + g=)
k—1
dedx ...dx
Notubatadyidihoto
k—1

n

= 5
n=0 9

For K = 1 we have

q((1 +gx)"/1-1) i Lo
In(1 + gx) - = "y




A more generalization

Define the poly-Cauchy numbers of the second kind with g
parameter éﬁl’le by

1 1
églkt)] = / / (—x122...2K) (—T122 . . . T — q)
’ 0 0

k
coi(—122 . ) — (N — 1)q@)dx1dTs . . . dT)



A more generalization

Define the poly-Cauchy numbers of the second kind with g
parameter éﬁl’le by

1 1
égi); =/ / (—x122...2K) (—T122 . . . T — q)
0 0
k
coi(—122 . ) — (N — 1)q@)dx1dTs . . . dT)

(k)

n,l

Therefore, if ¢ = 1, then é,;, ] = 67(1’“) are the poly-Cauchy

numbers of the second kind.



A more generalization

Theorem 18

n—m
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A more generalization

Theorem 18

n—m

-3 [ e

m=0

Theorem 19
The generating function of the poly-Cauchy numbers of the

second kind with g parameter égf‘)z is given by

Lif}, (_ln(l—i—qm)) - égel)lg .
q In!

n=0




Corollary 6

For k > 2 we have

= g(1 — (1 + qu)~1/9)

q /m q /‘” L. q
In(1+qz) Jo (1+ gz)In(1 + gz) Jo 1+ gz)In(1 +gz) Jo (1+ qz)In(1+ q=z)
k—1
dede . . . de
k—1

For K = 1 we have
oo n

d=(tan ) &0
In(1 + qx) B = ™

P
.
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A more generalization

We shall consider integrals of the definition of poly-Cauchy
numbers with g parameter in the range [0, ], where [ is a
real number with [ # 0 instead of the range [0, 1].



A more generalization

We shall consider integrals of the definition of poly-Cauchy
numbers with g parameter in the range [0, ], where [ is a
real number with [ # 0 instead of the range [0, 1].

Define c{¥) (11,12, . ..,1k), where I3, 15, ..., 1; are nonzero
real numbers, by

(ll,lz, e lp)
i pl2
= / / (mlxz...wk)(mlmz...mk—q)

. (a:lazz .z — (n—1)q)dxrdxs . . . dxy .



A more generalization

Then Cgle(ll’ l2,...,lx) can be also expressed in terms of
the (unsigned) Stirling numbers of the first kind [ ].

n
m



A more generalization

Then cgf‘)](ll, l2,...,lx) can be also expressed in terms of
the (unsigned) Stirling numbers of the first kind [ ].

n
m

Theorem 20
Let g be a real number with ¢ £ 0. Then forn > 0, k > 1
we have

n —q)" " (Il . . . )™t
®) (13, I, . .. 1) = ["](q) Wilgocc L)
cn,q( 1502, ak) Z m (m—|—1)"’

m=0




A more generalization

e Is there any (combinatorial) interpretation of Poly-Cauchy
numbers with negative index?



A more generalization

e Is there any (combinatorial) interpretation of Poly-Cauchy
numbers with negative index?

c(()_k) =1,
cg_k) = 2k,

STF = _ok 4 gk,
ST =2.2k _ 3.3k 4 4k
cy ) =—-6-24+11.3%__6.4% 4 5~



A more generalization

e Is there any (combinatorial) interpretation of Poly-Cauchy
numbers with negative index?

c(()_k) =1,
cg_k) = 2k,

STF = _ok 4 gk,
ST =2.2k _ 3.3k 4 4k
cy ) =—-6-24+11.3%__6.4% 4 5~

The number of k X n (k,n > 1) lonesome matrices is equal
to B(7F).



A more generalization

e Is there any (combinatorial) interpretation of Poly-Cauchy
numbers with negative index?

c(()_k) =1,

cg_k) = 2k,

cs M = —2* 4 3k,

S =2.28 _3.35 4 4k,

= —6.2%+11-3% — 6.4 + 5%

The number of k X n (k,n > 1) lonesome matrices is equal
to B(7F).

min(n,k)
+1) (k+1
Bk — '!2{n }{ } n,k > 0).
o= aer(f ) eezo



A more generalization

It is easy to see

Y =(-1)"(n—-2)! (n>2).



A more generalization

It is easy to see

Y =(-1)"(n—-2)! (n>2).

{c Y50 = 1,4,5,—3,4, —8,20, —52, 72,936, —17568, . ..
{c¥}>0 = 1,8,19, -1, —10, 48, —234, 1302, —8328, 60672,
{50 = 1,16, 65,45, —116, 340, —1240, 5480, —28464,
{7} >0 = 1,32, 211, 359, —538, 984, —1866, 1110, 32640,



A more generalization

Sums of product of Cauchy numbers, including poly-Cauchy
numbers




A more generalization

Sums of product of Cauchy numbers, including poly-Cauchy
numbers

e Euler formula:

Z <n) BiB,_;=-nBn,_1—(n—1)B, (n>1).



A more generalization

Sums of product of Cauchy numbers, including poly-Cauchy
numbers

e Euler formula:

n

2 CL) BiBn—i = —nBn_1— (n—1)Bs (n>1).

ZC)%(«:S‘:J’ ) = nn-1)c, +nc® (n>0).
. 1




A more generalization

Denote Tz(k)(n) =310 (%) cic™

n—i"



A more generalization

Denote T, (n) = o (7) cict™

n—i"
For n > 0 and k£ > 1 we have

T{”(n) = P (-1),

k
TV (n) = el (=1) = n Y (e + (n — D)elly),
j=1

k—1
i m) = (-1 + 1 3 (5P + (n - DelD),
i=0

where c%l)(—l) =cp +ncp_1.




A more generalization

Putting £ = 1 in the second identity, we have



A more generalization

Putting £ = 1 in the second identity, we have

> (?) citni=—(n—1)cn —n(n —2)cp1 (n >0).

=0




A more generalization

Bernoulli polynomials

It is known that the Bernoulli polynomials B,,(z) defined by
the generating function

re®? S "
= B, (z)—
-1 nZ:O n )n!

ew

satisfy the identity

lz; (})Bi@Baatw)

=n(@+y—1)Bn1(z+y) - (n—-1)Bn(z+y) (n=>0)



A more generalization

Forn > 0

> ()@ ) - eutw)
1=0

=n(@@+y+n—1c? (¢ +y)+cP(z+y).




A more generalization

Denote T2(k)(n; T, Y) = g (?)cz(a:)cflk_)z(y)



A more generalization

Denote T\ (n; z, y) = o (5 )cz(a:)c ;(y).

For n > 0 and kK > 1 we have

T2(0)(n; T, y) = Cg,l)(x +y— 1) )
¥ (nyz,y) = ¢V (z +y — 1)

k
—n) (P (x+y)
j=1

+(@+y+n—1)c (z+7y)),




A more generalization

T (nyz,y) = Pz +y —1)
k—1

+n ) () (z+y)

j=0

+@+y+n—1)c ) (@+y),

where ¢V (z + y — 1) = cp(z + y) + ncp—1(z + y).




A more generalization

Putting k£ = 1 in the second identity, we have

lz:% (})er@eni)

= —n(zt+y+n—2)cpa(z+y)—(n—1)ca(z+y) (n2>0),
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