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High Dimensional Integral

@ Applications: e.g., in finance d = 360 = 12 x 30.
@ Some integration problems are easier than others, e.g.,

d

f(x) =D fi(x).

i=1
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Element I: ANOVA Decomposition

Multivariate Decomposition
fx)= > fulx),
uC[1:d]

where u is a subset of {1,2,...,d} :=[1: d], and f,(x) depends only
on x; for j € u.

ANQOVA Decomposition

fa0 :/ f(x)dx and fa,(X) :/ f(X)dx e — ZfA:V’ (1)
[0,1]¢ [0,1]1]

where X, = (X))jeu-

@ Integrate out coordinates not in u (hard to evaluate)

Chenxi Fan (UNSW) NSW/ACT ANZIAM 2015 November 26, 2015 5/24



Element |: ANOVA Decomposition

Example
d 1
fx) =Y (xi— é)
i=1
ANOVA decomposition
fap =0,
1
faqiy = Xi — 5

fay = 0 if |u| > 2.
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Element Il: Variance of Functions

Definition
The variance of an integrable function

f:[0,11° > R

is defined as

2(f) = /[071]d[f(x)]2dx— [ /[O’ﬂd f(x)ax]
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Definition of Effective Dimension

Caflisch et al. (1997)

Truncation dimension

The smallest integer k such that

(D fau) 2 (1= e)(1), @)
uCl[1:k]
where ¢ is small, e.g., e = 0.01.
Superposition dimension
The smallest integer k such that
(D fau) 2 (1 =)o), 3)

lu|<k

@ Previous example @ Why is it important? e How to calculate it?
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Anchored Decomposition

Definition
fa’@ = f(O) and fa7u( ) == f XU70UC Z fa V)
vCu

where f(Xy,0,c) = f(X)|

x=0, jeve"

@ Fix some coordinates at 0 (the anchor).
@ Cf. the ANOVA case which integrates out other components.

Cf. ANOVA Decomposition

fag = / f(x)dx and fa,(X) = / f(X)dXye — > fay.
[0,1)¢

[0,1]1°] vCu
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Comparison: ANOVA and Anchored Decomposition

ANOVA Anchored

ngu fA,v = f[071]d—\u\ f(X)quc ngu fa,v = f(Xu,OUC)
fO fAu dX/—O jEU fa7u(x)‘xj:0:07jeu

L, Orthogonality

[ fau(X)fay(X)dx = 0, if u # v. No L, Orthogonality

Variance decomposition Cross terms may appear
Uz(f)zzu;é@O'Q(fA’u) eg ffau fav( )dX
ANOVA = ANalysis Of VAriance Anchor =0
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Weighted ANOVA and anchored Spaces

Assume {vu}ucpi.q) IS @ sequence of assigned weights. The weighted
ANOVA (and anchored) space is the space of functions with the norm

1/2
2
la={ 3 / ax,
uCl1:d] [0,1]1
fla= [ 3 2 /
uC[1:dl] [0, 17141

where f(t)(x) = 297 (x).

 OXy

/[01 el M 000, Xue JdXye

1/2
2
f(u)(xU,OuC) ’ de)

[ Embedding theorems between the two spaces
E.g., Hefter and Ritter (2015).
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Choices of Weights {4} ucqi-g

@ Product Weights:

Yu = H i
jeu

» where ~; is a decreasing sequence of non-negative numbers.
» E.g., Sloan and Wozniakowski (1998).

@ Order-Dependent weights:
Yu =Ty

» where '1,lo, ... are some non-negative numbers.
» E.g., Dick et al. (2006).

@ Product Order-Dependent (POD) weights:
Yo =T [T
jeu

» e.g., Kuo et al. (2012).
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Relate Variances to Norms |

Individual Component

Proposition 1
Assume that f(x) is a d-dimensional function in the weighted ANOVA
(or anchored) space with weights {4} c[1.q)- f has the decomposition
f(X) = > ucqi.q) f.u» Where x € {A, a}. Then
o%(fu) < C lIEul2,

where

1 _ 1 lul Product weights Vi 5

Any,u '7U<3,/10) o = ey o 3v10’ (5)

M i |U|_ 1 |ul

Cau = 7“[([;5) (3) } ©)

@ d — oco: 02(f.,) tends to 0 when |u| — co.
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Sketch of Proof

@ Starting point: Lemmas 1 and 6, Hefter et al. (2015)

fx)= > / /f(“)(tu,tuc)dtuc IT (o () = (1 = ) dtu,

uC[1:d] jeu
09— 3 [ f90.00) T] 1o.(0)0te
uC[1:d] JEU

@ fis represented in terms of the key elements of the corresponding
norm. So are the components of the decompositions.

@ Hoélder’s inequality

Chenxi Fan (UNSW) NSW/ACT ANZIAM 2015 November 26, 2015 16/24



Relate Variances to Norms |l

Partial Sum of Tails

Recall «+ € {A, a} and define

Sk— Z f*v

vC[1:K]

Proposition 2

A -S.,0<Co 3 f*,v‘z
v \[1:K]e#0

*

where

1 4\
c? = ma
e i (SF )"

1\ vl
= > w(3)
v O[1:K]S£0
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Relate Variances to Norms |l
Partial Sum of Tails
Consider
@ d— o0
@ Choose the product weights v, = H/eu’Y/ with
» 310>y > > > > >0
> SR < 00
@ When k is increasing,

c® _  ma Vi k+t 0
Ak mhkv#stW 310

chu= > Tlg=(X - > )(II3)

v [1:K]c#£0 jev [v|<oo  vC[1:K] jev
k .
“I1(1+35) -1 (1+3) o

I
R

J=1 J
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Relate Variances to Norms |

Difference between Two Decompositions

Denote

Ak =Spak — Sak = Z fav— Z fay.
vC[1:K] vC[1:K]

Proposition 3

3
o?(Ak) < CRIAI3,

where N
3 v
= > w(3)- (©)
v [1:k]°£0
v([1:k]#0
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Relate Variances to Norms |

Difference between Two Decompositions

o Denote L = [, (1 n g) and ax = 15, (1 n %)

_ Y
w= > ll3
uN[1:k]°£0 jeu
u[1:k]0

LR ER AR
j=1 j=1 j=k+1
:L+1(ak+aLk>

° Cis,z will first increase then decrease to 0 when k is increasing.
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Summary

@ Conclusions

» The variance of a particular component f, , is decreasing with the
|ul lul
rate %,(31%) or vu( &
» The variance of the difference between the ANOVA and ancI:hlored
v
decompositions is decreasing with therate >~ 4, (%) .

v [1:K]°#£0
v O[1:K]£0

@ Connection to effective dimension?
» Ongoing work.
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