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Observing the ocean from space is challenging:

e sparseness in horizontal: many unresolved scales
e sparseness in vertical: observe upper ocean only
* sparseness in time: constrained by orbit

partial, noisy observations: heterogeneous sampling, clouds



Microwave SST (AMSR-E) Infrared SST (AVHRR)
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Satellite imagery of sea-surface temperature observations:

* Microwave observations have spatial resolutions of 20-50 km and
can penetrate clouds

* Infrared observations have spatial resolutions of 1-10 km but are
obscured by clouds



* Derive superresolved images by combining microwave
observations with statistical knowledge from infrared images

* Exploit spatial aliasing of small scales by coarse observations

CIH ...
ALKIGHT ..

Original image Subsampled image



Aliasing of sparse observations
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Fourier transform on fine grid: Fourier transform on coarse grid:
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Aliasing of sparse observations

N x N resolved modes A M x M resolved modes A

>k

Coarse-grid modes are superposition of _ EI/J -
fine-grid modes in same aliasing set. k.l Ly Tkl =
k,l



Aliasing of sparse observations

More generally, sample over footprint G(x,y)
Y ()= [G(x',y) px-x',y-y") dx'dy

Coarse-grid Fourier transfcl)\rm is convolved with
spectral transfer function G(k,|)

l/}l?,l;s = Eé(k +iM,l+ jM) l//}k+iM, I+jM
L,j

For a Gaussian sampling footprint of width .z, 1/.0
transfer function is a Gaussian of width 1/.4 < >
1
G(x,y) = —exp|-(x*+)7) /20 1 |,
2’ P ( ) >

G(p.q) = eXp[—2n2 ( P+ q2)€2 /2L2] G(k)



Filtering sparse observations

Data assimilation or filtering seeks the best-guess estimate of the
state of the system by combining noisy, incomplete observations

with an internal forecast model.

time

M x M observations of each resolved

mode + aliased modes




Filtering sparse observations

Data assimilation or filtering seeks the best-guess estimate of the
state of the system by combining noisy, incomplete observations
with an internal forecast model.

1. Forecast step:

® Make prediction for N x N modes

/. using quasi-linear stochastic model.

9,0 =—(y—iw)0(t)+ oW (1)

® O Forecast mean and covariance:

<6>’ qu - <0;6q>

Tune parameters to give correct
energy and timescales estimated from
> infrared observations.

time



Filtering sparse observations

Data assimilation or filtering seeks the best-guess estimate of the
state of the system by combining noisy, incomplete observations
with an internal forecast model.

2. Update step:

O Combine N x N prediction (-) with
M x M observation (~) using Kalman
filter solution:

(6,)=(1-KG){0_)+ K6
R, =(1-KG)R.
Optimal solution when dynamics and

observation operator are linear with
> unbiased uncorrelated Gaussian noise.

time
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Filtering sparse observations

Data assimilation or filtering seeks the best-guess estimate of the
state of the system by combining noisy, incomplete observations
with an internal forecast model.

3. Smoothing step:

® Apply Rauch-Tung-Straub smoother to
remove unphysical jumps.
(k, I+M) (k+M, 1+M)
(©) (©)
Ilh A
-0.0050 0.005 E i -0.0050 0.005
dh | e ‘Ih
kD) (kM)
-0.0050 0.005 -0.0050 0.005

Resulting superresolved estimate is a
> pdf with an effective resolution given
time by model, not observations.
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Test in ocean simulations driven by Forget (2010) hydrography.
Assume that density anomalies are dominated by temperature.

Synthetic daily temperature observations over a 90-day period
with both microwave (40 km) and infrared (5 km) resolutions.

Infrared observations used to learn stochastic parameters.



Sea-surface temperature (SST) snapshots: Subtropical Pacific

True SST Observed SST Superesolved SST
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0, =(0,)+Ak,DX, A (k,DA(k,D)=R(k,I)



Temperature variance spectrum: <|9(k)|2>

Antarctic Circumpolar Current Gulf Stream
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» Effect of aliasing can be seen in spurious variance in observations
near the limit of resolution

e Super-resolved estimate correctly redistributes variance to small
scales



1/2

§e( k)‘2>

RMS error: (ot~ [ ) / (
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» Effect of aliasing can be seen in spurious variance in observations
near the limit of resolution

e Super-resolved estimate correctly redistributes variance to small
scales



Eddy diffusion across tracer contours

 Tracer coordinates : area enclosed by C

6,C = d,(K ;9,C) @
* Effective diffusivity (Nakamura 1996):

K, (C.t)=KIVC|al fIvC[ ar

C=C, C=C

thg=0 t = 08091 t = 20179




Diffusivity
enhancement
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Conclusions

&QJAGU PUBLICATIONS ’

Journal of Geophysical Research: Oceans

RESEARCH ARTICLE  Upper ocean flow statistics estimated from superresolved
10-1002/20149C010357 sea-surface temperature images

Key Points: Shane R. Keating? and K. Shafer Smith2

« The resolution of microwave SST
images is increased using a statistical 'School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia, ?Center for
model

Atmosphere-Ocean Science, Courant Institute of Mathematical Sciences, New York University, New York, New York, USA
« The model is based upon statistics

learned from intermittent infrared

Combine coarse-resolution microwave images with a simple
statistical model to construct super-resolved images.

Stochastic model based upon statistical information from
intermittent infrared observations.

Keating, S.R. and Smith, K.S. (2015) J. Geophys. Res. 120: 1-18




Meridional wavenumber

Estimating poleward ocean heat flux
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Sensitivity to clouds and observing period:

Normalized RMS error Normalized RMS error
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* Accuracy of small-scale statistics calculated using high-resolution
images depends on quality of data

 Model effect of imperfect data by randomly discarding frames
(“clouds”) or shortening observing period



Eddy heat flux in the Phillips model

Heat flux = (v1) = —/d,d, (W,d ;)

Explicitly a function of both upper and lower layers
Sensitive to horizontal spatial resolution

Meridional wavenumber

Heat flux spectrum Optimally interpolated heat flux
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Stochastic Forecast Model

i (1) = m(t)u, () +a(t) + O W (1)

o =1{k,l,u}

/Ofﬂine parameter estimation\
m(t) =m, =-y, +10,

a(t)=a, =0

Regression fit to time-mean energy

\and correlation time. /

1

Offline estimate (real/imaginary)

Adaptive estimate (real/imaginary)

Multiplicative noise

~ 300
Time (in Teddy)

(Adaptive parameter estimatio}

fin(t) = @m(t) —m,) m(t)
() = €2, - a,) {0, (1

High filtering skill for broad range
\of parameters.

Additive noise

~ 300 350
Time (in Teddy)



Meridional wavenumber

Stochastic Superresolution
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