Reconstruction Algorithms

for Blind Ptychographic Imaging

Matthew K. Tam
School of Mathematical and Physical Sciences
University of Newcastle

THE UNIVERSITY OF

@ NEWCASTLE CARMA
AUSTRALIA

Joint work with R. Hesse, D.R. Luke and S. Sabach

NSW/ACT ANZIAM Meeting, November 2015

Matthew Tam (carma.ne e. . Reconstruction Algorithms for Blind Ptychographic Imaging



Scanning Ptychography: A Crash Course

@ An unknown specimen is illuminated by a localized illumination
function resulting in an exit-wave whose intensity is observed.

@ A ptychography dataset is a series of these observations, each is
obtained by shifting the illumination function to a different position
relative to the specimen. Neighbouring illumination regions overlap.

@ Given a ptychographic dataset, the blind ptychography problem is to
simultaneously reconstruct the specimen and illumination function.

Figure : An illumination function (left), specimen (center), and exit-wave (right).
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Scanning Ptychography: A Crash Course

The forward model is:
@ The unknown illumination function: x € C"",
@ The unknown specimen: y € C"*",
o An m-tuple of diffraction patterns: z = (z1,...,zy) € (C"*")7,
°

The shift map S; : C"*" — C™ " moves x to the position
corresponding to the jt diffraction pattern measurement.

@ The elements of the triple (x,y,z) are related by:
Six)oy=2z Vje{l,2,...,m}.

Figure :  An example of 5j(x) ® y = z; with S; localising “x” to the jth position.
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Scanning Ptychography: A Crash Course

In a ptychography experiment we observe m non-negative matrices:
bj =|F(z)| e RY" Vje{l,2,...,m},

where F is the 2D Fourier transform, and | - | is taken element-wise.

The blind ptychography problem can now be stated:

Given by, by, ..., by € RT*" reconstruct the triple (x, y, z).
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Probe function, it 1

The actual specimen and illumination function

True amplitude True phase True probe

20 40 60 80100 20 20 40 60 80100 20
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Two Algorithms in the Literature

Maiden & Rodenburg proposed:

Inverse
transform, F !
Update
specimen

4® ;

Update functions are of the form:

PRI 0 I PR
Hrelm o8 (@ - geher).
Iy llse

Update
illumination
function

Think: Residual
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Two Algorithms in the Literature

Maiden & Rodenburg proposed: Thibault et al. proposed:

Replace Known
modulus with intensities,
measurement bi.... by

Multip
() 41

Update functions are of the form: Update step involves solving:
—1k (xk k Lk o2k
K+ _HVMQ -1 (zk—S-(xk)Gyk>_ K= S SiE) © ok PR (oo} /)‘
kg, — S N [, <k o [=my vk o 5|
oo oo

Think: Residual simultaneously solved. While the system cannot be decoupled

analytically, applying the two equations in turns for a few
iterations was observed to be an efficient procedure to find the
minimum. Within the reconstruction scheme, initial guesses for P,
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Our Framework

o Considered the following optimisation problem:

min  F(x,y,z zjllS )y~ zl?

st. xeX:={x: Hx||oo < My, x;j =0,V(i,j) & L}, (P)
yeYi={y:lyle <M}
zeZ:={z:|F(z)| =bjforj=1,2,...,m},

where M,, M, € R are bounds, and I is an index set (support of x).

A set S C RY is semi-algebraic if there exists finitely many polynomials Pijs qij : RY — R such that

»
Il

C-=

=

{uG]Rd:p,-J( =0, gj(u <0}

1i=1

-
Il
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zeZ:={z:|F(z)| =bjforj=1,2,...,m},

where M,, M, € R are bounds, and I is an index set (support of x).

o Equivalent to the formally unconstrained semi-algebraic problem:

min W(x,y,z):= F(x,y,z) + tx(x) + ey (y) + tz(2).

A set S C RY is semi-algebraic if there exists finitely many polynomials Pijs qij : RY — R such that
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A Naive Algorithm: Alternating Minimisation

Alternating Minimisation Algorithm (over three blocks):

Initialization. Choose (x°,)°,2°) € X x Y x Z.
General Step. (k=0,1,...)
1. Select X € argmin F(x, y*, 2),
xeX
2. Select y*™ € argmin F(x*™, y, 2",
yey
3. Select 2 € argmin F(X* y* Y 2).
zeZ
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A Naive Algorithm: Alternating Minimisation

Alternating Minimisation Algorithm (over three blocks):

Initialization. Choose (x°,)°,2°) € X x Y x Z.
General Step. (k=0,1,...)
1. Select X € argmin F(x, y*, 2),
xeX
2. Select y*™ € argmin F(x*™, y, 2",
yey
3. Select 2 € argmin F(X* y* Y 2).
zeZ

What's involved? Roughly speaking, to compute Step 1 we minimise
terms of the form [|S;(x) ® y* — zf||>. To do so:

Sx) oy rzf = S(x)xzfou = x~ 5z o).

pointwise division X un-shift operator v
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PHeBIE: Proximal Block Implicit-Explicit Algorithm

From the previous slide, recall our naive Step 1:

XKt € argmin F(x, y*, z¥).
xeX

Replace the objective function F with a better behaved regularisation:

XK1 argmin | F(x,y*,2¥)

xeX

Given a set C, its (nearest point) projection, Pc, is given by

Pc(w) := argmin ||u — w||.
ueC
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From the previous slide, recall our naive Step 1:

XKt € argmin F(x, y*, z¥).
xeX

Replace the objective function F with a better behaved regularisation:

k
Xt e argmin | F(x*,y*, 2°)+ (x — x*, V. F(x*, y*, 2%))+ %HX —xK?
xeX
| —

linearisation of F(-, yk7 zk) at x¥ proximal term

Given a set C, its (nearest point) projection, Pc, is given by

Pc(w) := argmin ||u — w||.
ueC
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PHeBIE: Proximal Block Implicit-Explicit Algorithm

From the previous slide, recall our naive Step 1:

L ¢ argmin F(x, y*,29).
xeX

Replace the objective function F with a better behaved regularisation:

k
. «
Xt e argmin | F(x*,y*, 2°)+ (x — x*, V. F(x*, y*, 2%))+ 7HX —xK?
xeX
| —
linearisation of F(-,yk,zk) at x* proximal term

= Px %Em: oS (v - )

* No longer requires any ill-conditioned or unstable operations.

Given a set C, its (nearest point) projection, Pc, is given by

Pc(w) := argmin ||u — w||.
ueC
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PHeBIE: Proximal Block Implicit-Explicit Algorithm

Proximal Heterogeneous Block Implicit-Explicit Algorithm:

Initialization. Choose o, 3,7 > 0 and (x%y°,2°) € X x Y x Z.
General Step. (k=0,1,...)
1. Choose a* > o and select

2 N em 1y o
X e Px <Xk - JZSJ ‘v est (yk —ij)> :
j=1

2. Choose X > 3 and select
Yt e Py (yk - %ZSJ(W) © (SJ(XM) - Zf)) :
j=1

3. Choose v* > v and select

Zk_*—1 € Pz <|:

2+ Yk

Si(x<1 o) k+1+ Yk Z_k:| )
J( ) y 2+7k J =1

For convergence we need: o > Lx(yk, zk) and g¥ > Ly(xkﬂ,zk) where Lx(y“7 zk) and

Ly(x’“rl7 z¥) denote the partial Lipschitz constants of V,F(-, y*, z*) and VyF(xk“, -, 2.
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PHeBIE: Example
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PHeBIE: Convergence Theorem

Theorem (Hesse-Luke—Sabach—T. 2015)

Let {(x*, y*,z¥)}xen be a sequence generated by the PHeBIE algorithm
for the blind ptychography problem. Then the following hold.

@ The sequence {(x*, y*,z¥)}xen has finite length. That is,

oo
D OKF Y 2 — (K y 2| < oo
k=1

@ The sequence {(x*, y*, z¥)}xen converges to point (x*,y*,z*)
which is a critical point of the function W. That is,

0€0V(x,y,z) = VF(x*,y*,2") + Outx(x*) + Ovy (y*) + Ovz(z¥),

where J(-) denotes the limiting Fréchet subdifferential.

For u € domain(f), the limiting Fréchet subdifferential is given by

of(u) = {v: 3K = u, F(6R) = ), VK o, e éf(u")} . where 8f(u) = 4 v : liminf W) — ) = (v, w =) >ob.
i llw — al
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PHeBIE: Convergence Theorem (cont.)

Proof Sketch.

The proof has three steps:

The proof strategy is based on an “informal recipe” of Bolte, Sabach Teboulle (2014).
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PHeBIE: Convergence Theorem (cont.)

Proof Sketch.

The proof has three steps:

@ (Sufficient decrease) Use structure of the algorithm to establish that
there exists of a constant p > 0 such that

IO Y L2 — (5 2P < N 5, 25) — FOEH, 29,

The proof strategy is based on an “informal recipe” of Bolte, Sabach Teboulle (2014).
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PHeBIE: Convergence Theorem (cont.)

Proof Sketch.

The proof has three steps:

@ (Sufficient decrease) Use structure of the algorithm to establish that
there exists of a constant p > 0 such that

IO Y L2 — (5 2P < N 5, 25) — FOEH, 29,
@ (Subdifferential bound) Use structure of the algorithm to show that
[w! U < R OHE, y o, 2940 — (K, 4, 29

for some w 1 € QW (xkF1 yk+1 2k+1) and k > 0.

The proof strategy is based on an “informal recipe” of Bolte, Sabach Teboulle (2014).
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PHeBIE: Convergence Theorem (cont.)

Proof Sketch.

The proof has three steps:
@ (Sufficient decrease) Use structure of the algorithm to establish that

there exists of a constant p > 0 such that

Oy, 2) = (A 2 < Rk, K, 2) = FOEH 0 2,

@ (Subdifferential bound) Use structure of the algorithm to show that

[w! U < R OHE, y o, 2940 — (K, 4, 29

for some w 1 € QW (xkF1 yk+1 2k+1) and k > 0.

@ To establish convergence of {(x*, y*, z¥)}sen to a critical point, we
uses the fact that W satisfied the so-called Kurdyka—tojasiewicz

(KL) Property to deduce Cauchy-ness of {(x*, y*,z*)}ren. .

The proof strategy is based on an “informal recipe” of Bolte, Sabach Teboulle (2014).
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The Kurdyka-tojasiewicz (KL) Property

A functions satisfies the KL-property at a point if it can made “sharp” by
reparametrising its range with an increasing function. A simple example: the
function f(x) = x* can be reparametrised by p(x) = /x:

fx)=x2 pof(x)=|x|

Theorem (Bolte—Danillidis—Lewis 2006)

Every proper, lower semi-continuous, semi-algebraic function satisfies the
KL-property throughout its domain.

Let f : R — (—o00, +c] be proper. For n € (0, +o0] define

Cr={p:[0,n) = Ry :p(0)=0,0(s) >0foralls e (0,n)}.

The function f has the KL property at U € dom Of if there exists 7 € (0, +oc], a neighbourhood
U of T, and a function ¢ € C,,, such that, for all u € {u € U: f(u) < f(u) < f(u)+n}, we have

' (f(u) — f(@))dist(0, Of (u)) > 1.

Think: minimum norm element of &(p0g) where g=f — f(Ti).
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Interpreting Current State-of-the-Art Algorithms

We summarise the main differences between the three algorithms.
@ The PHeBIE algorithm:

o Minimises w.r.t. three blocks X, Y, Z in cyclic order.
o Each x-update/y-update uses all m diffraction patterns. In Step 1,
the weight o* is given by partial Lipschitz constant of V. F(-,y*,z*):

(Eaer)

Lx(yk’zk) = 2

oo
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Interpreting Current State-of-the-Art Algorithms

We summarise the main differences between the three algorithms.
@ The PHeBIE algorithm:

o Minimises w.r.t. three blocks X, Y, Z in cyclic order.
o Each x-update/y-update uses all m diffraction patterns. In Step 1,
the weight o* is given by partial Lipschitz constant of V. F(-,y*,z*):

(Eaer)

Lx(yk’zk) = 2

@ Madien & Rodenburg method:
o Minimisation w.r.t. to three blocks X, Y and Z.
o Each x-update/y-update uses only a single diffraction pattern. In
Step 1, the weight when updating using the jth diffraction pattern is:

255700,
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Interpreting Current State-of-the-Art Algorithms

We summarise the main differences between the three algorithms.
@ The PHeBIE algorithm:
o Minimises w.r.t. three blocks X, Y, Z in cyclic order.
o Each x-update/y-update uses all m diffraction patterns. In Step 1,
the weight o* is given by partial Lipschitz constant of V. F(-,y*,z*):

(Tsemen)
@ Madien & Rodenburg method:

o Minimisation w.r.t. to three blocks X, Y and Z.
o Each x-update/y-update uses only a single diffraction pattern. In
Step 1, the weight when updating using the jth diffraction pattern is:

255700,

Lx(yk’zk) = 2

oo

@ Thibault et al. method:

o Minimise w.r.t. three blocks X, Y, Z, but many X, Y updates are
performed between Z updates.
simultaneously solved. While the system cannot be decoupled
analytically, applying the two equations in turns for a few

iterations was observed to be an efficient procedure to find the
minimum. Within the reconstruction scheme, initial guesses for P
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Concluding Remarks and Ongoing Work

Summary:

@ We have proposed the PHeBIE algorithm for scanning ptychography
within a solid mathematical optimisation framework.

@ Under practically verifiable assumptions, the algorithm is provably
convergent to critical points of the function V= F +1x + 1ty + ¢7.

@ Current state-of-the-art ptychography algorithms can be interpreted.

Outlook:
@ Can the critical points of of W be characterised in a meaningful way?

@ What happens when the data is noisy? Our convergence theorem
holds independently of the presence of noise in the data.

Proximal Heterogeneous Block Implicit-Explicit Method and Application
to Blind Ptychographic Diffraction Imaging with R. Hesse, D.R. Luke and
S. Sabach. SIAM J. on Imaging Sciences, 8(1):426-457 (2015).
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