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First connection of additive combinatorics and ergodic theory

Theorem (Szemeredi)
Let A⊂ Z be a set of positive upper Banach density. Then A contains arbitrary
long AP’s.

Theorem (Furstenberg)
Let (X ,B,µ,T ) be an ergodic Z-system. Then for every A ∈ Σ with µ(A)> 0,
and every k ≥ 1, there exists n ∈ IN such that
µ(A∩T−nA∩ . . .∩T−(k−1)nA)> 0.

Furstenberg Correspondence principle
Let A⊂ Z be a set with d∗(A)> 0. Then there exists an ergodic Z-system
(X ,B,µ,T ) and a set Ã ∈ Σ such that for every k ≥ 1, every n1, . . . ,nk ∈ Z we
have

d∗((A−n1)∩ . . .∩ (A−nk ))≥ µ(T−n1 Ã∩ . . .∩T−nk Ã).
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(X ,B,µ,T ) and a set Ã ∈ Σ such that for every k ≥ 1, every n1, . . . ,nk ∈ Z we
have

d∗((A−n1)∩ . . .∩ (A−nk ))≥ µ(T−n1 Ã∩ . . .∩T−nk Ã).
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Sumsets through ergodic theory

Setting
Γ countable abelian group

A,B sets in Γ
A + B = {a + b |a ∈ A,b ∈ B}

Folner sequences
A sequence of finite sets Fn ⊂ Γ is Folner if for every γ ∈ Γ we have

|(γ+ Fn)∩Fn|
|Fn|

→ 1 as n→∞.

Upper Banach density of A⊂ Γ:

d∗(A) = sup
(Fn) Folner

limsup |A∩Fn|
|Fn|

.
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Sumsets through ergodic theory

Examples

d∗(2Z) = 1
2 , d∗(∪n[n!,n! + n]∩Z) = 1, d∗(�) = 0.

Furstenberg correspondence principle for sumsets
A⊂ Γ with d∗(A)> 0. ∃ an ergodic Γ-system (X ,Σ,µ,T ) and A ∈ Σ s.t.
∀B ⊂ Γ:

d∗(A + B)≥ µ(∪γ∈BTγA),

d∗(A) = µ(A).
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Quasi-ergodic sets

quasi-ergodic set
B ⊂ Γ is quasi-ergodic if for every ergodic Γ-system (X ,Σ.µ,T ) and every
A ∈ Σ with µ(A)> 0 we have µ(∪γ∈BTγA) = 1.

Examples
1) every B ⊂ Γ with d∗(B) = 1 is quasi-ergodic.
2) (Boshernitzan, Kolesnik, Quas, Wierdl) ⇒

B = {bnαc|n ∈ IN},α 6∈Q

is quasi-ergodic.

k quasi-ergodic set
Let k ≥ 1. A set B ⊂ Γ is k quasi-ergodic if the set kB is quasi-ergodic.

Examples
1) Vinogradov theorem ⇒ Primes is 4-quasi-ergodic.
2) Laplace theorem ⇒ � is 4-quasi-ergodic.
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Main results

Björklund, F.
B ⊂ Γ is k-quasi-ergodic. Then for every ergodic Γ-system (X ,Σ,µ,T ) and
every A ∈ Σ we have

µ(∪γ∈BTγA)≥ µ(A)1− 1
k .

Corollary
Let B ⊂ Γ be k-quasi-ergodic set. Then for every A⊂ Γ we have:

d∗(A + B)≥ d∗(A)1− 1
k .

Proof

d∗(A + B)≥ µ(∪γ∈BTγA)≥ µ(A)1− 1
k = d∗(A)1− 1

k .

Renling Jin
A,B ⊂ IN, d∗(kB) = 1, then

d∗(A + B)≥ (d∗(A))1− 1
k .
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Plünnecke inequalities in additive combinatorics

Magnification ratios
For A,B ⊂ Γ finite sets:

µk = inf
∅6=A′⊂A

|A′+ kB|
|A′| , k ≥ 1,

for δ > 0
µk,δ = inf

A′⊂A, |A′|≥δ|A|

|A′+ kB|
|A′| , k ≥ 1

Plünnecke thm

µ
1
k
k is a decreasing sequence

Corollary (Plünnecke)
There exist ck,δ > 0, ck,δ → 1 as δ→ 0 such that

µ1 ≥ c2,δµ
1
2
2 ≥ c3,δµ

1
3
3 ≥ . . .≥ ck,δµ

1
k
k
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Ergodic Theory

Let (X ,Σ,µ,T ) - be measure preserving Γ-system, B ⊂ Γ, A ∈ Σ, µ(A)> 0.

Magnification ratios

µk = inf
A′⊂A,µ(A′)>0

µ(∪γ∈kBTγA′)
µ(A′)

Let δ > 0

µk,δ = inf
A′⊂A,µ(A′)≥δµ(A)

µ(∪γ∈kBTγA′)
µ(A′)

Question

Is it true that µ
1
k
k is a decreasing sequence?

Björklund, F.

If B ⊂ Γ is finite then µ
1
k
k is a decreasing sequence.
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Application of Ergodic Plünnecke inequalities

Assume µ
1
k
k is ↓ for any B ⊂ Γ.

B ⊂ Γ s.t. kB is quasi-ergodic: µ(∪γ∈kBTγA) = 1, ∀A : µ(A)> 0

µk
1 ≥ µk = inf

A′⊂A,µ(A′)>0

µ(∪γ∈kBTγA′)
µ(A′) =

1
µ(A)

µ1 = inf
A′⊂A,µ(A′)>0

µ(∪γ∈BTγA′)
µ(A′) ≤

µ(∪γ∈BTγA)

µ(A)
.

⇒
µ(∪γ∈BTγA)≥ µ(A)1− 1

k
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Ergodic Theoretic Results

Björklund, Fish
B ⊂ Γ finite. Then

µ
1
k
k ↓.

µ1,δ ≥ c2,δµ
1
2
2,δ ≥ c3,δµ

1
3
3,δ ≥ . . .≥ ck,δµ

1
k
k,δ, where ck,δ → 1 as δ→ 0.

Björklund, Fish
B ⊂ Γ s.t. B is quasi-ergodic, δ > 0. Then

sup
B′⊂B,|B′|<∞

inf
A′⊂A,µ(A′)≥δµ(A)

µ(∪γ∈B′ TγA′)
µ(A′) ≥ 1

µ(A)
.

Corollary
Let B ⊂ Γ be k-quasi-ergodic. Then for every ergodic Γ-system (X ,Σ,µ,T )
and every A ∈ Σ we have

µ(∪γ∈BTγA)≥ µ(A)1− 1
k .
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Sketch of proofs for Γ = Z

Theorem 1
B ⊂ Z finite. Then

µ
1
k
k ↓.

µ1 ≥ c2,δµ
1
2
2 ≥ c3,δµ

1
3
3 ≥ . . .≥ ck,δµ

1
k
k , where ck,δ → 1 as δ→ 0.

Ergodicity ⇒ Fix = ∪n∈Z{x ∈ X |T nx = x}

µ(Fix) ∈ {0,1}.

Periodic case (µ(Fix) = 1) follows from Plünnecke inequalities.
Aperiodic case (µ(Fix) = 0):

Prove inequalities for a special aperiodic ergodic Z-system
Use conjugacy lemma of Halmos to prove inequalities for a general
aperiodic Z-system.
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Sketch of proofs for Γ = Z

Special aperiodic ergodic Z-system
Take 2-odometer: Z2 are 2-adic integers,

(Z2,+) compact abelian monothetic group generated by the element 1.

T : Z2→ Z2 by T (x) = x +1.

The system (Z2,B,mZ2 ,T ) is an ergodic aperiodic Z-system.

Periodic partitions of (Z2,B,mZ2 ,T )

For every n, there exists a partition Pn = {C0,TC0, . . . ,T 2n−1C0} of Z2.

Elements of Pn’s generate σ-algebra B.

Use the approximation by elements of partition Pn and Plünnecke inequalities
in Z to prove that for the system (Z2,B,mZ2 ,T ) and a finite B ⊂ Z ergodic
Plünnecke inequalities hold true.
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Halmos conjugacy lemma

(X ,Σ,µ) is a standard measure space.

APER = {S : X → X ,Sµ= µ,S is aperiodic}.

Then for any T ∈ APER, the conjugacy class of T

conj(T ) = {σTσ−1 |σ ∈ Aut(X ,µ)}

is dense in uniform topology,

∀S ∈ APER, ∀ε > 0, ∃σ ∈ Aut(X ,µ) ∀A ∈ Σ:

µ(S(A)4σTσ−1(A))< ε.

Alexander Fish Ergodic Plünnecke inequalities



Halmos conjugacy lemma

(X ,Σ,µ) is a standard measure space.

APER = {S : X → X ,Sµ= µ,S is aperiodic}.

Then for any T ∈ APER, the conjugacy class of T

conj(T ) = {σTσ−1 |σ ∈ Aut(X ,µ)}

is dense in uniform topology,

∀S ∈ APER, ∀ε > 0, ∃σ ∈ Aut(X ,µ) ∀A ∈ Σ:

µ(S(A)4σTσ−1(A))< ε.

Alexander Fish Ergodic Plünnecke inequalities



Special Case of Theorem 2

Theorem 2
B ⊂ Z s.t. B is quasi-ergodic, δ > 0. Then

sup
B′⊂B,|B′|<∞

inf
A′⊂A,µ(A′)≥δµ(A)

µ(∪n∈B′ T nA′)
µ(A′) ≥ 1

µ(A)
.

Special case
Let δ > 0. Then

sup
N

inf
A′⊂A,µ(A′)≥δµ(A)

µ(∪n≤NT nA′)
µ(A′) ≥ 1

µ(A)
.
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Special Case of Theorem 2

Special case
Let δ > 0. Then

sup
N

inf
A′⊂A,µ(A′)≥δµ(A)

µ(∪n≤NT nA′)
µ(A′) ≥ 1

µ(A)
.

Proof
Periodic case is trivial.

Aperiodic case: Uses Rokhlin’s lemma and poitnwise ergodic theorem.
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Thank you!!!
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