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What is a 2–graph?

Definition 1 (Kumjian-P)

A 2-graph (Λ, d) consists of a countable small category Λ with a
functor d : Λ→ N2 satisfying the factorization property : for every
λ ∈ Λ and m,n ∈ N2 with d(λ) = m+ n, there are unique
elements µ, ν ∈ Λ such that λ = µν and d(µ) = m, d(ν) = n.

For m ∈ N2, we let Λm = d−1(m). For m,n ∈ N2, we say that
m ≤ n if mi ≤ ni for each i.

Notation 2 (Raeburn–Sims–Yeend)

For 0 ≤ m ≤ n ≤ d(λ), by the factorization property we have
λ = λ(0,m)λ(m,n)λ(n, d(λ)) where d(λ(0,m)) = m,
d(λ(m,n)) = n−m and d(λ(n, d(λ))) = d(λ)− n.

This talk concerns two equivalent ways of studying 2–graphs using
directed graphs.
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Directed graphs

A directed graph E consists of a set E0 of vertices, a set E1 of
edges and maps r, s : E1 → E1 giving the direction of each edge.
Let En denote the paths of length n in E, and E∗ denote the
collection of finite paths in E.

A graph morphism φ : F → E is a pair φ = (φ0, φ1) of maps
φi : F i → Ei for i = 0, 1 such that for all f ∈ F 1

s(φ1(f)) = φ0(s(f)), r(φ1(f)) = φ0(r(f)).

A graph morphism φ : F → E has [unique] r-path (resp. s–path)
lifting if for every v ∈ φ0(F 0), e ∈ φ1(F 1) with r(e) = v (resp.
s(e) = v) and w ∈ F 0 with φ0(w) = v there is a [unique]
f ∈ φ1(F 1) with r(f) = w (resp. s(f) = w) such that φ1(f) = e.
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Coloured graphs

Let F2 be the free semigroup on 2-generators {b, r}.

Definition 3 (Hazelwood, Raburn, Sims, Webster)

A 2-coloured graph (E, c) is a directed graph E together with a
map c : E1 → {r, b}, which we can extend to a functor
c : E∗ → F+

2 .

Example 4

With c2(N) = b = c2(S) and c2(E) = r = c2(W ) we have

sw

nw

se

ne

(E2, c2) :=

N

S

W E
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Coloured graphs II

A 2-coloured-graph morphism from (E, cE) to (F, cF ) is a graph
morphism ψ from E to F such that cE(e) = cF (ψ1(e)) for every
e ∈ E1.

Given a 2-coloured graph (E, c), a square in E is a coloured-graph
morphism φ : (E2, c2)→ (E, c), and we identify a square φ with its
image in E.

For a 2-coloured graph (E, c), a complete collection of squares is a
collection C of squares in E such that for each ef ∈ E2 with
c(e) 6= c(f) there exists a unique φ ∈ C such that ef = φ(S)φ(E)
if c(ef) = br and ef = φ(W )φ(N) if c(ef) = rb.
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2–coloured graphs and 2–coloured graphs

Let Λ be a 2–graph, then we may define a 2-coloured graph
(EΛ, cΛ) and a complete collection of squares CΛ in EΛ as follows:

Let EΛ be the directed graph with E0
Λ = Λ0 and

E1
Λ = Λ(1,0) ∪ Λ(0,1) with range and source maps inherited from Λ.

The graph EΛ is usually referred to as the 1-skeleton of Λ. Define
cΛ : E1

Λ → F2 by cΛ(e) = b if d(e) = (1, 0) and cΛ(e) = r if
d(e) = (0, 1).

For λ ∈ Λ(1,1) define a square φλ : (E2, c)→ (EΛ, cΛ) by

W 7→ λ((0,0),(0,1)) ∈ Λ(0,1), N 7→ λ((0,1),(1,1)) ∈ Λ(1,0),

S 7→ λ((0,0),(1,0)) ∈ Λ(1,0), E 7→ λ((1,0),(1,1)) ∈ Λ(0,1).

One checks that CΛ = {φλ : λ ∈ Λ(1,1)} is a complete collection of
squares in EΛ
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2–coloured graphs and 2–coloured graphs II

The converse to this result is given by.

Theorem 5 (Hazelwood, Raeburn, Sims, Webster)

Let (E, c) be a 2-colored graph, and C be a complete collection of
squares in E. Then there is a unique 2-graph Λ = Λ(E, c) and a
2-coloured graph isomorphism from (E, c) to (EΛ, cΛ) taking C to
CΛ.

Hence 2–graphs and 2–coloured graphs with a complete collections
of squares are in bijective correspondence.
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Textile systems

A textile system2 is a quadruple T = (F,E, p, q), where
F = (F 0, F 1, rF , sF ), E = (E0, E1, rE , sE) are two directed
graphs, and p, q : F → E are two graph morphisms such that the
map C : F 1 → E1 × E1 × F 0 × F 0 given by
f 7→ (p(f), q(f), rF (f), sF (f)) is injective.

Intuitively, the textile condition implies that for every f ∈ F 1 there
is a unique ”tile" cf as shown:

•

•

•

•
p(f)

q(f)

r(f) s(f)cf (1)

2adapted from Nasu
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Examples

Example 6

Let

F := h

e

g

fγ

β

δ

α E :=
z x y

v w u

d c

b a

Define p, q : F → E by

p(α) = a, p(β) = a, p(γ) = b, p(δ) = b, and
q(α) = c, q(β) = d, q(γ) = d, q(δ) = c.

Then T1 = (F,E, p, q) is a textile system.
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Examples II

Example 7

Let

u′ v′w′

u vw

F :=

E :=

a

b ce

f
g

and define p, q : F → E by

p(u′) = u, p(v′) = v, p(w′) = w and p(a) = e, p(c) = g, p(b) = f

q(u′) = u, q(v′) = v, q(w′) = u and q(a) = e, q(c) = g, q(b) = e.

Then T2 = (F,E, p, q) is a textile system.
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Equivalence

Let T1 = (F1, E1, p1, q1), T2 = (F2, E2, p2, q2) be two textile
systems. Then T1, T2 are equivalent if there are graph
isomorphisms ψF : F1 → F2, ψE : E1 → E2 such that for all
f ∈ F 1 we have

p2(ψ1
F (f)) = ψ1

E(p1(f)), q2(ψ1
F (f)) = ψ1

E(q1(f)).

That is, the squares

E1

F1

E2

F2

ψF

ψE

p1/q1 p2/q2

commute.
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Textile ststems and coloured graphs

Given a textile system T = (F,E, p, q), we may define 2-colored
graph (GT , cT ) as follows. Let G0

T = E0, G1
T = E1 t F 0, and

r(e) = rE(e), s(e) = sE(e), cT (e) = b for e ∈ E1,

r(v) = q(v), s(v) = p(v), cT (v) = r for v ∈ F 0.

Since the map C is injective, each f ∈ F 1 uniquely determines a
square cf : (E2, c2)→ (GT , cT ) with image in GT given by:

q(r(f))

p(r(f))

q(s(f))

p(s(f))
p(f)

q(f)

r(f) s(f)cf (2)

If p has unique r–path lifting and q has unique s–path lifting then
CT = {cf : f ∈ F 1} is a complete collection of squares in GT . 12 / 17
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Back to examples

Example 8

Recall the textile system T1 described in Example 6 then (GT1 , cT1)
is the 2-coloured graph

uv

w

x

y

z

a

e

b

f

g
h

c

d
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Back to examples II

Example 9

Recall the textile system T2 described in Example 7 then (GT2 , cT2)
is the 2-coloured graph

u vw

a

b c

f

gh
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Textile ststems and coloured graphs II

Given a 2–coloured graph (G, c) with a complete collection of
squares C = {φi : i ∈ I} we may define a textile ststem
TG,c = (F,E, p, q) as follows:

Set E to be the graph with E0 = G0, E1 = c−1(b) and rE , sE
inherited from G.

Set F to be the graph with F 0 = c−1(r), F 1 = C, and for φi ∈ C
we put rF (φi) = φi(W ) and sF (φi) = φi(E).

Finally, we define p, q : F → E by p0(w) = r(w), p1(φi) = φi(N);
q0(w) = s(w), q1(φi) = φi(S).

Since C is a complete collection of squares it follows that p has
unique r–path lifting and q has unique s–path lifting.
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Textile systems and coloured graphs III

Theorem 10
(1) Let T = (F,E, p, q) be a textile system such that p has unique

r–path lifting and q has unique s–path lifting. Then TG,cT is
equivalent to T .

(2) Let (G, c) be a 2–coloured graph with a complete collection of
squares C. Then there is a 2–coloured graph isomorphism from
(G, c) to (GTG,c

, cTG,c
) which takes C to CTG,c

.
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THANK YOU!
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