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(k , L)-complexes

Given an integer k ≥ 3 and a graph L, a (k, L)-complex is a
complex of vertices, edges and faces such that

• each face is a regular k-gon

• for each vertex v , the graph with
• vertices: edges incident with v
• edges: the faces incident with v
• adjacency inherited from incidence.

is isomorphic to L.

The graph at v is called the link.



Examples

• Platonic solids
• Tetrahedron is a (3,C3)-complex
• Cube is a (4,C3)-complex
• Icosahedron is a (3,C5)-complex

• Tessellation of Euclidean plane by equilateral triangles is a
(3,C6)-complex.



Part of a (6,K4)-complex



Existence

Let X (k , L) be the set of all simply connected (k, L)-complexes.

How large is X (k, L)?

The Gromov link condition: A (k , L)-complex is non-positively
curved if

girth(L) ≥ 2k

k − 2

Ballmann and Brin: For any pair (k, L) satisfying the Gromov link
condition with L regular, there is a (k , L)-complex.
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Existence II

If k ≥ 4 is even then there is a (k, L)-complex (Davis complex).

If k is odd and L = Km,n with m 6= n then there is no
(k , L)-complex.



Uniqueness?

Ballmann and Brin, Haglund: If k ≥ 6 and L = Kn with n ≥ 4,
then X (k, L) is uncountable.

Unique (k , L)-complex in following cases:

• (k ,Cn) for n ≥ 3, 4, 6 and k ≥ 6, 4, 3: tiling of
Euclidean/hyperbolic plane with regular k-gons with angles
2π
n .

• (4,Km,n): product of m-regular and n-regular tree.

• (k ,Km,m), k > 4: Bourdon’s building
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s-arc transitive graphs

An s-arc is an (s + 1)-tuple v0, v1, . . . , vs such that vi ∼ vi+1 and
vi 6= vi+2.

• locally s-arc transitive: Aut(Γ)v is transitive on the set of
s-arcs starting at v , for all vertices v .

• s-arc transitive: Aut(Γ) is transitive on the set of s-arcs.

Świ ↪atkowski: If

• k ≥ 4 and (k, L) satisfies Gromov link condition, and

• L has valency 3 and is 3-arc transitive

then |X (k , L)| = 1.
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Star-transitive

open star st(v):

v

We say that Γ is star-transitive if every isomorphism
st(v1)→ st(v2) lifts to an automorphism of Γ.



st(edge)-transitive

open edge-star, st({u, v}):

u v

We say that Γ is st(edge)-transitive if every isomorphism
st({u1, v1})→ st({u1, v1}) lifts to an automorphism of Γ.



Uniqueness II

Lazarovich: If k ≥ 4, (k , L) satisfies the Gromov Link condition
and L is star-transitive and st(edge)-transitive then |X (k , L)| ≤ 1.

Already seen that when k ≥ 4 is even then there is a (k , L).

Which graphs are star-transitive and st(edge)-transitive?
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Some observations:

Suppose Γ is star-transitive and G = Aut(Γ):

• If Γ is regular then Γ is vertex-transtiive.

• If |Γ(v)| = k then G
Γ(v)
v = Sk (locally fully

symmetric).

• Γ is locally 2-arc-transitive.

v

Conversely, if Γ is locally fully symmetric and either

• Γ is vertex-transitive, or

• Γ has vertices of valency k and ` with k 6= `

then Γ is star-transitive.
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Examples

• Kn is star-transitive: only connected star-transitive graph of
girth 3.

• Kn,m

• Odd graphs Ok :
• k-subsets of 2k + 1-set
• adjacent if disjoint
• vertex stabiliser Sk × Sk+1



More observations:

u v

Γ of minimal valency 3 is st(edge)-transitive if and only if it is
edge-transitive and either:

• Γ is k-regular and for all edges

(G{u,v})
Γ(u)∪Γ(v) = Sk−1 wr S2

• Γ is (k, `)–biregular for k 6= ` and for all edges

(G{u,v})
Γ(u)∪Γ(v) = Sk−1 × S`−1



Star-transitive and st(edge)-transitive

st(edge)-transitive and minimal valency at least three implies

• star-transitive

• 3-arc transitive.

Examples

• K3 (only st(edge)-transitive graph of girth 3).

• Kn,m (only st(edge)-transitive graphs of girth 4)

• Point-line incidence graph of PG(2, 2) and PG(2, 3)

• Point-line incidence graph of W (3, 2).
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Cubic graphs

Tutte, Djokovič and Miller:

s Gv G{u,v}
1 C3 C2

2 S3 C2 × C2 or C4

3 S3 × C2 D8

4 S4 D16 or QD16

5 S4 × C2 (D8 × C2) o C2

So star-transitive if and only if s ≥ 2 and st(edge)-transitive if and
only if s ≥ 3.
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Valency 4 case

Possible vertex and edge stabilisers determined by Potočnik, Weiss.

Theorem

Star-transitive if and only if one of

• Γ is 2-arc–transitive, and Gv = S4;

• Γ is 3-arc-transitive, and Gv = S4 × S3 or Gv = (A4 × C3).2;

• Γ is 4-arc-transitive, and Gv = 32:GL(2, 3);

• Γ is 7-arc-transitive, and Gv = [35]:GL(2, 3).

Parabolics of PGL(3, 3) and G2(3).



Valency 4 case II

Theorem

Γ is star-transitive and st(edge)-transitive if and only if one of the
following is true.

• Γ is 3-arc-transitive, and Gv = S4 × S3;

• Γ is 4-arc-transitive, and Gv = 32:GL(2, 3);

• Γ is 7-arc-transitive, and Gv = [35]:GL(2, 3).



Arbitrary valency

Theorem

Γ a vertex-transitive graph. Then Γ is star-transitive and
st(edge)-transitive if and only if one of the following holds:

• Γ is 3-arc-transitive, and Gv = Sr × Sr−1.

• Γ is cubic and 4-arc-transitive, and Gv = S4 or S4 × S2.

• Γ is of valency 4 and 4-arc-transitive, and Gv = 32:GL(2, 3)
or [35]:GL(2, 3).

Vertex stabilisers of Ok , PG(2, 2), W (3, 2), PG(2, 3) or G2(3).
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Vertex-intransitive examples

• Km,n for m 6= n

• Point-line incidence graph of GQ for PSU(4, 2): valency
{3, 5}.

• k-subset, (k − 1)-subsets of n-set with adjacency given by
inclusion

Gv = Sk × Sn−k and Gw = Sk−1 × Sn−k+1

• Vertex-maximal clique graph of Hamming graph H(k , n):
valency {k , n}

Gv = Sn−1 wrSk and Gw = Sn × (Sn wrSk−1)



Vertex-intransitive case

Theorem

Γ a vertex-intransitive graph valency {`, r}. If Γ is star-transitive
and st(edge)-transitive then one of the following holds:

• Gv = Sr × S`−1 and Gw = S` × Sr−1

•

((Ar−1 wr S`−1)× Ar ).2 6 Gw 6 (Sr−1 wr S`−1)× Sr
Ar−1 wr S` 6 Gv 6 Sr−1 wr S`

• r ≤ 5.


