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Definition

A directed graph E is a set EC of vertices and a set E! of directed

edges, with direction determined by range and source maps
r,s: EY — EO.

Example

E°={v,w} E!'=/{e f}
s(e)=r(e)=r(f)=v s(f)=w




Paths

» A sequence pyppus3 ... of edges is a path if s(u;) = r(uiy1) for
all 7.




Paths

» A sequence pyppus3 ... of edges is a path if s(u;) = r(uiy1) for
all 7.

» E" ={u: pis a path with n (possibly = c0) edges}
» E* = {p: u has finitely many edges}.




Paths

» A sequence pyppus3 ... of edges is a path if s(u;) = r(uiy1) for

E" ={u: pis a path with n (possibly = o0) edges}
E* = {p : p has finitely many edges}.

For V C EO and F C E*, define VF := F N r1(V).
In particular, for v € E, vF = Fnri(v).




Graph C*-algebras

» ES":={p€ E*:|u|=n, or |u| < nand s(u)EL = 0}.
The graph C*-algebra C*(E) is universal for C*-algebras
containing a Cuntz-Krieger E-family. a family consisting of

mutually orthogonal projections {s, : v € EO} and partial
isometries {s, : 4 € E*} such that {s, : u € ES"} have mutually
orthogonal ranges for each n € N, and such that

1. s;su = Ss(u);

2. s,s, = s, when s(u) = r(v);

3. SILS; < S and

4.s,= Y ss; forevery v € E® and n € N such that

HEVESD
[VES"| < oo.
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Diagonal sub-C*-algebra

» We call Dg := C*(sys} : A € E*) the diagonal C*-subalgebra of
C*(E).
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» We call Dg := C*(sys} : A € E*) the diagonal C*-subalgebra of
C*(E).
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Diagonal sub-C*-algebra
» We call Dg := C*(s)s% : A € E*) the diagonal C*-subalgebra of
C*(E).

It can be deduced from the Cuntz-Krieger relations that
D =span{s)s} : A € E*}.

For each n € N, {s)s} : A\ € E"} are mutually orthogonal
projections.

v

v

v

Write p < A <= A= pp'. Then p X\ <= spsy < s
Denote the spectrum of D by Ap.Then for each ¢ € Ap and
p = A we have ¢(sysy) =1 = é(sus;;) = 1.

v
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Diagonal sub-C*-algebra

>

We call Dg := C*(s)s5 : A € E*) the diagonal C*-subalgebra of
C*(E).

It can be deduced from the Cuntz-Krieger relations that

D =span{s)s} : A € E*}.

For each n € N, {s)s} : A\ € E"} are mutually orthogonal
projections.

Write p < A <= A= pp'. Then p X\ <= spsy < s
Denote the spectrum of D by Ap.Then for each ¢ € Ap and
p = A we have ¢(sysy) =1 = é(sus;;) = 1.

Hence for each ¢ € Ap, the elements of {\ : #(sy\sy) = 1}
determine a path.
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Boundary Paths

» The paths we get turn out to be all infinite paths, and all finite
paths whose source is a singular vertex: elements v € E°
satisfying either

» vE! = (), in which case we call v a source: or
» |VE'| = oo, in which case we call v an infinite receiver.




Boundary Paths

» The paths we get turn out to be all infinite paths, and all finite
paths whose source is a singular vertex: elements v € E°
satisfying either

» vE! = (), in which case we call v a source: or
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OE := E>® U {u € E* : s(p) is singular}.




Boundary Paths

» The paths we get turn out to be all infinite paths, and all finite
paths whose source is a singular vertex: elements v € E°
satisfying either

» vE! =0, in which case we call v a source; or
» |vE!| = oo, in which case we call v an infinite receiver.
» We define the boundary paths

OE := E*° U{u € E* : s(u) is singular}.
» The formula

he(x)(su57) = {1 = x

0 otherwise.
uniquely determines a bijection from 9E onto Ap [W].
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Topology

» Following the approach of [PW], define o : E* U E* — {0,1}£
by

1 ifx=pu

0 otherwise.

a(x)(p) = {

> Give E* U E®° the initial topology induced by «.




Topology

» Following the approach of [PW], define o : E* U E>® — {0,1}F
by

1 ifx=pu

0 otherwise.

a(x)(p) = {

Give E* U E* the initial topology induced by «.

For u € E*, define Z(u) := {up’ € E* U E*>}.

For G C E*, we write Z(p\ G) := Z(p) \ U, e Z(v).

The cylinder sets {Z(u\ G) : p € E*, G C s(u)E" is finite} are a
basis for our topology. [W].




Topology

>

Following the approach of [PW], define a : E* U E>® — {0, 1}£
by

1 ifx=p

a(x =
Cw) {O otherwise.

Give E* U E® the initial topology induced by a.
For u € E*, define Z(u) := {pup/ € E* U E>®}.
For G C E*, we write Z(p\ G) := Z(p) \ U, e Z(v).
The cylinder sets {Z(u\ G) : p € E*, G C s(u)E" is finite} are a
basis for our topology. [W].

With this topology, E* U E° is locally compact and Hausdorff
[W].
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Boundary Paths

» Fix a path € E* with 0 < |s(u)EY| < oo.
» Then {u} = Z(n\ {s(n)E'}) an open set.
» Then

U:=|J{{n}: n € E* such that 0 < |s(u)E"| < oo}

is open.
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Boundary Paths

Fix a path € E* with 0 < |s(u)EY| < oco.
Then {u} = Z(p\ {s(1)E'}) an open set.
Then

U:=|J{{n}: n € E* such that 0 < |s(u)E"| < oo}

is open.
So OE = UF is closed in E* U E®°, and hence locally compact
and Hausdorff.

The map hg : OE — Ap is a homeomorphism [W].




Desingularisation

Drinen and Tomforde developed a construction they called
desingularisation [DT]:
» Suppose E has some singular vertices. Fix u € 0E N E*.
» If [s(u)EY| = 0, then append on an infinite path:
I
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Desingularisation

Drinen and Tomforde developed a construction they called
desingularisation [DT]:
» Suppose E has some singular vertices. Fix u € 0E N E*.
» If [s(u)EY| = 0, then append on an infinite path:
I

e becomes S e

» If |s(u)| = oo, then append an infinite path, and distribute the
incoming edges along it:

s(p)




Desingularisation

Drinen and Tomforde developed a construction they called
desingularisation [DT]:

LM

» Suppose E has some singular vertices. Fix u € 0E N E*.

» If |s(u)E*| = 0, then append on an infinite path:
o
* becomes

» If |s(u)| = oo, then append an infinite path, and distribute the
incoming edges along it:

(IS

s(p
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Desingularisation

> Let E be a directed graph, and F be a Drinen-Tomforde
desingularisation of E.

» This gives a homeomorphism ¢, : ECF>® — 9E [DT,W].

» Then there exists a full projection p and an isomorphism
w: C*(E) — pC*(F)p [DT].
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All together now
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> Given a desingularisation of E, we have ¢, : ECF>® = JE.
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» 7 induces a homeomorphism 7* : App., = Ap, [W].




All together now

» For each directed graph E, we have hg : OE = Ap,. [W]

» Given a desingularisation of E, we have ¢, : EOF> = JE.
[DT,W].

» 7 induces a homeomorphism 7* : App., = Ap, [W].

» These maps commute [W]:

EO Foo

U] he

Appep - Ap,

Where 7 is essentially the restriction of hg
to paths with ranges in E°.
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