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Reasons for choice of this topic

» A conviction that string diagrams can be understood better than
algebraic equations by most students

» My experience with postgraduate students and undergraduate
vacation scholars using strings

» As seen by the general public, knot theory for mathematics seems a bit
like astronomy for physics

» A belief that string diagrams are widely applicable and powerful in
communicating and in discovery

» That this is "advanced mathematics from an elementary viewpoint”
(to quote Ronnie Brown's twist on Felix Klein)
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[ntentions

» Moving from linear algebra, we will look at braided monoidal
categories (bmc) and explain the for which bmc
provide the environment.

» Familiar operations from vector calculus will be transported to bmc
where the properties can be expressed in terms of equalities between
string diagrams.

» Geometrically appealing arguments will be used to prove the scarcity
of multiplications on Euclidean space, a theorem of a type originally
proved using higher powered methods.
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Arrows and categories

» Already introduced in undergraduate teaching is the notation
f: X — A for a function taking each element x in the set X to an
element f(x) of the set A.

» In the situation X > A %> K we can follow f by g and obtain a new
function, called the composite of  and g, denoted by go f: X — K.

» There is an identity function 1x: X — X for every set X: 1x(x) = x.

» If we now ignore the fact that X, A, K are sets (just call them vertices
or objects) and that f, g are functions (just call them edges or
morphisms) we are looking at a big directed graph.

» If we admit the existence of a composition operation o which is
associative and has identities 1x, we are looking at a category.

Ross Street Macquarie University Calculating with string diagrams 9 Nov 2018 4 /32



Euclidean space

» The set of real numbers is denoted by R.

» A vector of length nis a list x = (x1,...,xy) of real numbers. The set
of these vectors is n-dimensional Euclidean space, denoted R".

» Algebra is about operations on sets. We can add vectors x and y
entry by entry to give a new vector x + y. We can scalar multiply a
real number r by a vector x to obtain a vector rx.

» For example, R3 is ordinary 3-dimensional space. We have three
particular unit vectors:

el = (1,0,0), > = (0,1,0), e =(0,0,1) .

Every vector x in R3 is a unique linear combination
x = xie! + xpe% + xze3. Similarly in R”
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Linear algebra

v

A function f: R™ — R" is linear when it preserves linear
combinations: f(x +y) = f(x) + f(y), f(rx) = rf(x).
» Thus we have a category &: objects are Euclidean spaces and

morphisms are linear functions. We write &(V, W) for the set of
morphisms from object V to object W.

» For this category &, we can add the morphisms in &(V, W): define
f+gby (f+g)(x) =f(x)+ g(x). Composition distributes over this
addition. Such a category is called additive.

» Notice that the only linear functions f: R — R are those given by

multiplying by a fixed real number. So &(R,R) can be identified with
R.
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BN
Multilinear algebra

» Categorical algebra is about operations on categories. The category &
has such an operation called tensor product:

R" @ R" =~ R™ .

However, when thinking of the mn unit vectors of R™" as being in the
tensor product they are denoted by e'®¢e/ for 1 <i<m, 1< < n.
Every element of R™ ® R” is a unique linear combination of these.

» Bilinear functions U x V — W are in bijection with linear functions
UV — W.

» Note that R acts as unit for the tensor.

» For linear functions f: R™ — R™ and g:R"— R"  we have a linear
function f®g: R"QR" — R™QR" defined by

(fRg)(e'®e’) = f(e')@g(e) -
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Monoidal categories and their string diagrams

» A category ¥ is monoidal when it is equipped with an operation called
tensor product taking pairs of objects V, W to an object VW and
pairs of morphisms f: V — V', g: W — W' to a morphism
fRg: VRW — V'QW’. There is also an object | acting as a unit for
tensor. Composition and identity morphisms are respected in the
expected way. An example is ¥ = & with | = R.

» A morphism such as f: URQVRW — X®V is depicted as

u v w

X vV

» Composition is performed vertically with splicing involved; tensor
product is horizontal placement.
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BR®B-A, C®D-2B, c-5%BeC, D-LDeC.

The value of the above diagram I is the composite

15®C®d
—

v(N =(B®C®D BRBRIC®D®C
1919, peBRBEC 2 AQB®C).
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Here is a deformation of the previous I'; the value is the same using
monoidal category axioms.

1p®c®1 a®1®1

vl =(B®C®D BRIBRCR®D =225 AQCQ®D

19189 agpcebeCc 2% A®B®C).
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The geometry handles units well: if / 2, A®Band C b, I, then the
following three string diagrams all have the same value.

C ng C
Ao f, SR

The straight lines can be curved while the nodes are really labelled points.
There is no bending back of the curves allowed: the diagrams are
progressive.

These planar deformations are part of the geometry of monoidal categories.
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Progressive graph on Mollymook Beach
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Duals

A morphism ¢ : AQB — | is a counit for an adjunction A -4 B when there
exists a morphism 7 : | — B®A satisfying the two equations:

A A B B

We call B a right dual for A.
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Backtracking

When there is no ambiguity, we denote counits by cups U and units by
caps N. So the duality condition becomes the more geometrically “obvious”
operation of pulling the ends of the strings as below.

A

The above are sometimes called the snake equations. The geometry of
duality in monoidal categories allows backtracking in the plane.
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Dot product, vector product and the quaternions
» For any x and y in R”, the dot product
Xey =Xiy1+ -+ Xn¥n

defines a bilinear function R” x R” — R and so a linear function
o: R'"QR" - R .
» For any x and y in R3, the vector product

XA Y = (Xoy3 — X3y2,X3Y1 — X1Y3, X1Y2 — X2¥1)

defines a bilinear function R3 x R3® — R3 and so a linear function
A RIQR3 - R3 .

» The quaternions is the non-commutative ring H = R x R3(= R*) with
componentwise addition and associative multiplication defined by

(rx)(5.y) = (s =X e y,1y + sx + X A Y)
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Braiding

Now suppose the monoidal category is braided. Then we have isomorphisms
CX,y - X®Y —> Y®X

which we depict by a left-over-right crossing of strings in three dimensions;
the inverse is a right-over-left crossing.

X /Y Y\ X
/ AN
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The braiding axioms reinforce the view that it behaves like a crossing.

51|
X@Y/\\/Z &} ? ;/ /®z X//Y/ /Z
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The following Reidemeister move or Yang-Baxter equation is a

consequence.

WA
X /

We will refer to these properties as the geometry of braiding.

Ross Street Macquarie University Calculating with string diagrams 9 Nov 2018



Proposition

If ¥ is braided and A - B with counit and unit depicted by U and n then
B — A with counit and unit depicted by

S R

Proof.

&J/ :
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Objects with duals have dimension: if A - B then the dimension d = dx of
A is the following element of the commutative ring ¥ (1, 1).

A self-duality A - A with counit U is called symmetric when

%5 U

It follows that

R YA N
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Proposition

If A - A is a symmetric self-duality and g : | — A®A is a morphism then
Q) -
@ - ¢

Proof.

Both sides are equal to:

O
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Proposition

If A - A is a symmetric self-duality then the following Reidemeister move

holds
/

Proof.

By dragging the bottom strings to the right and up over the top string we
see that the proposition is the same as

he¥
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A vector product algebra (vpa) in a braided monoidal additive category ¥’
is an object V equipped with a symmetric self-duality V - V' (depicted by
a cup uU) and a morphism A : V®V — V (depicted by a Y) such that the
following three conditions hold.

Yoof
U ¥
VYU
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A vpa is associative when it satisfies

‘M/‘U

Using the first two axioms for a vpa, we see that associativity is equivalent
to:

By adding these two expressions of associativity we obtain the third
condition on a vpa. So the third vpa axiom is redundant in the definition of
associative vpa.
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Proposition

The following is a consequence of the first two vpa axioms.

Proof.

Using those first two axioms for the first equality below then the geometry
of braiding for the second, we have

Y
However, the left-hand side is equal to the left-hand side of the equation in

the proposition by the first vpa axiom while the right-hand sides are equal
by symmetry of inner product u. O
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Theorem

For any associative vector product algebra V' in any braided monoidal
additive category ¥, the dimension d = dy satisfies the equation

dd—-1)(d—-3)=0
in the endomorphism ring ¥ (1, 1) of the tensor unit I.

To prove this we perform two string calculations each beginning with the
following element Q of ¥'(/,1).
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Using associativity twice, we obtain

— T~ TS
Y (/CQD 200
in which, using the first Reidemeister move and the geometry of braiding,
each term reduced to a union of disjoint circles:

Q=d—dd—dd+ddd =d(d—1)*.
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Return now to € and apply the last Proposition to obtain:

in which we see we can apply associativity to obtain:

@

In both terms we can apply the first vpa axiom.

W@ -
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_©+Q®_+®+Q®=2Q®

O--00
Q =2(—d + d?), yet from before Q = d(d —1)?

d(d—1)%>=2d(d —1)
0=d(d—1)(d—1-2)=d(d—1)(d —3)
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Theorem

For any vector product algebra V in any braided monoidal additive
category ¥ such that 2 can be cancelled in ¥ (I, V') and ¥ (I,1), the
dimension d = d\, satisfies the equation

dld—1)(d—-3)(d—7)=0
in the endomorphism ring ¥ (1, 1) of the tensor unit I.

The proof involves performing two string calculations each beginning with
the following element of ¥ (/, /).
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L
Thank You
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