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1 INTRODUCTION
In this paper, we present the solution of a steady 3-D problem for flexural-gravity waves (FGW) and
surface ones generated by a local pressure distribution moving with uniform speed on open water lead
between two semi-infinite floating ice sheets (ice channel). The problem is formulated within linear
hydroelastic theory. The fluid is assumed to be inviscid and incompressible and its motion is potential.
The ice sheets are treated as viscoelastic thin plates. The external load simulates the motion of an
air-cushion vehicle (ACV). The solution of this problem is constructed using the Fourier transform
and the Wiener-Hopf technique. The displacements of free surface and ice sheets are determined as
well as strains along the ice edges and wave resistance acting on ACV at various speeds of its motion:
subcritical and supercritical ones relative to the minimum phase velocity of FGW in the ice cover.
Special attention is paid to the characteristics of edge waves, the existence of which in this problem was
shown earlier by Marchenko (1997) and Porter (2018). The uniform motion of the external pressure on
semi-infinite free surface along the rectilinear edge of the ice sheet was considered earlier by Sturova
and Tkacheva (2018) and Tkacheva (2018).

2 MATHEMATICAL FORMULATION
The water is taken to be of constant density ρ0 and uniform depth H. The ice sheets are modeled
by two thin viscoelastic semi-infinite plates of identical thickness h floating on the water surface and
separated by an open water lead of width L. The edges of plates are free. The plate drafts are ignored.
The pressure distribution q(x, y) moves with constant speed U along the rectilinear edges of plates.
The moving Cartesian coordinate system x, y, z is considered with the x-axis passing through the
center of the pressure region perpendicular to the plate edges, the y-axis is directed along the edge of
the left plate and the z-axis is directed vertically upwards.

The boundary-value problem for the velocity potential ϕ(x, y, z) and the free surface elevation or
plate deflection w(x, y) can be written as

∆3ϕ = 0 (|x|, |y| <∞, −H ≤ z ≤ 0), ∆3 ≡ ∆2 + ∂2/∂z2, ∆2 ≡ ∂2/∂x2 + ∂2/∂y2 , (1)
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Here D = Eh3/[12(1 − ν2)]; E, ν, ρ are Young’s modulus, Poisson’s ratio, the density of ice sheets,
respectively; τ = η/E is the retardation time, η is the viscosity of ice; g is the acceleration due to
gravity. For wave motion the decaying conditions should be satisfied far from the pressure region.

We restrict our consideration to the pressure distribution in the form (Doctors and Sharma, 1972)

q(x, y) = q0{tanh[κ(y + b)]− tanh[κ(y − b)]}[H(x− x0 + a)−H(x− x0 − a)]/2, (5)

where q0 is a nominal pressure, a and b are respectively the half-beam and half-length of the pressure
region whose center is located at the point (x = x0 > a, y = 0), κ is the smoothing parameter, H(·)
is the Heaviside function.



3 METHOD OF SOLUTION
We describe briefly the solution of problem (1)–(4) by the Wiener-Hopf technique. The formulated
problem is considered in non-dimensional variables where the fluid depth H is taken as the length
scale. The non-dimensional parameters and functions are introduced
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We use the Fourier transform to the variables x and y in the form

Φ(α, s, z) =
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From the Laplace equation (1) and no-flux bottom condition in (3), we have

Φ(α, s, z) = C(α, s)Z(α, s, z), Z = cosh[(z + 1)
√
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√
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where C(α, s) is unknown function. We introduce the functions G±(α, s), G1(α, s) in the following
manner:
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Similar to these functions, we also introduce functions D±(α, s), D1(α, s) assuming β = σ = 0 in
(7)-(9). Using (6), we can write

D−(α, s) +D1(α, s) + eiαLD+(α, s) = C(α, s)K1(α, s), (10)

G−(α, s) +G1(α, s) + eiαLG+(α, s) = C(α, s)K2(α, s), (11)

where K1(α, s) and K2(α, s) are the dispersion functions for the surface waves and FGW in a moving
coordinate system:
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From boundary conditions (2), (3), we have

G−(α, s) = 0, G+(α, s) = 0, D1(α, s) = isQ(α, s), (12)

where Q(α, s) is the Fourier transform of the function q(x, y) in (5)
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Using (10)-(12), we have

G1(α, s) = C(α, s)K2(α, s), D−(α, s) + isQ(α, s) + eiαLD+(α, s) = C(α, s)K1(α, s).

Excluding the function C(α, s) from these equations, we obtain

D−(α, s) + isQ(α, s) + eiαLD+(α, s) = G1(α, s)K(α, s), K(α, s) = K1(α, s)/K2(α, s).

It is known that the dispersion relation for the free surface waves K1(γ) ≡ γ tanh γ−F 2s2 = 0 has
two real roots ±γ0 and the countable set of imaginary roots ±γj , j = 1, 2, .... At ε = 0, the dispersion
relation for FGW K2(γ) ≡ (βµ4 +1−σF 2s2)µ tanhµ−F 2s2 = 0 has two real roots ±µ0, four complex



roots ±µ−1, ±µ−2, µ−2 = −µ̄−1 (the bar denotes complex conjugation), and the countable set of
imaginary roots ±µj , j = 1, 2, .... At ε 6= 0, the values of roots are shifted from the real and imaginary
axes. It is difficult to find them numerically since they can be close with complex roots ±µ−1, ±µ−2.
Therefore, we will take structural damping into account approximately, only for the root µ0, in order
to shift the real root into the complex domain. Then the roots of the dispersion relations Kn(α, s) = 0

are χj =
√
γ2j − s2 (n = 1) and αj =

√
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half-plane.
In accordance with the Wiener-Hopf technique, we factorize the function K(α, s):
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where the functions K± are analytical in the upper/lower parts of the complex plane α, respectively.
After some algebra we obtain the equation
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The functions on the left-hand and right-hand sides of Eq. (13) are analytical in the lower and upper
parts of the complex plane α, respectively. Then we have analytical function over the entire complex
plane α. By Liouville’s theorem, this function is a polynomial. The degree of the polynomial is
determined by the behavior of this function as |α| → ∞ and is equal to one. Consequently, we can
write
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Similar to Eq. (13), we can get the equation
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Reasoning as above, we can write
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Equations (14), (16) compose the system of two integral equations. Integrals are evaluated by the
calculus of residues. Unknown functions c1(s), c2(s) in (14) and d1(s), d2(s) in (16) are defined from
the edge conditions (4). We introduce new variables

ξj(s) = D+(χj , s)/[q1(s)N+(χj , s)], ζj(s) = D−(−χj , s)/[q1(s)N−(−χj , s)],

and as the result we obtain the infinite system of linear algebraic equations for determination of
coefficients ξj , ζj (j = 0, 1, ...); ck, dk (k = 1, 2), which is solved by the reduction method. If the



vehicle moves along the central line of the channel, then ξj = ζj and the system of equations becomes
simpler.

For some values of the parameter s, the corresponding homogeneous system of these equations has
nontrivial solutions, which is explained by the existence of edge modes in this problem. The vertical
displacements of ice sheets and free surface W (x, y) are determined by performing the inverse Fourier
transform.

4 NUMERICAL RESULTS
The following input data are used: E = 5 GPa, ρ = 900 kg/m3, ν = 1/3, ρ0 = 103 kg/m3, τ =
0.7 s, a = 10 m, b = 20 m, κb = 5, x0 = 25 m, L = 50 m, P0 = 103 Pa, H = 100 m. The minimum
phase velocities of FGW for these parameters are equal to 12.06, 15.59, 20.09 m/s for the ice sheet
thicknesses h = 0.5, 1, 2 m, respectively.

Figure 1.

Fig. 1(a) shows the 3-D plot for the function w(x, y) at h = 2 m for supercritical load speed
U = 21 m/s. The dependence of non-dimensional wave resistance of ACV on load speed is presented
for different thicknesses of ice in Fig. 1(b), where
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For comparison, the values of the wave resistance for infinite free surface (Doctors and Sharma, 1972)
and for the channel with rigid vertical walls at x = 0 and x = L (Newman and Poole, 1962) are shown.

More detailed numerical results will be presented at the Workshop.
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