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1 Introduction

The linearised Shallow Water Equation (SWE) approximates the propagation of surface gravity waves
over variable bathymetry z = −h(x, y) in the long wavelength limit, λ ≫ h, and is commonly expressed
(e.g. Stoker (1957)) in the form

g∇ · (h∇ζ) = ζtt (1)

where g is acceleration due to gravity, ∇ = (∂x, ∂y) and ζ(x, y, t) is the free surface elevation assumed to
be small in the sense that |∇ζ| ∼ ζ/λ ≪ (h/λ)3. This latter assumption justifies the linearisation of the
governing equations in what follows.

When time-harmonic motion is considered and ζ(x, y, t) = ℜ{η(x, y)e−iωt}, (1) is transformed to

∇ · (h∇η) +Kη = 0 (2)

where K = ω2/g. The local wavenumber k(x, y) = 2π/λ, determined by the local depth h(x, y) as though
the bed were flat, satisfies k2h = K and this corresponds to the long wavelength (kh → 0) limit of the
unapproximated water wave dispersion relation k tanh kh = K. Under the SWE waves are non-dispersive.

The SWE is practically limited to modelling of very long waves, for example tidal simulations or
tsunami wave propagation. In spite of this the SWE has received renewed recent attention on account
of its structural similarity to 2nd order partial differential equations describing waves in two-dimensional
acoustics and TM- or TE-polarised electromagnetics and this analogue has seen it used as a model for
producing exotic effects in water waves such as invisibility cloaking, negative refraction, wave-shifting and
other wave control mechanisms (see, for e.g., the review in Porter (2018).) Often studies of these topics
are accompanied by experiments which are of questionable quality – understandable not least because
the conditions of shallow water theory are not easily met. This work is partly aimed at addressing this.

In the classical derivation of (1) the vertical acceleration, Wt, is neglected from the momentum
equations since it can be shown to contribute at O(µ2) where µ = H/L ≪ 1 and H, L are characteristic
depth and horizontal lengthscales (see Stoker (1957).) However the contribution from W itself is required
to satisfy the mass conservation equation. The retention of Wt in the momentum equations is not new
and central to the formulation of Boussinesq-type equations for water waves (see Peregrine (1967)) where
weakly-nonlinear effects are also included in the governing equations by assuming an Ursell number of
O(1).

As far as the author is aware, the vertical acceleration has not been retained in the momentum
equations in a linearised setting (Ursell number ≪ 1) and this is the subject of the current work. There
are a number of good reasons for doing this which are described in the summary at the end of this paper.

2 Formulation

Cartesian coordinates are used in which the bed is given by z = −h(x, y) and the free surface by z =
ζ(x, y, t). Following Stoker (1957) the horizontal components of the flow are assumed to be independent
of the depth variable, consistent with the assumption of a long wavelength compared to the depth, and
a flow velocity of

u ≈ (U,W ) (3)



is assumed where U = (U(x, y, t), V (x, y, t)) and

W (x, y, z, t) = (z/h + 1)ζt + (z/h)∇h ·U (4)

is linear in z allowing the kinematic conditions on the surface and the bed, namely

W = ζt on z = 0 and W +∇h ·U = 0 on z = −h(x, y), (5)

to be satisfied exactly. Integration of the continuity equation Wz +∇ · U = 0 over the depth gives the
familiar shallow water condition

ζt = −∇ · (hU) (6)

since this result only requires (5) and does not depend on the specification of W in (4). Taking ρ as the
fluid density and with p(x, y, z, t) representing the fluid pressure, the vertical component of the linearised
momentum equation, ρWt = −pz − ρg, integrates to

p(x, z, t) = pa + ρg(ζ − z)− ρ

(

z2

2h
+ z

)

ζtt − ρ
z2

2h
∇h ·Ut (7)

where pa is atmospheric pressure. Using (7) in the horizontal linearised momentum equations, ρUt = −∇p
gives, after depth averaging,

hUt = −gh∇ζ − 1

3
h2∇ζtt −

1

6
h{ζtt + (∇h ·Ut)}∇h + 1

6
h2∇(∇h ·Ut) (8)

and subsequent manipulations can be made to result in

h−1{I+ 1

3
h
′2 − 1

6
hh′′ + 1

6
hD}Qtt = ∇(g∇ ·Q+ 1

3
h∇ ·Qtt) (9)

where Q = hU, ζt = −∇·Q. In (9), I is the 2× 2 Identity matrix, h′′ represents the the Hessian of h and

h
′2 ≡ (∇h)(∇h)T =

(

h2x hxhy
hxhy h2y

)

and D =

(

0 t · ∇
−t · ∇ 0

)

(10)

is an antisymmetric differential operator in which t = (−hy, hx) is directed along level curves of h(x, y).
Thus, the extended SWE in the time domain and in three dimensions is represented by the vector

equation (9) for Q. In a two-dimensional setting in which h = h(x) and there is no y-dependence
elsewhere, Q(x, y, t) = Q(x, t)x̂ and (9) reduces to the scalar equation

Qtt = ĥ(x)(gQx + 1

3
h(x)Qttx)x (11)

where ĥ(x) = h(x)/(1 + 1

3
h′2(x)− 1

6
h(x)h′′(x)) whilst ζt = −Qx can be used to express this as

ζtt =
(

ĥ(x)(gζ + 1

3
h(x)ζtt)x

)

x
(12)

which is close, but not identical, to the form expressed in (1).
More significant progress can be made once time harmonicity is assumed. Thus, returning to (9) and

writing Q(x, y, t) = ℜ{q(x, y)e−iωt} we have

∇((1− 1

3
Kh)∇ · q) +Kh−1{I+ 1

3
h
′2 − 1

6
hh′′ + 1

6
hD}q = 0. (13)

When rescaled using

q(x, y) = ϕ(x, y)/
√

1− 1

3
Kh (14)

(13) gives, after considerable but routine algebra, the vector equation

∇(∇ ·ϕ) + (K̂/h){I + 1

3
v(h)h′2}ϕ = 0 (15)
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Figure 1: Modulus of reflection coefficient against Kh0 for a linear ramp with hL/h0 =
1

3
and h0/L = 1, 1

4

in (a),(b): full linear theory (dotted), standard SWE (dashed), extended SWE (solid).

where v(h) = 1 + 1

12
K̂h and K̂ = K/(1 − 1

3
Kh). Finally, writing Ω(x, y) = ∇ · ϕ allows (15) to be

converted into
∇ · (ˆ̂h∇Ω) +KΩ = 0 (16)

and this is the scalar version of the extended SWE in the frequency domain. It has the structure of (2)
but with the scalar depth h(x, y) replaced by the 2× 2 matrix/tensor

ˆ̂
h(x, y) = h(x, y)(1 − 1

3
Kh)(I+ 1

3
v(h)h′2)−1 = h(x, y)(1 − 1

3
Kh)

(

I−
v(h)

(3 + v(h)|∇h|2)
h
′2

)

. (17)

The surface elevation can be reconstructed from Ω using

η(x, y) =
(−i/ω)

√

1− 1

3
Kh

(

Ω− 1

6
h∇h ·

(

(I+ 1

3
v(h)h′2)−1∇Ω

))

. (18)

We note that the transformation of (13) to (15) via the scaling (14) removes the dependence on
second derivatives of h(x, y) from the governing equations and this has an additional advantage that both
ϕ(x, y) and Ω(x, y) are continuous even when ∇h is not. It is also evident from (18) that discontinuities
in ∇h imply discontinuities in the function η(x, y) representing the surface elevation. This is simply a
consequence of the particular approximation chosen and we remark that the standard SWE suffers from
discontinuities in ∇η at such points.

3 Examples

We present results for two-dimensional scattering and two test cases. The first is a linear slope in the
bed connecting the constant depth h0 in x < 0 to the constant depth hL for x > L. This is known as
the Booij problem (after Booij (1983)) and we are interested in the variation of the reflection coefficient
|R| against frequency for waves incident from x = −∞. Fig. 1 shows results for a shoaling parameter
hL/h0 = 1

3
and two different values of bed steepness over the shoal, h0/L = 1, 1

4
. Results from the

original SWE (2) and the extended SWE (16) are compared with accurate numerical results based on
full linear theory computed using the method of Porter & Porter (2000). The extended SWE shows a
significant improvement especially for steeper beds and weakly-dispersive nature of the solutions of (16)
is also clearly evident.

A similar set of results are shown in Fig. 2 again for the bed profile considered by Roseau (1976)
shoaling asymptotically from depth h0 to hL at either infinity. Roseau’s profile, parametrised by β which
encodes the steepness of the bed, results in an explicit formula for the reflection coefficient, namely

|R| =

∣

∣

∣

∣

sinh[(k0h0 − kLhL)/β]

sinh[(k0h0 + kLhL)/β]

∣

∣

∣

∣

(19)
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Figure 2: Modulus of reflection coefficient against Kh0 for the Roseau problem with hL/h0 = 0.25,
β = 0.5: full linear theory (dotted), standard SWE (dashed), extended SWE (solid).

where k0 tanh k0h0 = kL tanh kLhL = K. Comparisons between (19) and the two versions of the SWE
for β = 0.5 (a maximum bed gradient of 0.75) and hL/h0 = 1

4
confirm the comments previously made on

the superiority of the extended SWE over the standard version.

4 Summary

The key points of this work are: (i) the retention of higher-order terms and the exact satisfaction of
the bed condition in the governing equations leads to an extension of the SWE which shows significant
improvements in the accuracy and range of parameters of frequencies over which it can be applied; (ii) in
the frequency-domain, the extended SWE can be readily implemented in place of the original SWE since

it retains its structure with ˆ̂
h defined by (18) replacing h; (iii) the extended SWE demonstrates anisotropy

of wave scattering over variable beds (i.e. the wave speed is dependent, in general, on the wave heading)
with potentially important consequences for the design of water-wave metamaterials; (iv) the extended
SWE connects to the long-wavelength limit of the so-called Complementary Mild-Slope Equation of Kim
& Bai (2004) and Toledo & Agnon (2010), also a depth-averaged model of wave scattering in which the
bed condition is satisfied exactly but derived from a variational principle.
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