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Highlight

The analytical approximations to farfield and/or short ship waves recently given in [1-4] are summarized.
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Kelvin-Havelock-Peters (KHP) approximation to farfield ship waves, and application to illustrate
the influence of the Froude number or/and the submergence depth on wave patterns

Farfield ship waves are given by a linear superposition of elementary waves. The integrand of this classical
integral representation of ship waves oscillates very rapidly in the farfield, and farfield ship waves therefore
cannot be easily evaluated numerically. However, three classical analytical approximations given by Kelvin in
1891, Havelock in 1908 and Peters in 1949 can be used to analyze farfield ship waves. Kelvin’s and Peters’ farfield
approximations are only valid inside or outside the cusp angles ψ = ±ψK ≈ ±19◦28′ of the Kelvin wake and
are singular at the cusps. Havelock’s approximation is only valid at the cusps. A well-known global analytical
approximation, valid inside and outside the cusps, has been given by Chester, Friedman and Ursell (CFU) in
1957. This relatively complicated analytical approximation, somewhat simplified by Borovikov in 1994, involves
the Airy functions Ai and Ai′, and does not provide a simple explicit decomposition of ship waves into transverse
and divergent waves. References to these classical farfield approximations can be found in [1].

A simple analytical approximation that combines the Kelvin, Havelock and Peters classical asymptotic
approximations is given in [1]. This approximation, called Kelvin–Havelock–Peters (KHP) approximation in
[1,2], is nearly equivalent to the Kelvin and Peters approximations inside or outside the cusps. However, the
KHP approximation is finite and agrees with Havelock’s approximation at the cusps |ψ| = ψK of the Kelvin
wake, where Kelvin’s and Peters’ approximations are singular as was already noted. The KHP approximation
given in [1,2] is less accurate than the CFU approximation, but is more realistic than the Kelvin and Peters
approximations, in the vicinity of the cusps.

The KHP approximation given in [1-2] is a fully-analytical approximation that only involves elementary
functions, like the Kelvin, Havelock and Peters approximations. Indeed, the KHP approximation is as simple
as these three basic approximations. For ray angles |ψ| ≤ ψK , the KHP approximation yields a useful explicit
decomposition of farfield ship waves into transverse and divergent waves, as in Kelvin’s original approximation.
Thus, the KHP farfield approximation is well suited for analytical and numerical studies of the transverse and
divergent waves in the vicinity of the cusps of the Kelvin wake.

Indeed, the KHP approximation given in [1] is applied in [2] to analyze the wave patterns of a surface-piercing
monohull ship, a submerged point source, and a fully-submerged body. Specifically, the KHP approximation is
used in [2] to illustrate the influence of the Froude number F ≡ V/

√
gL based on a ship length L, and—for a body

submerged below the free surface—the influence of the Froude number F∆ ≡ V/
√
g∆ based on the submergence

depth ∆, on wave patterns in deep water. The influence of the Froude number F is illustrated for a free-surface
piercing monohull ship; and the influence of the Froude number F∆ is illustrated for a point source submerged
at a depth ∆ below the free surface. The combined influences of F and of the submergence depth ∆/L ≡F 2/F 2

∆

are illustrated for a fully-submerged body.

These numerical illustrations show that a ship wave pattern—which does not depend on L or ∆ within
Kelvin’s analysis for a ship modeled as a 1-point wavemaker—in fact is greatly influenced by the Froude numbers
F and F∆ . In particular, at high Froude numbers, e.g. at F = 1.5, a ship wave pattern mostly contains divergent
waves that are most apparent well inside the cusps of the Kelvin wake due to interferences between the dominant
waves created at a ship bow and stern, as is explained and illustrated in [5-12]. A very different wave pattern
is obtained at low Froude numbers, e.g. at F = 0.2, for which the dominant waves are found outside the cusps
of the Kelvin wake. Indeed, [2] shows that wave patterns due to surface-piercing or submerged bodies can differ
greatly from Kelvin’s classical pattern of transverse and divergent waves found inside a 39◦ wedge aft of a ship,
as is illustrated in Fig.1. Indeed, transverse and divergent waves cannot be clearly identified for many of the
wave patterns depicted in [2] because one of these two sets of waves is usually dominant.



Figure 1: Colored contour plots of the free-surface elevation Eg/V 2 within patches (X̃ ,Ỹ )g/V 2 located far
behind a free-surface piercing monohull ship at six Froude numbers F = 0.2, 0.35, 0.5 (top) and F = 0.75, 1,
1.5 (bottom). Thin solid black lines mark the cusp ψ = ψK ≈ 19◦28′ of Kelvin’s wake. For the high Froude
numbers F = 0.75, 1 and 1.5, the highest peak of the wave-amplitude function aD related to divergent waves is
marked via a thick solid white line. The dominant waves are located outside the cusp line ψ = ψK at the low
Froude number F = 0.2, but mainly consist of short divergent waves that are most apparent well inside the cusp
line at the high Froude numbers F = 1 and (especially) 1.5 due to interferences between the dominant waves
created by the bow and the stern of the ship.



Figure 2: Colored contour plots of the divergent waves within the region −85 ≤ X̃g/V 2 ≤ −75 located far
behind the Wigley hull at the Froude numbers F = 0.25 (left), 0.316 (center) and 0.408 (right). Solid lines mark
the Kelvin cusp line ψ = ψK , dotted lines define the region ψg ≤ ψ where the waves created by a full-scale ship
of length 200 m ≤ L are not influenced by surface tension, and dashed-dotted lines mark the ray angle ψ = 6◦.
Divergent waves are not shown for ψw < ψ ≤ ψK where the short wave approximation given in [3] and applied
in [4] is not valid, and for ψ < 7◦ where they are too steep to exist. Divergent waves are then only depicted for
ray angles 7◦≤ ψ ≤ ψw , where they can exist and the short wave approximation given in [3,4] is realistic.

Neumann-Michell theory of short ship waves, wave profile along a ship hull, and broad inner
Kelvin wake where divergent waves are too steep to exist

The classical Fourier–Kochin (FK) representation of ship waves expresses ship waves as a linear Fourier
superposition of elementary waves. Within the Neumann–Michell (NM) theory considered in [3], the amplitudes
of the elementary wave components in this Fourier superposition are given by a wave-amplitude function that is
determined in terms of the flow velocity at the mean wetted ship hull surface. In the short wave limit k →∞,
Laplace’s method can be applied to approximate the hull-surface integral as a line integral around the mean
ship waterline. Moreover, the method of stationary phase can be applied to obtain analytical approximations.
The short-wave approximations given in [3] are valid for all—divergent and transverse— short waves created by
a ship at a low Froude number, as well as for short divergent ship waves at all—low or high—Froude numbers.

These asymptotic approximations to the wave-amplitude function in the FK representation of ship waves
associated with the NM theory provide useful insight into the influence of the Froude number, and the shape
of the ship hull surface in the vicinity of the ship waterline, on short farfield ship waves. In particular, these
analytical approximations show that short ship waves are predominantly created by the bow and the stern of the
ship, and by particular points of the ship waterline. The location of these particular points, which correspond
to points of stationary phase, along the ship waterline does not depend on the Froude number. However, the



relative importance of the contributions of the points of stationary phase and of the ship bow and stern depends
on the Froude number, and also depends on the shape of the waterline, as well as the flow velocity at the bow
and the stern and at the points of stationary phase. Thus, the asymptotic approximations given in [3] show
that the relationship between the Froude number, the shape of a ship hull surface (notably the shape of the
waterline), and short ship waves is fairly complicated.

Indeed, the short divergent waves created by a high-speed ship, and the related apparent narrow wake
caused by wave interferences, cannot be fully understood via the simplified analysis based on the 2-point or (for
a catamaran) 4-point ship models considered in [5-7], or via the numerical studies based on Hogner’s hull-surface
distributions of sources and sinks considered in [8-12], for deep water [5,6,8-11] or for uniform finite water depth
[7,12]. In particular, the analysis given in [3] explains why the point source and the point sink in the 2-point
wavemaker model of a monohull ship should not be located right at the bow and the stern of the ship, but must
be separated by a distance that is smaller than the ship length and depends on the Froude number, as in [6,8].

Within the theoretical framework of a nonlinear potential flow theory in which the exact kinematic boundary
condition at the ship hull surface and the nonlinear kinematic and dynamic boundary conditions at the free
surface are assumed to hold along the contact line between the ship hull surface and the free surface (the ship
waterline), these three boundary conditions yield three algebraic equations that determine the three flow velocity
components u, v, w in terms of the elevation ζ of the free surface along the ship hull. Specifically, the kinematic
boundary conditions at the ship hull surface and at the free surface are linear algebraic equations, and the
dynamic free-surface boundary condition (Bernoulli’s equation) is a quadratic algebraic equation. Thus, these
three boundary conditions explicitly determine the three velocity components u, v, w in terms of the wave profile
ζ(x) along the ship hull, as is shown in [13,14].

The expressions for u(ζ), v(ζ) and w(ζ) given in [13,14] can be used in the approximations given in [3]
to formally express short ship waves in terms of the shape of the ship hull surface (notably the shape of the
waterline) and the wave profile along the ship waterline. Moreover, this relationship between short farfield ship
waves and the elevation ζ(x) of the free surface along the wave profile at the ship hull surface provides insight
into the influence of nearfield nonlinearities (arguably most significant at a ship waterline) on farfield ship waves.

This analysis, which provides a direct relationship between the wave profile along a ship hull and the short
farfield waves created by the ship via a coupling of the Neumann–Michell linear potential flow theory of short
farfield ship waves given in [3] and the nonlinear analysis of the nearfield flow along a ship waterline given
in [13,14], is given in [4]. For the Wigley parabolic ship model, considered in [4] for illustration, nearfield
nonlinearities are relatively weak and have a limited, although not insignificant, influence on short farfield ship
waves. Application to a full-scale Wigley ship also shows that short divergent waves are too steep to exist within
a fairly broad region along the ship track. Specifically, [4] shows that divergent waves cannot exist inside a
wedge with angle roughly equal to 13◦, i.e. about a third of Kelvin’s 39◦ ship wake angle, as is depicted in Fig.2.
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