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1. Introduction
Water wave scattering problems involving thick rectangular barriers in deep water are yet to be investigated in the
literature on water waves although for finite depth these have been studied. For example, Newman (1965) studied
the problem of water wave scattering by a thick rectangular barrier in finite depth water employing a matching
argument to obtain the reflection and transmission coefficients approximately. Shortly afterwards, Mei and Black
(1969) applied variational formulation to investigate scattering problems involving surface-piercing or submerged
rectangular barrier in finite depth water. Later Kanoria et al (1999) used single-term Galerkin technique involving
ultrapherical Gegenbauer polynomials as basis functions to obtain reflection coefficient for water wave scattering
problems involving thick vertical barriers in finite depth water. Here we have investigated the effect of thick partially
immersed rectangular barrier (type 1) or thick submerged rectangular barrier (type 2) on surface waves in deep water
by using multi-terms Galerkin technique involving simple polynomials as basis functions.

2. Mathematical formulation of the problem
Using the linearized theory of water waves, the mathematical problem is to solve the boundary value problem
described by

φxx + φyy − ν2φ = 0, y > 0, (2.1)

Kφ+ φy = 0 on y = 0,

{
|x| > b for type 1 barrier,
−∞ < x <∞ for type 2 barrier, (2.2)

φx = 0 on x = ±b, y ∈ Lj , for type j (j=1,2) barrier, (L1 = (0, a), L2 = (c,∞)), (2.3)

φy = 0 on y = lj , |x| < b for type j (j=1,2) barrier, (l1 = a, l2 = c), (2.4)

∇φ→ 0 as y →∞,
{
−∞ < x <∞ <∞ for type 1 barrier,
|x| > b for type 2 barrier, (2.5)

r
1
3∇φ = O(1) as r → 0, where r is the distance from a submerged edge of the barrier, (2.6)

φ(x, y)→
{
Tφinc(x, y) as x→ −∞,
φinc(x, y) +Rφinc(−x, y) as x→∞, (2.7)

where R and T denote the reflection and transmission coefficients respectively. The notations are explained below.
Here the thick rectangular barrier is of breadth 2b along one horizontal direction (x-direction) and infinitely long
along the other horizontal direction (z-direction) while it is either immersed upto a depth a below the mean free
surface (xz-plane) or submerged from depth c and is extended infinitely downwards. A train of surface water waves
represented by the velocity potential Re

{
φinc(x, y)eiνz−iσt

}
is obliquely incident at an angle α on the thick barrier

from a large distance in the positive x-direction, φinc(x, y) being given by φinc(x, y) = 2e−Ky−iµ(x−b). HereK = σ2

g , σ
being the circular frequency of the incoming wave train, g being the acceleration due to gravity, µ = K cosα and
ν = K sinα. Due to the geometry of the problem, the z-dependence can be eliminated altogether by assuming the
velocity potential describing the resulting motion in the form Re

{
φ(x, y)eiνz−iσt

}
.

3. Method of solution
Due to the geometrical symmetry of the barrier about x = 0, it is convenient to split φ(x, y) into its symmetric and
antisymmetric parts φs(x, y) and φa(x, y) respectively so that φ(x, y) = φs(x, y) + φa(x, y), where

φs(−x, y) = φs(x, y), φa(−x, y) = −φa(x, y) so that φsx(0, y) = 0, φa(0, y) = 0, 0 < y <∞. (3.1)



Now φs,a(x, y) satisfy (2.1) to (2.6) together with (3.1). Thus, one may restrict the analysis to the region x ≥ 0 only.
Let the behavior of φs,a(x, y) for large x be represented by

φs,a(x, y) ≈ e−Ky
{
e−iµ(x−b) +Rs,aeiµ(x−b)

}
as x→∞, (3.2)

where Rs,a are unknown constants. By using (2.7), we find that these constants are related to R and T by

R, T =
1

2
(Rs ±Ra)e−2iµb. (3.3)

Now the expansions of φs,a(x, y) satisfying the equations (2.1) to (2.5) for x ≥ 0 and (3.1) in the different regions for
each configuration of the thick barriers are given below.
Region I (x > b, 0 < y <∞) :

φs,a(x, y) = e−Ky
{
e−iµ(x−b) +Rs,aeiµ(x−b)

}
+

∫ ∞
0

As,a(k)S(k, y)e−k1(x−b)dk (3.4)

where S(k, y) = k cos(ky)−K sin(ky) and k1 =
√
ν2 + k2

Region II (0 < x < b, y ∈ L = Lj = (0,∞)− Lj , j = 1, 2) :
For y ∈ L1 = (a,∞), φs,a(x, y) are given by(

φs(x, y)
φa(x, y)

)
=

(
Bs0 cosh νx
Ba0 sinh νx

)
+

(∫∞
0
Bs(k) cosh(k1x) cos k(y − a)dk∫∞

0
Ba(k) sinh(k1x) cos k(y − a)dk

)
. (3.5)

For y ∈ L2 = (0, c), φs,a(x, y) are given by(
φs(x, y)
φa(x, y)

)
=

(
Cs0 cos

√
(k20 − ν2)x

Ca0 sin
√
(k20 − ν2)x

)
cosh k0(c− y)
cosh(k0c)

+

∞∑
n=1

(
Csn cosh

√
(k2n + ν2)x

Can sinh
√

(k2n + ν2)x

)
cos kn(c− y) (3.6)

where ±k0,±ikn(n = 1, 2, ...) are the roots of the equation k tanh(kc) = K. Bs,a0 , Cs,a0 (n = 0, 1, ...) are unknown
constants and As,a(k), Bs,a(k) are unknown functions such that the integrals in (3.4), (3.5), (3.6) and in the mathe-
matical analysis below in which they appear, are convergent. Let us now define

φs,ax (b+, y) = fs,a(y), 0 < y <∞. (3.7)

Then
fs,a(y) = 0 for y ∈ L = Lj(j = 1, 2) and φs,ax (b−, y) = fs,a(y) for y ∈ L = (0,∞)− L. (3.8)

Also, due to the edge condition described by (2.6), we must have fs,a(y) = O(|y − lj |−
1
3 ) as y → lj(j = 1, 2). Use

of appropriate expansions for φs,a(x, y) in Eqns.(3.4) followed by Havelock’s inversion formula and after using the
conditions (3.8), we obtain the relations between Rs,a and fs,a(y) as given by

1−Rs,a =
2iK

µ

∫
L

fs,a(u)e−Kudu. (3.9)

Also Bs,a0 , Cs,an (n = 0, 1, ...), As,a(k), Bs,a(k) can be obtained in terms of integrals involving fs,a(y). Now matching
of φs,a(x, y) across the line x = b through the right corner points of the gap gives rise to the relations φs,a(b+, y) =
φs,a(b−, y), y ∈ L which ultimately produce the integral equations∫

L

F s,a(u)Ms,a(y, u)du = e−Ky + λ, where λ is a real constant and y ∈ L (3.10)

where F s,a(y) =
2

π(1 +Rs,a)
fs,a(y), y ∈ L. (3.11)

For type 1 barrier, y, u ∈ L = L1 = (a,∞), λ = − 1
2e
−Ka andMs(y, u) is given by

Ms(y, u) =

∫ ∞
0

1

k1(k2 +K2)
(S(k, u)S(k, y) +KS(k, u) sin(ka) −K2 coth(k1b) cos k(u− a)

)
dk

+

∫ ∞
0

coth(k1b) cos k(y − a) cos k(u− a)
k1

dk. (3.12)



The expression ofMa(y, u) is obtained by replacing ’coth’ by ’tanh’ in the expression ofMs(y, u).
For type 2 barrier, y, u ∈ L = L2 = (0, c), λ = 0 andMs(y, u) is given by

Ms(y, u) =

∫ ∞
0

S(k, u)S(k, y)

k1(k2 +K2)
dk −

∞∑
n=1

2πkn coth
√
(k2n + ν2)b

(2knc+ sin(2knc))
√
k2n + ν2

cos kn(c− y) cos kn(c− u)

− 2πk0 cot
√
(k20 + ν2)b

(2k0c+ sin(2k0c))
√
k20 + ν2

cosh k0(c− y) cosh k0(c− u). (3.13)

The expression of Ma(y, u) is obtained by replacing ’cot’ and ’coth’ by ’− tan’ and ’− tanh’ respectively in the
expression ofMs(y, u). Now by using (3.11) in Eqns.(3.9), we find that∫

L

F s,a(y)e−Kydy = Cs,a = − i cosα
π

.
1−Rs,a

1 +Rs,a
. (3.15)

It is important to note that F s,a(y) and Cs,a are all real quantities. Thus after solving the integral equation (3.10),
Cs,a are obtain from the relation (3.15) and these produce the actual reflection and transmission coefficients |R| and
|T | given respectively by

|R| = |1 + (π secα)2CsCa|√
{1 + (π secαCs)2} {1 + (π secαCa)2}

and |T | = π secα|Cs − Ca|√
{1 + (π secαCs)2} {1 + (π secαCa)2}

(3.17)

so that |R|2 + |T |2 = 1 which is the energy identity.

4. Multi-term Galerkin approximation
For the solution of Eqns.(3.10), we choose multi-term Galerkin approximation as

F s,a(y) =

N∑
l=0

αs,al fl(y), y ∈ L (4.1)

where fl(y)(l = 0, 1, ..., N) are suitable basis functions. To find the unknown constants αs,al (l = 0, 1, ..., N) we
substitute Eqns.(4.1) into the integral Eqns.(3.10) and multiply by fm(y) and integrate over L to obtain the linear
systems

∑N
l=0 α

s,a
l Ls,alm = Gm, (m = 0, 1, ..., N) where Ls,alm , Gm(m = 0, 1, ..., N) can be computed numerically and

Cs,a are obtained as Cs,a =
∑N
l=0 α

s,a
l Gl.

For thick rectangular partially immersed barrier case L = (0, a) so that L = (a,∞) and F s,a(y) are chosen as

F s,a(y) =
(y
a
− 1
)− 1

3

e−Ky
N∑
l=0

αs,al

(y
a

)l
, a < y <∞ (4.2)

while for thick rectangular submerged barrier L = (c,∞) so that L = (0, c) and F s,a(y) are chosen as

F s,a(y) =
(
1− y

c

)− 1
3
N∑
l=0

αs,al

(y
c

)l
, 0 < y < c. (4.3)

5. Numerical results
Due to the energy identity |R|2+ |T |2 = 1, we calculate only |R| numerically. Here the numerical results are obtained
by choosing N = 2 (three-term expansion) and these are displayed graphically against the wavenumber for different
parameters. In Figure 1(a), |R| is plotted against Ka for different values of b/a = 0.01, 0.1, 0.5, 1.0 and α = 00.
From this figure it is seen that for fixed values of α and b/a, the reflection coefficient increases as the wavenumber
increases and asymptotically becomes unity for large wavenumber. This is because for large wavenumber the waves
are confined within a thin layer below the surface and are totally reflected by the barrier. Also, it is observed from
this figure that for a fixed value of the wavenumber Ka, |R| increases as thickness of the barrier increases. Hence it
is clear that |R| crucially depends on both wavenumber and thickness of the barrier. The curve of |R| in this figure
corresponding to b/a = 0.01 almost coincides with the curve of |R| in figure 2 of Ursell (1947) for thin partially
immersed barrier. In this case the barrier can be assumed to be thin. Taking α = 00, 300, 600, 750 and b/a = 0.1,
|R| is depicted against Ka in figure 1(b). It is observed from this figure that for fixed b/a, |R| decreases as α increases.
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(a) |R| vs Ka for different values of b/a and α = 00.
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(b) |R| vs Ka for different values of α, and b/a = 0.1.

Figure 1: |R| for thick partially immersed rectangular barrier
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(b) |R| vs k0c for different values of α, and b/c = 4.43.

Figure 2: |R| for thick submerged rectangular barrier

In figure 2(a), |R| is plotted against wavenumber Kc corresponding to α = 00 and b/c = 0.01, 1.0, 6.0. It may be
noted that, when barrier is comparatively thin (b/c = 0.01) and α = 00, the curve of |R| coincides with corresponding
curve given by Dean (1945) for the case of deep water. It is clear from this figure that as the thickness increases,
|R| starts fluctuating and the fluctuations becomes rapid as the thickness of the barrier further increases. Hence |R|
crucially depends on wavenumber and thickness of the barrier. For large Kc, |R| becomes zero asymptotically which
is plausible.
The curve of |R| display an oscillatory nature for both normal and oblique incidence of the surface wave which is
shown in figure 2(b). In this figure, |R| is plotted against k0c for b/c = 4.43 and α = 00, 300, 600. For α = 00 and
b/c = 4.43 (this is same as l/H = 4.43 in the notation of Mei and Black(1969)), almost the same graphical results
as in Mei and Black (1969) are recovered. From this figure it is seen that the number of oscillations of |R| decreases
as the angle of incidence increases while oscillation of |R| increases as the thickness of the barrier increases. Hence,
thickness of the barrier and angle of incidence play opposite role in the context of oscillations(i.e, number of zeros)
of the reflection coefficient.

6. Conclusion
The Galerkin technique employed here involves only three terms (N = 2) in the expansion, the basis functions being
chosen as simple polynomials multiplied by appropriate weight functions. This may be regarded as some sort of
novelty in this work.
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