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1 Introduction
Four-wave resonant interactions, including exact-resonant interactions and quasi-resonant interactions, play an
important role in the energy transfers between different wave components for gravity waves. The fundamental
theories for four-wave resonant interaction were first described in Phillips (1960) and Hesselmann (1962). Let
ki denote the wave number for different wave component, and ωi is the corresponding angular frequency. Once
the waves fulfill the conditions, (i.e., k1±k2±k3±k4 = 0, ω1±ω2±ω3±ω4 = 0), resonant interaction occurs
and energy transfer between these different wave components begins. Considering a special case with k1 = k2,
the resonant conditions reduce to 2k1 − k3 = k4, 2ω1 − ω3 = ω4, which mean that two mother waves (1) and
(3) can give birth to a new resonant wave (4). The amplitude of new resonant wave is found to increase linearly
with time, and the initial amplitude growth rate was studied by Longuet-Higgins (1962). Recently, in order to
extend experimental validations of resonant interaction theory to more general waves, Bonnefoy et al. (2016)
carried out a series of experiments with oblique mother waves crossing an acute angle. The results with respect
to the growth rate and resonant curve are in quantitative agreement with the resonance theory.

However, few studies can be found on the four-wave resonant interactions in degenerate case for waves in
finite water depth. Alternatively, another type of four-wave resonant interaction in case of modulation instability
are extensively studied. In finite water depth, the wave-induced current is generated, which can subtract the
energy for nonlinear focusing. As a consequence, with the decrease of water depth, nonlinear focusing process
is suppressed, the modulation instability attenuates and eventually vanishes for sufficiently small water depth
k0h < 1.36 (where k0 is the dominant wave number and h is the water depth), as first found by Benjamin &
Hasselmann (1967). However, this is valid for collinear perturbations, three-dimensional perturbations in finite
water depth may still lead to modulation instability. Experimental observations with the support of numerical
simulations devoted to the modulation instability of a plane wave to oblique perturbations in water of finite
depth was discussed in Toffoli et al. (2013). It was observed that the carrier wave becomes unstable even
for relative water depths k0h < 1.36. Further, Fernandez et al. (2014) found that that modulation instability
cannot sustain a substantial wave growth for k0h < 0.8 through direct numerical simulations. For the degenerate
case considered here, whether the generation of new daughter-wave will also eventually vanishes for sufficiently
small water depth due to the effects of wave-induced current. Longuet-Higgins & Smith (1966) have proposed
an approximate formulas by perturbation approach to consider the effect of water depth on wave resonant.
However, it is rather limited owing to the assumption that the effect of water depth is small.

In present paper, direct numerical simulations are performed to investigate resonant interactions between
two surface gravity waves in finite water depth in the degenerate case. Comparing to previous studies, the
effects of water depth on the amplitude growth rate in the degenerated case are discussed. The mother-wave
steepness and water depth are the control parameters. Considering the dynamical time scale of four-wave
resonant interactions is about Tε−2 (where T is the wave period and ε is the wave steepness), we also analyzed
the evolution of growth rate for longer times rather than only the initial stage.

2 Four-wave resonant interaction theory
The fundamental theories of four-wave resonance were first established by Phillips (1960) and Hesselmann (1962)
based on perturbation approach. Recently, Bonnefoy et al. (2016) investigated four-wave resonant interactions
using Hamiltonian formulation to explain the detuning factor, where the results show good agreement with
those using the classical theories. Here, based on these early studies, we report the resonant interaction theory.

The interactions between gravity waves completely satisfied the resonant condition are called as exact-
resonant interactions. For deep water waves, the solutions were presented as the well-known figure-of-eight
given by Phillips (1960). The expected wave amplitude of new resonant wave was shown by Longuet-Higgins
(1962) to be given by

ares4 = ε21ε3 · d ·G(θ), (1)
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Table 1: Input parameters of the resonant waves employed in the numerical simulations.
Case k1 ε1 θ1 k3 ε3 θ3 ∆ωl h

A 3.2757 0.028, 0.041, 0.056 12.5◦ 2.0500 0.050 −12.5◦ 0.0454 0.9
B 3.2757 0.028, 0.041, 0.056 12.5◦ 2.0500 0.050 −12.5◦ 0.0755 0.7
C 3.2757 0.028, 0.041, 0.056 12.5◦ 2.0500 0.050 −12.5◦ 0.0958 0.5

where εi is the wave steepness defined by εi = kiai, ai is the wave amplitude, d denotes the distance from the
wave maker and G(θ) denotes to the theoretical growth rate. It means that the daughter wave is expect to grow
linearly with the distance to the wave maker. Bonnefoy et al. (2016) showed that the growth rate follows

G(θ) = T1134
ω1

k31

√
ω3k24
gω4k33

, (2)

where T1134 is the interaction kernel given in Krasitskii (1994). The theoretical and experimental results of
growth rate G(θ) have been presented as a function of the angle θ in Bonnefoy et al. (2016). The growth rate
reaches the maximum for θ = θm = 25◦ (γ = γm = 1.258). A relationship d = cgt, where cg is the group velocity,
is used to convert from temporal variation to spatial variation. In this study, the group velocity reduces to 1

2c4.
The evolutions of wave phase have also been investigated. It is found that the phase of each wave component
follows 2ϕ1 − ϕ3 − ϕ4 = π

2 , where ϕ1, ϕ2 and ϕ4 are the phase angle of each wave component, respectively.
Those results are about exact-resonant interactions, where the occurrence conditions are relatively strict.

Apart from exact-resonant interactions, near-resonant interactions as an another kind of resonances, also play an
important role in wave evolutions. The near-resonant conditions in degenerated case correspond to 2k1 − k3 =
k4, 2ω1−ω3 = ω4+∆Ω, where the detuning or mismatching factor is ∆Ω ∼ O(ε2). It consists of linear detuning
∆ωl and nonlinear detuning ∆ωn, Besides, the correction for mutual interaction is also included (see detail in
Longuet-Higgins (1962)). Based on perturbation approach it is derived that the amplitude of the daughter wave
follows (also see Bonnefoy et al. (2016))

a4 = ares4 |sin
∆Ωt

2
| = ε21ε3G(θ)

c4
∆Ω
|sin∆Ωt

2
| (3)

The relationship between the phase of each wave component is

2ϕ1 − ϕ3 − ϕ4 +
∆Ωt

2
=
π

2
(4)

When the effects of water depth are included, the dispersion relationship is different from the one for deep
water waves. Hence, the resonant wave systems in deep water cannot satisfy the resonant conditions for finite
water depth, whereas the near-resonant interactions are trigged.

3 Numerical results and discussion
Numerical simulations are performed by using a in-house code based on high order spectrum (HOS) method,
which directly solves the field equation with the free surface boundary conditions in the Zakharov form (see
Dommermuth & Yue (1987) and West et al. (1987)). The initial two mother waves are generated to give birth to a
new resonant wave. The related input parameters are listed in Table 1, including the mother-wave wave number
(k1 and k3) and wave steepness (ε1 and ε3) and propagation direction (θ1 and θ3), as well as the water depth h.
Here, the angle θ = θ1−θ3 between two mother waves is fixed (θ = 25◦) where the maximum growth rate of the
daughter wave occurs. Wave direction for each mother wave are made symmetrical θ1 = −θ/2 and θ3 = −θ/2
to maximize the uniformity of the wave field. The wavenumbers |k1| and |k3| are determined according to
the experiments in resonant conditions performed by Bonnefoy et al. (2016): |k1| = 3.28, |k2| = 2.05. Wave
steepness for mother waves are chosen from low steepness to higher steepness: fixed ε1 = 0.05 and varied
ε2 = 0.028, 0.041, 0.056. Three typical water depth h = 0.5, 0.7, 0.9 m are adopted with the scaled water depth
corresponding to k1h = 1.64, 2.29.2.95.

The computation domain is a rectangle of 20π m×40π m. Note that the resolution in wavenumber domain
is determined by the length of the computation domain in x direction Lx and y direction Ly: ∆kx = 2π/Lx
and ∆ky = 2π/Ly. A large number of nodes 512 × 1024 (before de-aliasing) were selected to capture the free
surface elevation and velocity potential. The nonlinear order M = 3 is adopted to consider four-wave nonlinear
interactions. 4th-order Runge-Kutta time integration with ∆t = T1/50 is used. The energy transfer between
different scales due to four-wave resonant interaction for waves with a narrow range in frequencies and directions
is over Tε−2. However, the classical resonance theory and later experimental and numerical validations focus
on the initial stage. Here, the temporal evolutions for longer time are performed with numerical simulations,
the total duration is set equal to t = 100T1, where T1 is the wave period of swell system.

A typical example of wave elevation and wavenumber spectrum at t = 0 sec and t = 38.5 sec (around
35T1) is shown in Fig. 1. Initially, the wave field consists of two mother waves k1 and k3, propagating in 12.5◦
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Figure 1: Example of surface elevation and wave spectrum of resonant wave system. (a)(b) the sur-
face wave elevation recorded at t = 0 sec and t = 38.5 sec. (c)(d) The corresponding directional spec-
trum. (e)(f) The corresponding omnidirectional spectrum. Vertical dotted lines correspond to wavenumbers:
|k1 − k3|, |k3|, |k1|, |2k3|, |2k1 − k3|, |k1 + k3|, |2k1|. Conditions θ = θm, ε1 = 0.056, ε3 = 0.05, k1h = 2.95.

and −12.5◦ respectively. As expected, the initial crest lines shown in Fig. 1(a) are along the directions 77.5◦

and 102.5◦, which are perpendicular to the propagating directions of two mother waves. As waves evolve, the
individual crest seem to be rotated clockwise slightly. A discrete fourier transform is applied to the surface
elevations with a standard FFT algorithm, and the directional and omnidirectional spectrum are obtained. The
peak at frequency |2k1 − k3| confirms the existence of the daughter wave, as expected, its amplitude is smaller
than those of the mother waves. This is a first piece of evidence for a daughter wave generated by resonant
interactions. Note that harmonics at frequency 2k3, 2k1, k1 + k3 and k1 − k3 are also visible, with amplitudes
yet lower than that of the daughter wave. They are the signature of second-order bound waves accompanying
the mother waves.

We also investigate the growth rate of of new resonant wave and phase locking of resonance wave system. For
comparisons and validations, the numerical results for deep water waves with different steepness is presented. As
shown in Fig. 2(a), at short times, the amplitude is found to grow linearly with time, which is in good agreement
with the experimental observations by Bonnefoy et al. (2016) and theoretical results expected from Eqn. (1).
Note that the experimental data have been transformed from spatial domain to temporal domain based on
the group velocity. As the wave evolves, the amplitude growth is suppressed. Eventually, the daughter wave
seems to reach a quasi-stationary stage. The evolution of interaction phase ϕ = 2ϕ1 − ϕ3 − ϕ4 of the resonant
wave system is shown in Fig. 2(b). It is found that, in the initial stage (0 < t < 40 sec) the interaction phase
ϕ is constant with time and equal to π/2. This phase locking phenomenon observed through our numerical
simulations agrees well with the theoretical results and experimental observations by Bonnefoy et al. (2016).
However, for longer times, the value of sin(ϕ) decreases with time.

When these three different resonant wave systems evolve in finite water depth, the exact-resonant conditions
can not be satisfied and quasi-resonant interactions are trigged instead. We modelled their propagations in
different water depth, respectively. A typical example of the temporal evolution of wave amplitude is presented
in Fig. 3(a). To compare with resonance theory, the wave amplitude expected from Eqn. (3) is also shown
after determining the detuning factors ∆Ω (including linear detuning, nonlinear detuning, mutual interaction
corrections) and growth rate G(θ) by Eqn. (2). It is suggested that the numerical results agree well with the
theoretical predictions. The daughter-wave amplitude varies periodically, and the recurrence period tends to be
significantly different in different water depth. The obtained maximum amplitude increases with wave steepness
ε1. Fig. 3(b) shows the interaction phase 2ϕ1 − ϕ3 − ϕ4 as a function of time in finite water depth. For all the
cases, the phase is locked at π/2 for a initial short time, which is in good agreement with theoretical results for
near-resonant interactions expected from Eqn. (4). As waves evolve, the phase decreases rapidly to −π/2 ,and
after staying constant for a time the phase increases to π/2 again. The variations of interaction phase tend to
be periodic. The abrupt shift of phase (from π/2 to −π/2 or from −π/2 to π/2) is found to the be consistent
with the moment when the daughter wave amplitude a4 is very close to 0.

In this study, numerical simulations of the evolution of degenerated four-wave resonance wave system by
HOS were performed to investigate the growth rate of daughter wave amplitude and phase locking phenomenon.
Those properties for deep water waves have been studied experimentally by Bonnefoy et al. (2016). Here, we
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Figure 2: (a) Amplitude evolution of resonant wave a4 in deep water for fixed θ = θm, ε3 = 0.05 and different
ε1 = 0.028, 0.041, 0.056 (from bottom to top). For comparisons, the corresponding experimental results by
Bonnefoy et al. (2016) are plotted in lines with markers and the theoretical results expected from Eqn. (1) are
plotted in solid lines. Experimental data: ε1 = 0.028 (N), ε1 = 0.041 (�), ε1 = 0.056 (•). (b) The evolution
of interaction phase 2ϕ1 − ϕ3 − ϕ4 of the resonant wave system in deep water. ε1 = 0.028 (− · −), ε1 = 0.041
(−−−), ε1 = 0.056 (−−−).
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Figure 3: (a) The evolution of new resonant wave amplitude in finite water depth. ε1 = 0.056 (◦), ε1 = 0.041
(4), ε1 = 0.028 (�). The solid lines are theoretical results expected from Eqn. (3). (b) The interaction phase
2ϕ1 − ϕ3 − ϕ4 as a function of time. ε1 = 0.028 (− · −), ε1 = 0.041 (− − −), ε1 = 0.056 (−−−). Conditions
θ = θm, ε3 = 0.05, k1h = 2.29.

extended it to include the effect of water depth. Two mother waves with different initial steepness were generated
in three different water depth (k1h = 2.95, 2.29, 1.64), as well as infinite water depth. For deep water waves,
the results showed good agreement with theoretical and experimental results in initial stage. When those
wave trains evolved in finite water depth, the detuning factor was introduced. The temporal evolutions of
the amplitude of new resonant wave a4 are shown to assume sin function, which is substantially distinct from
the situation for deep water waves. The obtained wave amplitude evolutions are in good agreement with the
resonance theory by Longuet-Higgins (1962) and Bonnefoy et al. (2016). With respect to the interaction phase
2ϕ1−ϕ3−ϕ4, the temporal evolutions are found to lock at π/2 initially, as waves evolve the phase value change
with π periodically. The abrupt change is found to the be consistent with the time when the daughter wave
amplitude a4 nil, which is distinct from the case in deep water. More comprehensive analyses and discussion
will be presented in the workshop.
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