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1 Introduction

In this study we have considered the propagation of normally incident water wave over a rectangular submarine
trench in an ice covered ocean. The primary objective of this work is to study the effects of thin ice sheet of various
configuration on scattering phenomena. Such study provides insights to help understand how waves are transformed
in a marine environment with floating ice sheet in the presence of a rectangular submarine trench. The mathematical
model that we analyze treats the ice as a thin elastic plate resting on an inviscid irrotational fluid. Solution of various
problems on wave ice interaction considered by a number of researchers in last few decades. One of such study can be
found in the work of Meylan and Squire(1993) which describe the reflection and transmission of water waves by a floe
of finite length by applying time reversal to the semi-infinite ice sheet problem.

Studies on diffraction of surface waves by an asymmetric submarine trench can be found in the work of Lassis-
ter(1972), Kirby and Dalrymple(1983). General investigation of the problem is divided into two parts. First, the fluid
domain is divided into three regions with uniform depth and the solution in each region are found. Using conditions
along the boundary of the trench a set of integral equations are formed. Finally, the solutions of the integral equations
are obtained by using multi-term Galerkin approximations involving ultraspherical Gegenbauer polynomials. The ex-
pansions of the velocity potentials are expressed in terms of eigenfunctions. For this we have used the mode coupling
relations given in Manam et al.(2006). A set of basis function for the problem of water wave scattering by a thick
barrier was considered by Kanoria et al.(1999). Recently, Roy et al.(2017) studied the problem of obliquely incident
wave propagation over an asymmetric trench and the reflection as well as transmission coefficients are calculated.
In this work we have reconstructed their problem by considering an infinitely large ice sheet at the surface of the
fluid. Once the integral equations are solved, the reflection as well as transmission coefficients are obtained easily. An
analysis on the numerical results are given for the reflection coefficient for various parameters.

2 Formulation of the problem

We consider an asymmetric trench in an ocean which is covered by an infinite ice sheet of thickness d floats at the
surface of water. We take two dimensional coordinate system with y-axis is taken vertically downwards and x-axis is
taken along the ice covered surface. The trench being situated between x = 0 to x = l. The fluid domain is divided
into three regions: R1(x < 0, 0 < y < h1), R2(x > 0, 0 < y < h2) and R3(0 < x < l, 0 < y < h3). The fluid is assumed
to be inviscid and incompressible. The motion in the fluid is assumed to be irrotational. The velocity potential is
Φ(x, y; t) = Re [φ (x, y) e−iωt], where ω being the angular frequency of the wave. Then φ(x, y) satisfies the Laplace’s
equation within the fluid region, i.e.,

∇2φ = 0, in the fluid region (1)

along with the ice covered ocean surface condition(
D
∂4

∂x4
+ 1− εK

)
φy +Kφ = 0, on y = 0 (2)

where K = ω2

g , g is the acceleration due to gravity. ε = ρi
ρw
d, ρw is the density of water and ρi is the density of ice

sheet. D = Ed3/
{
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(
1− ν2

)
ρg
}

is the flexural rigidity of ice sheet, E is the Young’s modulus, ν is the Poisson’s
ratio. The boundary conditions at the bottom and on the trench walls are

φy = 0, on x < 0, y = h1; 0 < x < l, y = h3;x > l, y = h2; φx = 0, on x = 0, h1 < y < h3;x = l, h2 < x < h3 (3)

The edge conditions are given by

r1/3∇φ is bounded as r → 0,where r being the distance from submerged edge of the trench. (4)



Let a simple harmonic time dependent progressive wave from negative infinity be incident on the trench in R1. For

an incident wave with wavelength λ we denote the wavenumber by k
(1)
0

(
= 2π

λ

)
satisfying the dispersion equation

u
(
Du4 + 1− εK

)
tanhuh1 −K = 0 (5)

The eigenfunction expansion of the velocity potential φ(x, y) in each of the region can be given by:

φ (x, y) =
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where B0 = Teik
(2)
0 l. The parameters R and T described above are the reflection and transmission coefficients to be

determined, respectively.

In the expansions we have defined Y
(q)
n =

cosh k(q)n (hq−y)
cosh k

(q)
n hq

, for q = 1, 2, 3 and n = −2,−1, 0, 1, ...∞. The eigenfunctions

are not orthogonal in general but satisfies the mode-coupling relation given by Manam et al.(2006). The wavenumber

k
(q)
n satisfies the dispersion equation given in Eqn.(5). In region q we denote the real roots by k

(q)
0 , complex conjugate

roots by k
(q)
n , n = −2,−1 and purely imaginary roots by k

(q)
n , n = 1, 2, 3, .... The boundary conditions as x −→ ±∞

for incident wave of unit amplitude from negative infinity are given by
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The solutions must satisfy the following matching conditions:
(i) φ, φx are continuous at x = 0, 0 < y < h1 and (ii) φ, φx are continuous at x = l, 0 < y < h2

We consider
f1(y) = φx|0− = φx|0+ , y ∈ (0, h1), f2(y) = φx|l− = φx|l+ , y ∈ (0, h2), (8)

The reflection and transmission coefficients described in Eqn.(7) must satisfy the following energy identity

|R|2 + J |T |2 = 1, where J =
(
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)
/
(
k
(1)
0 Y

(1)
0

)
(9)

3 Method of solution

The unknown coefficients involved in Eqn.(6) can be obtained by using Eqn.(8) and the mode-coupling relations.
Moreover, continuity of φ(x, y) at x = 0, l leads to a set of integral equations which are given by
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0
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for q = 1, 2, 3. The unknown coefficients R

and T are given by
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We consider fp(u) =
(

1 +Reik
1
0l
)
δ10gp1(u) − Teik20lδ20gp2(u) for p = 1, 2, so that are obtain the following set of

integral equations:
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and the system of equations:
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where δpr denotes the Kronecker delta symbol and bpq =
∫ hp

0
Y p0 (u)gpq(u)du, p, q = 1, 2.

4 The multi-term Galerkin approximation technique

At x = 0, l we approximate the functions gpq(y), p, q = 1, 2 by another function ζpq(y), p, q = 1, 2 which are expressed
in the form of the truncated series as given by

ζpq(y) =
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j=0

c(pq)n ζ̄(p)n (y), for p, q = 1, 2 (17)

where ζ̄
(p)
n (y), p = 1, 2 are suitably chosen basis functions. In this work we have considered a similar set of basis

functions as in Kanoria et al.(1999) and we obtain the following set of linear equations
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(p)
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5 Analysis

To solve the linear system given in Eqn.(18) numerically we choose N = 40. Throughout the study we consider
ε
h1

= 0.001. In Figure 1 the reflection coefficients are drawn for different values of the flexural rigidity. In these figures

we observe that the amplitude of reflection coefficients gradually increases with increasing values of D
h4
1
.

The graphs of |R| versus k
(1)
0 h1 for different depth of the trench are given in Figure 2(a). It is observed that the

amplitude of |R| increases with increasing values of depth of the rectangular trench.
A comparison of the results with Roy et al.(2017) is obtained in Figure 2(b). It is clear that, in absence of ice cover

the present method agree closely with those given in Roy et al.(2017).
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Figure 1: |R| for different values of D1(≡ D/h41) for l/h1 = 5, h3/h1 = 2.0,(a) h2/h1 = 0.5, (b) h2/h1 = 1.5.
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Figure 2: Reflection coefficients for l/h1 = 4, h2/h1 = 2, (a) D/h41 = 0.1,h3/h1 = 2, 3, 4, (b) D
h4
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= 0, h3/h1 = 5.

6 Conclusions

The two dimensional velocity potential is formulated in terms of eigenfunctions. Reflection and transmission coefficients
are obtained analytically in terms of inner products involving unknown functions. The coefficients are calculated
numerically using multi-term Galerkin approximation. From the results it is observed that in presence of ice cover
zero or complete reflection is not possible. Moreover, the ice sheet may increase the amplitude of reflection coefficients
relative to a specific incident wave mode.
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