
Mysterious wavefront uncovered

Xiaobo Chen1, Binbin Zhao2 and Ruipeng Li2

1Deepwater Technology Research Centre, BV, Singapore
xiao-bo.chen@bureauveritas.com

2College of Shipbuilding Engineering, HEU, Harbin, China.

A wavemaker in harmonic motions generates progressive waves in a wave tank. Using the new
formulation describing these waves given in Chen & Li (2018), three classes of waves in different
regions including wavefront in the fore part, steady-state waves behind and transient waves in
between, are then demystified by revealing their respective features. It is shown that the starting
position xF of wavefront propagates at the very group velocity associated with the frequency of
wavemaker and has an amplitude value which is not the maximum of wave train and larger than
that (1/2) predicted by Miles (1962). Wavelengths of wavefront increase at the quadratic rate with
the distance x > xF while amplitudes decrease in order of (x/xF )

−3/2. In addition to steady-state
waves behind the wavefront x < xF , there are transient waves whose amplitude decreases in order
of (x/xF )

5/2. Furthermore, we formulate the amplitude of the largest wave appearing behind the
wavefront and its position relative to the wavefront receding backward with time.

1 Introduction

We consider a semi-infinite fluid of gravity g = 1 limited on the top by the free surface and use a
Cartesian coordinate system (o, x, z) located at the mean surface with axis oz pointing upwards.
The flexible vertical plate is located at x = 0 and oscillating with horizontal velocity A(z) sin(ωt)
with amplitude A(z) = Aω exp(k0z) along the plate, frequency ω and wavenumber k0. The wave
elevation for x > 0 is obtained by the classical method based on Fourier transform in Dai & Duan
(2008) and is written as :

ηI(x, t) = −A sin(k0x) cos(ωt)−A
2k0
π

−
∫ ∞

0

cos(kx) cos(βt)

k2 − k20
dk (1)

where −
∫

stands for the principal value in the sense of Cauchy. The dispersion relation imposes :

ω =
√

k0 and β =
√
k

The integral (1) can be rewritten in a compact form

ηI(x, t)/A = ℜe{η(x, t)} with η(x, t) = e−iτ
y

∫ ∞

0
F (u)

ei(1+u)2τ + ei(1−u)2τ

u0 − u
du (2)

in which ℜe{·} means to take the real part and y

∫

stands for the integration along the real axis but
circumventing above the pole u = u0. To obtain (2), we have made the change of variables :

k = (ut)2/(2x)2 , u0 = 2ωx/t and τ = t2/(4x) (3)

and the function F (u) is given by

F (u) =
2u20u

π(u20 + u2)(u0 + u)
(4)

associated with two oscillatory functions exp[i(1+u)2τ ] and exp[i(1−u)2τ ]. The contour associated
with the first along which the integrand is steepest descent is easy to find. The contour associated
with the second is more complex due to the multiple values of (1 − u)2 for u ∈ (0, 2) and the



location of poles. The detail analysis is given in Chen & Li (2018) and the final result is a sum of
four components

η(x, t) = ηS(x, t) + ηT (x, t) + ηL(x, t) + ηF (x, t) (5)

in which the steady-state component present only for x < xF with xF = t/(2ω) called the starting
position of wavefront :

ηS(x, t) = iei(k0x−ωt)H(xF − x) (6)

with H(·) the Heaviside function. The initial component ηT (x, t) given by

ηT (x, t) = −ie−ωt−ik0xH(xF − x) (7)

decreases exponentially with t and only significant at the initial time and a position close to wave-
maker. The local component ηL(x, t) is smooth varying, of small value and approximated by

ηL(x, t) ≈
1

2π

4
∑

j=0

aje
bjt2/(4x)E1[bjt

2/(4x)] (8)

in which the coefficients (aj , bj) for j = 0, 1, · · · , 4 are dependent on u0 given in Tab.1 of Chen & Li
(2018). In (8), E1(·) represents the exponential integral function defined by (5.1.1) in Abramowitz
& Stegun (1967). Finally, the wavefront component ηF (x, t) is analysed below.

2 Wavefront component

The wavefront component in (5) is defined by

ηF (x, t) = e−it2/(4x)F(u0, τ) (9)

involving the wavefront function given in closed form :

F(u0, τ) = − i

2

[

Cef(α1

√

τ/2)−Cef(α2

√

τ/2)−Cef(α3

√

τ/2) +Cef(α4

√

τ/2)
]

(10a)

for u0 < 1 or x < xF and

F(u0, τ) = − i

2

[

−Cef(−α1

√

τ/2) +Cef(−α2

√

τ/2)−Cef(α3

√

τ/2) +Cef(α4

√

τ/2)
]

(10b)

for u0 > 1 or x > xF . The coefficients αj for j = 1, 2, 3, 4 are given by

α1 = (1− u0) + i(1− u0) ; α2 = (1− u0) + i(1 + u0)

α3 = (1 + u0) + i(1− u0) ; α4 = (1 + u0) + i(1 + u0)
(11)

The special function Cef(z) in (10) is defined by

Cef(z) = ez
2

erfc(z) ≈
{

1− 2z/
√
π + z2 −O(z3) |z| → 0

z−1/
√
π −O(z−3) |z| → ∞

(12)

involving the complex complementary error function erfc(z) defined by (7.1.2) in Abramowitz &
Stegun (1967). The wavefront function F(u0, τ) is a smooth function for x ≶ xF and discontinuous
at x = xF due to the first term on the right hand side of (10).

The work in Miles (1962) gives expressions equivalent to the first term on the right hand side of
(10). His prediction of wave envelope at x = x+F is then 1/2 which is very approximative. Following
the same expressions, the magnitude of waves in wavefront decreases in order of (x/xF )

−1/2 which
is not true. In fact, asymptotic analyses of (10) at x ≈ xF for large values of xF give

F(u0, τ) ≈ ∓i/2 + eiπ/4/(4ω
√
πxF ) (13)



for x ≶ xF , which means that the wave magnitude at x = x+F is larger than 1/2. Furthermore,
asymptotic analysis of (10) gives the amplitude of waves in wavefront

F(u0, τ) ≈ 2eiπ/4/(ω
√
πxF )(x/xF )

−3/2 (14)

for x/xF ≫ 1 and that of transient waves behind the wavefront

F(u0, τ) ≈ −2eiπ/4/(ω
√
πxF )(x/xF )

5/2 (15)

for x/xF ≪ 1. According to the oscillator e−it2/(4x) = e−i(2π/λF )x in (9), the wavelengths of waves
in wavefront

λF = 8πx2/t2 = (2π/ω2)(x/xF )
2 (16)

are proportional to squared distance from xF , i.e., waves are stretching out quadratically with
distance. Waves are longer and longer in the far wavefront.

Behind the wavefront for x < xF , transient waves are composed essentially of the steady-state
component ηS(x, t) (6) and wavefront component ηF (x, t) (9) :

η(x, t) = ηS(x, t) + ηF (x, t) ≈ iei(k0x−ωt) − (i/2)e−it2/(4x)Cef(eiπ/4
√

π/2Z) (17)

with Z = (t−2ωx)/
√
2πx. In (17), we have used the first term on the right hand side of (10a) to rep-

resent the wavefront function. By using (7.3.22) in Abramowitz & Stegun (1967) for transforming
the error function into Fresnel integrals, we have

η(x, t) ≈ iei(k0x−ωt)
{

1 +C(Z) + S(Z) + i
[

C(Z)− S(Z)
]}

/2 (18)

in which C(Z) and S(Z) are Fresnel integrals. The envelope of transient waves (18) behind wave-
front is then

E(x, t) =
√

2C(Z)
[

C(Z) + 1
]

+ 2S(Z)
[

S(Z) + 1
]

+ 1/2 (19)

which has a maximum value of E = Em = 1.1707 at Z = Zm = 1.2172. The position x = xm < xF
at which the maximum wave appears is then given by

xF − xm = (2π/ω2)(Z2
m/8)

(

√

1 + (8/Z2
m)ωt/(2π) − 1

)

(20)

increasing with time t. This can be understood that transient waves behind the wavefront propagate
at lower speed than the starting position x = xF of wavefront which move at the group velocity,
and the maximum wave recedes backward from the wavefront when the time increases. Therefore
more transient waves appear between the maximum wave and the wavefront.

3 Numerical results

The wavefront component ηF (x, t) defined by (9) is first analysed and depicted on Fig.1 along x/xF
varying from 0 to 2 for k = 3/2 = ω2 and at t̄ = t/T = 15 with the period T = 2π/ω = 2π/

√

3/2.
The wavefront component is oscillatory and has a discontinuous at x/xF = 1. Wavelengths in
wavefront increase with distance and decrease behind wavefront as shown by the oscillator e−it2/(4x).
The envelope (magnitude) determined by the wavefront function F(u0, τ) given in closed form
(10) and represented by the dashed red lines. The wavefront function is a smoothly varying for
x ≶ xF and discontinuous at x = xF . Unlike the prediction in Miles (1962), the envelope value
depending on the time and smaller (larger) than 1/2 for x = x−F (x = x+F ), respectively. Behind
the wavefront x < xF , the amplitude increases asymptotically at the rate c(x/xF )

5/2 with the
coefficient c = 2/

√

πω2xF = (2/π)
√

T/t according to (15). In wavefront x > xF , the amplitude
decreases asymptotically at the rate c(x/xF )

−3/2 according to (14).

The whole profiles η(x, t) defined by (5) of waves generated by harmonic motions of wavemaker
with frequency ω =

√

3/2 are shown by dashed lines on Fig.2 along the distance x̄ = x/λ from 0
to 40, while the envelopes are depicted by solid lines. Results for different instants t̄ = t/T equal
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Figure 1: Wavefront component along x/xF for k = 3/2 at t̄ = t/T = 15
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Figure 2: Transient waves and their envelopes for three instants t̄ = t/T = 10, 30 and 50.

to 10, 30 and 50 are represented by the black, blue and red lines, respectively. In addition, the
position of the maximum wave at each instant defined by (20) is marked together with associated
xF . Wave profiles confirm the three regions of waves: the wave front starting from the position xF ,
the steady-state waves from the wavemaker to a distance xS < xm < xF and transient waves in
between. The distance xF − xm between the maximum wave xm and wavefront xF increases with
time as predicted by (20). It is interesting to remark that the position of maximum wave behind
wavefront recedes backward from the wavefront so that more transient waves exist between the
maximum wave and wavefront.
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