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1. Introduction 

It has been observed that Air Cushion Vehicle (ACV) could be used to rupture ice by taking advantage 

of the fact that moving load can generate waves in both ice and water. There has been many studies 

carried out in moving loads on ice sheet from analytical solution, numerical simulation and experimental 

study [1]. It has been found that the response of ice under the moving load depends on the velocity of the 

load. When the velocity of the load is less than the minimum phase speed minc  predicted by the linear 

dispersion relation, the disturbance is localized and waves do not propagate away from the load. If the 

velocity of the load approaches minc , the amplitude of the waves increases and some oscillations start to 

appear around the load. Otherwise, for the velocities greater than minc , waves of different wavelengths 

appear before and after the load [1]. It seems that there has been little work which considers the response 

of the moving loads in an ice-breaking channel, or the ice-water-ice domain. Along with the development 

of the arctic route, this problem becomes more practical and the interface deformation and wave 

transformation in this kind of domain arouse the interest of this study. Based on the desingularized 

Rankine panel method developed by [2], this work extends to calculate the interface deformation and 

wave resistance of the moving loads in an ice-breaking channel and compares these results with those on 

the ice sheet, which have been validated by the theoretical solutions. 

2. Mathematical formulation 

   

     (a) Side view                         (b) Top view 

Fig.1 Sketch of the problem 

Fig.1 gives a sketch of the problem, which shows a given pressure load with length L and breadth B 

moving in an ice-breaking channel at a constant speed U. The ice-breaking channel is W wide and the 

ice sheets on two sides are assumed to be infinite, homogeneous and unbroken ice with thickness h and 

density 
3900 kg/mi  . Moreover, the water body is taken to be of constant density 

31000 kg/mw   

and uniform depth H. We establish a coordinate system that moves with the load in the positive direction 

of the x-axis and set the origin O at the center of the load and z-axis pointing upwards, opposite to the 

gravitational acceleration g . 

In this moving coordinate system, the flow becomes steady. We assume the fluid is inviscid and 

incompressible, and the flow beneath the ice sheet is irrotational. Thus, a velocity potential   can be 

introduced, which is composed of flow velocity potential Ux  and disturbance potential ( , , )x y z . In 

the fluid domain, the disturbance potential satisfies Laplace’s equation 
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Ice sheet can be treated as an isotropic, homogeneous, viscoelastic thin plate of uniform thickness. 

This material can be described using Kelvin-Voigt model [3]. If ( , )x y  represents a small vertical ice-

sheet deflection, then the linearized boundary conditions (BC) of the moving load in an ice-breaking 

channel can be described as  
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where 0.5 / (1 )G E    is the shear elastic modulus of the ice with E  as Young’s modulus and 

1/ 3   as Poisson’s ratio for ice,   is the relaxation time of ice sheet. ( , )P x y  is the external 

pressure, which will be given below. At / 2y W , we neglect the influence caused by ice thickness, 

which causes an abrupt change of boundary condition there. 

Combining Eq. (2a), Eq. (2c) and Eq. (2e), we obtain combined BC on ice 
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when h is taken as 0, Eq. (3) degenerates to the combined BC on water. 

The moving pressure ( , )P x y  is given in the form  

0( , ) tanh tanh tanh tanh
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where 0P  is the nominal pressure,   and   are the parameters which control the rate of pressure 

fall-off at the edges, and 0.5   in this paper. We take 0P   outside the moving load area. 

The free surface FS  discretization involves regular grids with 1n  points in the x- direction, 

approximating ( , )  , and 1m  points in the y- direction, approximating ( , )  . In this paper, 

the free surface is truncated at ( 7 ,3 )L L  and ( 5 ,5 )L L  in x- and y- directions, respectively. The 

uniform mesh sizes on the x- and y-axes are denoted by x  and y . Then we put the source panels at 

a distance x  above the free surface to avoid the singularity. The collection points are located at the 

panel centers on the free surface. Introducing the Green function 1/ r , we obtain 
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where 
j  is the strength of Rankine source, 2 2 21/ 1/ ( ) ( ) ( )j j j jr x x y y z z       denotes unit 

strength of Rankine source, ' 2 2 21/ 1/ ( ) ( ) ( 2 )j j j jr x x y y z z H        is the mirror image of 

1/ jr  about the water bottom, ( , , )x y z  and ( , , )j j jx y z  is the field point and source point, 

respectively. 

The bottom boundary condition are satisfied automatically for using the mirror image method. 

Combining Eq. (3) and Eq. (5), Laplace’s equation can be solved numerically. The *m n  unknowns are 

j , evaluated at the panel center. Here the bi-Laplacian 
4  is discretized by centered finite differences 

in the x- and y-directions with 13 points, and the derivatives in the x- direction are calculated by using 3 

point upstream finite differences. The integral along the x- axis are calculated by the trapezoidal rule. In 

particular, the integral in formula (5) and its partial derivative in the z- direction are calculated by Hess-

Smith method [4]. 

After getting the values of source densities 
j  we can solve the disturbance potential   by Eq. (5), 

and the vertical deformation   of the interface and wave resistance R  acting on the load can be 

calculated by  
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where   is the area of load distribution. The dimensionless wave resistance coefficient is 
2

02 /w wC R g LP . 

3. Results and discussion 

    
 Fig. 2 Wave resistance                 Fig. 3 Wave profile 

Before studying the response of the moving load in ice-breaking channel, we firstly validate our 

procedure by comparing the results on the ice sheet with the theoretical solutions. On the one hand, wave 

resistance is concerned. The theoretical solutions come from [5], where / 2L B  , 0.2 mh  , 

6 mH  , 20 mL  , 2 GPaG   and 1 s  . Here we simulate the cases with same parameters. The 

results in Fig. 2 show the resistance coefficients under different speed or Froude number /Fr U gL . 

It can be seen that numerical results agree quite well with the theoretical results. 

On the other hand, the deflection of the ice sheet or the induced wave is also concerned. The theoretical 

solutions come from [3], where / 2.56L B  , 0.075 mh  , 6.8 mH  , 1.23 mL  , 
0 406.5 PaP  , 

1.875 GPaG   and   given by formulas (3.1) in reference [3]. Here we simulate the cases with same 

parameters. Fig. 3 gives the vertical displacement of the ice sheet at a distance y=1 m away from the 

central line of the moving load. The different speed curves, from top to bottom, are 2.2m/s, 4.2m/s, 

5.5m/s, 6.2m/s, 8.9m/s, respectively. Each displacement   at different speed is normalized through 

2.2max/  , where the denominator is the maximum displacement at 2.2m/s and is believed to be the 

maximum static displacement approximately. We can find that the numerical results are in qualitative 

agreement with the theoretical results, although there are still small differences between them. The 

differences may be caused by the truncated boundaries mainly in numerical simulation. Nevertheless, it 

is reasonable to believe that the method and procedure are valid to calculate this problem. 

  
         (a) open water waves         (b) wave in ice-breaking channel with W=2L 

  
    (c) wave in ice-breaking channel with W=L  (d) wave profile at central line of the load, where 

the range between two vertical line is the span of pressure 

Fig. 4 Wave produced by the load moving in ice-breaking channel with 0.54Fr  . 



  
Fig. 5 Comparison of wave resistance coefficient for the load moving in water and ice-breaking 

channel with different width. 

The calculation parameters are given as / 2L B  , 0.2 mh  , 20mL  , 
0 1000 PaP  , 

1.875 GPaE  , 1 s   and infinite water depth. Fig. 4 shows the wave induced by the moving pressure 

moving in the ice-breaking channel and Fig.5 provides the wave resistance along with moving velocity 

accordingly. It should be noted that the Kelvin wave generated in the open water, as shown in Fig.4 (a), 

is no longer formed behind the load. The wave behind the load will be restricted in the channel and an 

inverted V-shaped wave will be formed, as presented in Fig. 4(b) and Fig. 4(c). On the other hand, from 

the wave curve of the center profile in Fig. 4(d), we can see that the wave profile in a wider channel 

closes to that in the open water more while the wave in a narrower channer present a much different 

pattern, as one can image. However, it is interesting to notice that all three cases have very similar wave 

profiles in the region right below the load in Fig. 4(d) and their wave resistances close to each other in 

Fig. 5. From Eq. (7), wave resistance only relies on the wave profiles in the region right below the load, 

so it can be understood that similar profile under the load induces similar resistance. As the channel 

becomes narrower, the abrupt change of boundary condition at / 2y W  influences more and affects 

the wave resistance especially in medium speed. Lastly, the difference between calculated and theoretical 

results in the resistance curve in open water may be mainly caused by the accuracy of the grids. 

4. Conclusions 

The paper studies the wave pattern and resistance of a pressure load moving in the ice-breaking 

channel by boundary element method. It is found that the wave behind the load will be restricted in the 

channel and an inverted V-shaped wave will be generated. However, the wave profile right below the 

load will not change much with different width of ice-breaking channel, which leads to similar wave 

resistance as long as the channel is wider than the load.  
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