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1. Introduction

The use of time-frequency analysis to study ship wakes is the subject of much interest [1, 3, 8, 9, 10, 11, 12].
In particular, the use of short-time Fourier transforms to decompose a ship’s wake into a time-frequency heat-
map known as a spectrogram has seen some success in identifying different features of ship wakes (eg., their
transverse and divergent waves) observed in real shipping channels and in experimental towing tanks [3, 8, 11].
A spectrogram has the advantage that it only requires information from the surface elevation at one physical
location, necessitating a single stationary sensor [3, 5]. The practical applications of accurately identifying prop-
erties of a ship wake from such easily accessible data range from environmental conservation (eg. determining if
a group of strong waves that negatively effect a coastline originated from a ship [10]) to security (eg. identifying
the presence of unmonitored ships).

Recently, we studied spectrograms of steady ship wakes [6, 8]. Using linear water wave theory, we showed
that regions of the highest colour intensity on the spectrograms followed a curve referred to as the linear
dispersion curve. In [6], for an infinitely deep fluid, we also used numerical solutions to the fully nonlinear
problem (computed with the scheme outlined in [7]) to help predict the location of higher order modes. In the
present study, we shall extend the linear framework to apply for a ship travelling along a circular path with
constant angular velocity. In Section 2 we use geometric arguments and the linear dispersion relation to derive
a relationship between the frequency of the waves travelling at the group velocity and the time they reach a
fixed sensor (this is the dispersion curve). Then, in Section 3, we propose a very simple model for a ship which
involves a pressure distribution applied to the surface. Assuming this disturbance starts moving from a point
in space and then travels in a circular path, we use Fourier transforms to derive an exact solution for the wave
signal. With this signal, we compute spectrograms and discuss the results briefly in Section 4.

2. Linear dispersion curve

Suppose we have a disturbance (a ship, say) travelling along a circular path with constant tangential speed
U . We consider the non-dimensional problem by scaling speeds by U , lengths by U2/g, and time by U/g, where
g is acceleration due to gravity. The path of the ship relative to the sensor is given by

X(t) = (xc +R cos(t/R), R sin(t/R)) , U(t) = (− sin(t/R), cos(t/R)) , (1)

where U(t) = X′(t) is the velocity, xc is the centre of the turning circle, and R is the circle radius. Assuming
an infinitely deep fluid, the dispersion relation, phase and group velocities are

ω =
√
k, cp =

1√
k
, cg =

1

2
√
k

=
cp
2
, (2)

respectively, where ω is the wave frequency, and k is the wavenumber.
To construct the linear dispersion curve (t, ω), we consider the following properties. First, as the ship moves

it will generate waves that propagate towards the sensor with phase velocity given by the Doppler shifted
dispersion relation

cp =
1√
k

= cosψ =
−X ·U

r
, (3)

where ψ is the angle between the sailing line and the sensor, and r(t) = |X(t)| is the radial distance from the
ship to the sensor as illustrated in Figure 1. The second property is that the dispersive wave packet detected
by the sensor travels at the group velocity. Combining these properties with the dispersion relation (2), we find

(t, ω) =

(
τ +

r(τ)

cg(τ)
,
√
k(τ)

)
, (4)

where k(τ) can be determined through (3), and τ is the time the wave packet is generated. For our disturbance
travelling in the circular path (1), this dispersion curve (4) simplifies to

(t, ω) =

(
τ + 2

x2c +R2 + 2xcR cos τ/R

xcR sin τ/R
,

√
x2c +R2 + 2xcR cos τ/R

xcR sin τ/R

)
.
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Figure 1: A schematic of a ship (grey object) moving with velocity U near a wave sensor S. r is the radial
distance between the ship and the sensor and ψ is the angle between the sailing line and the sensor. The ship
will generate waves travelling with phase velocity, cp, and group velocity, cg. The dotted curve is a portion of
the circular path taken by the ship.

3. Linear wave signal

Consider an axisymmetric pressure distribution applied to the surface of the fluid travelling along the path
(1). To derive the wave signal produced by this disturbance, we first consider the surface elevation ζp(r, t)
produced by a pulse of this pressure over δ(t) (the Dirac delta function), which we shall later integrate in time
over the path. The governing equations for this part of the solution are [2]

d2ζ̃p
dt2

+ kζ̃p = −kδ(t)p̃(k), ζ̃p|t=0 = 0,
dζ̃p
dt

∣∣∣
t=0

= 0, (5)

where k is the wavenumber, ζ̃p(k, t) is the Fourier transform of ζp(r, t), p̃(k) = ε exp(−k2/4π2F 4) is the Fourier
transform of the pressure distribution, F = U/

√
gL is the Froude number, and L is a length-scale related to the

pressure distribution. Solving (5) and inverting the Fourier transform gives

ζp(r, t) = − 1

2π

∫ ∞
0

k3/2p̃(k) sin
(√

kt
)
J0(kr) dk,

where J0(x) is the Bessel function of the first kind of order zero and r is the radial distance from the centre of
the disturbance.

In order to smooth the signal at t = 0, we suppose the axisymmetric pressure distribution had been fixed in
place and applied to the surface for all time t < 0. The equations for this initial disturbance are

d2ζ̃i
dt2

+ kζ̃i = 0, ζ̃i|t=0 = −p̃(k),
dζ̃i
dt

∣∣∣
t=0

= 0, (6)

where ζ̃i(k, t) is the Fourier transform of the surface elevation due to this initial disturbance. Solving (6) and
inverting the Fourier transform gives

ζi(r, t) = − 1

2π

∫ ∞
0

kp̃(k) cos
(√

kt
)
J0(kr) dk.

We can now construct the complete wave signal as the superposition of the initial disturbance and the pressure
pulse integrated along the ship’s path X(t), giving

s(t) = ζi(r(0), t) +

∫ t

0

ζp(r(τ), t− τ) dτ,

where we recall from (1) that r(t) = |X(t)|.
The spectrogram for the signal s(t) is given by the square magnitude of the short-time Fourier Transform

S(t, ω) =

∣∣∣∣∫ ∞
−∞

h(τ − t)s(t)e−iωτ dτ

∣∣∣∣2 ,
where the window function, h(t), is an even function with compact support (we use the Blackman-Harris 92 dB
window function [4]). All spectrograms are plotted on the scaled axis ((t− tc)/rmin, ω), where tc and rmin are
the time and distance for when the ship is closest to the sensor, that is min(r(t)) = r(tc) = rmin. For the ship
path given by (1), tc = πR and rmin = |xc −R|.
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(a) R/xc = 1/3
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(b) R/xc = 2/3
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(c) R/xc = 4/3
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(d) R/xc = 5/3

−200 −150 −100 −50 0 50 100 150
−150

−100

−50

0

50

100

150

x

y

(e) Surface t = πR
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(f) Surface t = 2πR

Figure 2: Spectrograms computed for a pressure distribution travelling in a circle with unit tangential velocity
positioned either (a)-(b) outside or (c)-(d) inside the turning circle. The circle centre and Froude number are
xc = 150 and F = 0.7, respectively. The linear dispersion (black) curve is overlaid. (e)-(f) shows the wave
pattern corresponding to the spectrogram in part (b) at two different times, t = πR, 2πR. The black dot
represents the location of the sensor.



4. Results and discussion

Figure 2 presents spectrograms for a turning ship where the sensor is (a)-(b) outside or (c)-(d) inside the
circular path, with the linear dispersion (black) curve overlaid. We see very strong agreement between the
regions of high colour intensity in the spectrogram and the linear dispersion curve. Note that the colour
intensity appears higher in parts (b) and (c) as the ship is closer to the sensor for those two examples (the
minimum distance is 50 in both cases), when compared to (a) and (d) (here the minimum distance is 100 for
these two examples). Note also that these four spectrograms are all drawn for a single Froude number, F = 0.7;
for different Froude numbers (not shown here), the highest intensity regions shift to other parts of the dispersion
curve (see [6] for an analogous discussion for steady wakes).

In all the examples in Figure 2, the linear dispersion curve is comprised of two branches with the upper
branch approaching the line ω = (t−tc)/2rmin and the lower branch approaching the line ω = t/2r(0) as t→∞.
The gradients of the asymptotic behaviour of the branches can be used to directly estimate the smallest distance
the ship is from the sensor rmin (upper branch) and the starting distance r(0) (lower branch). Additionally,
for R/xc < 1 the linear dispersion curve has a minimum frequency of ω = 1 produced when the ship is moving
directly towards the sensor. Therefore, if it is known that the sensor lies outside the ships turning circle, the
minimum frequency can be used to estimate the speed of the ship.

If we were to classify transverse waves by ψ < tan−1(1/
√

2) and divergent waves by ψ > tan−1(1/
√

2)
(where ψ is shown in Figure 1), which is done routinely for ships moving steadily in one direction, the tails
of both branches are formed by divergent waves and the region near the fold is formed by transverse waves.
This property is very different from that for a ship travelling in a straight line, for which the upper branch
corresponds to the divergent waves and the lower branch corresponds to the transverse waves. This apparent
contradiction is worth exploring in more detail.

For completeness, in Figure 2(e)-(f) we show wave patterns drawn for the same parameters as those corre-
sponding to the spectrogram in Figure 2(b) (here the sensor is outside of the circular path). The wave patterns
are shown for two different times, namely t = πR (when the disturbance is closest to the sensor) and t = 2πR
(when the disturbance is furthest away from the sensor). One interesting feature of these patterns is the way in
which the familiar divergent and transverse waves are distorted and interfering in certain regions of the wake
(see near (x, y) = (−150,−100) in (f), for example).

In summary, we have extended the framework for computing spectrograms of steady ship wakes to apply
for disturbances travelling in a circular path with constant angular velocity. This is a significant step towards
a more general study in which the ship can travel on any path. Future work involves better models for ships,
a more general bathymetry, experimental validation, and further analysing the inverse problem of determining
properties of a ship wake given its spectrogram.
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