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Introduction

In recent years a substantial amount of literature has emerged on active control of wave energy
converters (WECs) (see e.g. the review of Ringwood et al., 2014). This work has indicated that a
device’s power generation can be more than doubled if a WEC is actively controlled in response to
the wave induced excitation force (Babarit & Clément, 2006; Ringwood et al., 2014). By assuming
linear hydrodynamics, it has also been shown by Falnes (1995) that in order to determine this
excitation force the free surface of the water at the WEC’s location needs to be known into the
future (as the free surface does not directly cause the excitation force, but becomes approximately
causal if the free surface is known into the future).

It was proposed by Falnes (1995) that the way to make this prediction is to take up-wave mea-
surements and make down-wave forecasts using the waves’ dispersive spatial-temporal relation-
ship. This concept has since been fully realised by Qi et al. (2018), who were able to reconstruct
synthetic and experimental surface gravity wave-fields surrounding a measurement location using
a predictor-corrector higher order spectral method. While the method was intended as a means
of reconstructing a given wave-field, it was also able to predict the free surface down-wave and
into the future. The method, however, required high performance computation to properly solve
the strongly nonlinear predictor-corrector problem. Hence, its calculation requirements are pro-
hibitively expensive for real-time control of WECs. In a more real-time realisable method, Morris
et al. (1992) and Halliday et al. (2011) used a discrete Fourier transform (both used the FFT
algorithm) on a free surface measurement at a fixed location and attempted to predict the free
surface down-wave by propagating the discretised Fourier components. They propagated these
components by assuming they travelled at the phase velocity of linear water waves at the Fourier
component’s bin frequency. The method was applied to synthetic unidirectional linear irregular
waves. They found some modest success in predicting the free surface into the future in some
circumstances, but equally poor predictions for others. While this work shows promise, further
efforts are required to (i) apply such methods to experimental waves, (ii) provide quantitative
details on how far down-wave or into the future the waves can be predicted (their results could
show errors in the order of the significant wave height for various time or space forecasts), and
(iii) detail why such a method should be valid other than assuming a sample’s discrete Fourier
components are equivalent to the continuous spectrum of the underlying waves.

This work revisits the ideas of Morris et al. (1992) and Halliday et al. (2011) seeking to improve
on these prior works by addressing points (i)-(iii). Contained within is a theoretical model for
predicting irregular unidirectional waves using a discrete Fourier transform and linear water wave
theory (a simplified, but potentially valid, way of forecasting the waves needed for active control
of WECs). The prediction algorithm is examined within a rigorous mathematical framework in
order to assess how waves can be forecast and is validated using experimental data.

Method Outline

Consider a field of irregular unidirectional surface gravity waves on a flat bed where waves prop-
agate in the x-direction, the z-direction opposes gravitational acceleration g = 9.81 m s−2, and
the distance between the equilibrium free surface and bed is H. Assume the waves are of low
steepness such that they obey linear potential theory. The wave-field is therefore given as

η(x, t) = Re

(∫ ∞
0

A(ω)ei(ωt−k(ω)x+P (ω)) dω

)
= Re

( ∞∑
m=0

Amei(ωmt−kmx+Pm)

)
, (1)

where t is time, A(ω) is the amplitude spectrum (SI dimensions m s rad−1), ω is angular frequency,
k is the positive real root to the dispersion relation k tanh(kH) = ω2g−1, and P (ω) is the phase



of each frequency component (which takes a random value uniformly distributed between −π
and π). The rightmost expression is defined for convenience where each m corresponds to an
infinitesimal regular wave at a given frequency ωm > 0 with amplitude Am and phase Pm.

Consider a free surface measurement device at location (without loss of generality) xA = 0
that samples η for a finite duration 0 < t < ∆T at a rate fs (Hz). Let ∆T be the present
time. Assume negligible wave energy above the Nyquist Frequency (which is fs/2). By applying
a discrete Fourier transform (e.g. the FFT) the free surface can be discretised as

η(xA, t) = Re

(
N∑

n=0

F (ωn)ei(ωnt)

)
= Re

(
N∑

n=0

( ∞∑
m=0

Fm(ωn)

)
ei(ωnt)

)
, for 0 < t < ∆T, (2)

where the ωn’s are a set of finite frequencies, F (ωn) is the (single sided and complex) results of
the discrete transform, N = (fs∆T + 2)/2, ωn+1 − ωn = ∆ω = (2πfs)/(2N), and Fm(ωn) is the
(physically unobtainable) discrete Fourier transform of an mth wave component in equation 1.
Note that the right hand side of equation 2 occurs because the Fourier transform is linear.

Although it is not physically obtainable, it is useful to consider the wave-field if each mth
wave component could be transformed in isolation, which is

η(xA, t) = Re

( ∞∑
m=0

(
N∑

n=0

Fm(ωn)ei(ωnt)

))
, for 0 < t < ∆T. (3)

As each mth wave component is, in essence, a regular wave, by assuming negligible discretisation
errors the discrete Fourier transform of these components is given exactly by

Re (Fm)

Am
=
ωm sin (Pm) − ωm sin (Pm + ωm∆T ) cos (∆Tωn) + ωn cos (Pm + ωm∆T ) sin (∆Tωn)

−0.5∆T (ωm
2 − ω2

n)
,

(4)

Im (Fm)

Am
=
ωm sin (Pm + ωm∆T ) sin (∆Tωn) − ωn cos (Pm) + ωn cos (Pm + ωm∆T ) cos (∆Tωn)

−0.5∆T (ωm
2 − ω2

n)
.

(5)

Consider a down-wave location xB > xA at a future time tB > ∆T . According to equations 1
and 3 this is given exactly by

η(xB, tB) = Re

( ∞∑
m=0

(
N∑

n=0

Fm(ωn)ei(ωn(tB−c−1
m xB))

))
, (6)

if 0 < tB − c−1m xB < ∆T for all m, where cm = ωmk
−1
m is the phase velocity of the mth wave com-

ponent. In contrast, without changing any F (ωn)’s magnitude in equation 2, the only physically
realisable way of predicting the free surface via a discrete Fourier transform is

ηP (xB, tB) = Re

(
N∑

n=0

( ∞∑
m=0

Fm(ωn)

)
ei(ωntn)

)
, (7)

where tn is a set of N + 1 ‘seed times’. Optimally, the tn’s should be selected to minimise the
difference between η(xB, tB) and ηP (xB, tB). Hence, they are required to minimise the error, E,
given by

E =

∣∣∣∣∣Re

(
N∑

n=0

∞∑
m=0

Fm(ωn)
(

ei(ωn(tB−c−1
m xB)) − ei(ωn(tn))

))∣∣∣∣∣ . (8)

The optimal choice of tn therefore requires some a priori knowledge of A(ω) and P (ω). For
example, if the waves are regular and it is known that A = ARδ(ω − ωR), the optimal choice is
tn = tB − c−1R xB for all n. However, as this knowledge of A(ω) is unobtainable via finite time
samples, it is proposed here that it is most pragmatic to set tn = tB − c−1n xB, where cn is the



phase velocity of the nth Fourier component’s bin frequency. This is because, for a given Am,
Re (Fm)+Im (Fm) is maximised near ωn, and therefore the final term in equation 8 provides a good
compromise between reducing the error for a given mth wave without substantially increasing the
error for a different frequency wave. Similar reasoning requires that the prediction region is given
as 0 < tB − c−1n xB < ∆T . Further mathematical analysis of tn and the implications of equation 8
is beyond the scope of this abstract, but will be discussed at the Workshop. Nonetheless, it is
therefore proposed that waves should be predicted as

ηP (xB, tB) = Re

(
N∑

n=0

F (ωn)ei(ωn(tB−c−1
n xB)

)
. (9)

Prediction comparisons to experiments

The prediction algorithm was run using a range of JONSWAP spectra for significant wave heights
of Hs = 0.045, 0.085, 0.11, 0.15 and 0.19 m, γ = 3.3, and with a peak frequency ωp = 2.4 rad s−1,
which has corresponding peak wavelength λp = 6.87 m and peak period tp = 2.62 s. The waves
were generated in water of depth H = 1.1 m at the University of Western Australia’s wave flume.
They were measured using wave gauges spaced 5, 10, and 15 m apart, at a sampling rate of fs = 32
Hz. The waves were generated for a minimum of 5 minutes and results analysed for the central
3 minutes. The spectra used in the experiments were considered because they are representative
(excluding directionality) of Albany (Western Australia) wave conditions at 1/30th scale. This
site is modelled because in the Summer of 2019/2020 Carnegie Clean Energy, who are actively
pursuing real-time wave prediction for WEC control (Carnegie Clean Energy, 2018), intend on
deploying their CETO6M there. The largest probe spacing allows waves to be predicted over
1.9 s in advance, which is the time required for the free surface to cause the excitation force on
a 1/30th scale linear model of CETO6M (Falnes, 1995). The shorter spacings permit analysis
of the algorithm with respect to distance. A beach was placed at the end of the flume, and
post-processing found it reflected approximately 5% of the incident wave’s energy. For all tests
it was found that the results were invariant of F (ωn) for ωn < 0.25ωp = ωL and ωn > 4ωp = ωU .
Hence, the transform was band-passed filtered by setting F (ωn) = 0 for ωn < ωL and ωn > ωU .

Figure 1 shows the measured free surface signal for waves with Hs = 0.11 m and ωp =
2.4 rad s−1 overlaid with the prediction for the free surface there for xB/λP = 0.73 and tB/tp =
0.15 as well as for xB/λP = 2.18 and tB/tp = 1.00. Both predictions used ∆T/tp = 10. Note
that for both of these simulations, the algorithm could produce the prediction in a time less than
tB; emphasising the algorithm can predict waves in real time. Qualitatively, both prediction
signals show pleasing agreement with the experimental signal. They have similar peaks, troughs,
shapes, and distances between extrema. Neither prediction appears superior despite the dotted
blue signal predicting waves at an increased time and distance. The biggest discrepancies occur
around the peaks/troughs, and is likely the result of either reflections in the tank becoming more
prominent or non-linear effects that are not included in the prediction model. These results
are representative of all waves tested, however, as expected, larger Hs would result in increased
discrepancies around peaks/troughs (presumably due to non-linear effects). The effect of varying
Hs will be presented and discussed in greater detail at the workshop.

Figure 2 shows the time averaged root mean square error, L0, between the prediction and
measured signal with respect to the size of ∆T for waves with Hs = 0.11 m and ωp = 2.4 rad s−1.
The leftmost figure shows the results of varying the prediction distance for a prediction time
of tB/tp = 0.15 and the rightmost figure shows the results of varying the prediction time for a
prediction distance of xB/λp = 2.18.

In the leftmost figure, the algorithm’s proposed prediction criteria (that 0 < tB−c−1n xB < ∆T
for all cn given between the frequencies ωL and ωU ) is only satisfied for ∆T/tp > 3 for the
smaller xB and for ∆T/tp > 5 for the larger xB. When it is met, both predictions show an
error of L0/Hs ∼ 0.06Hs, wherein a smaller ∆T gives a slightly larger error, and an increasing
∆T/tp beyond 10 does not improve the prediction. If this criteria is not met the prediction
error is substantially larger. Interestingly, for ∆T/tp > 10, both prediction distances give sim-
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Figure 1: Comparison between predicted free surface and measured free surface for waves with Hs = 0.11 m and
ωp = 2.4 rad s−1 with prediction algorithm using ∆T/tp = 10.
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Figure 2: The L0 error between experimental measurement and prediction with respect to the algorithm’s ∆T for
waves with Hs = 0.11 m and ωp = 2.4 rad s−1 . Left: Comparing errors of prediction distances for tB/tp = 0.15.
Right: Comparing errors of prediction times over prediction distance xB/λp = 2.18.

ilar errors (differences < 0.005Hs), which indicates that over small distances the soundness of
the prediction is not affected by the distance of the prediction; although the accuracy of the
prediction is fundamentally limited. In the rightmost figure the proposed prediction criteria is
valid for ∆T/tp > 8 for all curves except the tB/tp = 2.29 curve (solid black with squares),
which does not satisfy the prediction criteria anywhere. For all curves except the solid black
the error converges to ∼ 0.06Hs for ∆T/tp > 8, however, the solid black never converges and
always gives errors > 0.25Hs. In conjunction with the leftmost figure, this implies that, pro-
vided the prediction is made within the well-defined region 0 < tB − c−1n xB < ∆T for all cn
given between frequencies ωL and ωU , the algorithm is capable of predicting times in the or-
der of the peak wave period, distances in the order of the peak wavelength, and is therefore
capable of predicting waves for real-time control of a WEC in unidirectional low steepness seas.
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