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Highlights

• Time-domain modeling of wave-structure interaction for surface-piercing bottom-mounted and
truncated cylindrical structures.

• Fully Nonlinear Potential Flow (FNPF) time domain solver based on a high-order Spectral
Element Method that has support for geometric flexibility using adaptive meshes and high-order
convergence rates.

• Efficient and scalable O(n) solution effort using a geometric p-multigrid method that enables
practical calculation times for engineering analysis.

Introduction

The need for advanced time-domain simulators for improved offshore engineering analysis is
growing with the continued improvement in computational resources. In line with this trend,
we consider a fully nonlinear potential flow (FNPF) model discretised with a stabilised Galerkin
Spectral Element Method (SEM) [5] addressing the stability problems and lack of progress made
for this type of modelling approach since the work of Robertson & Sherwin (1999) [9]. A recent
review of the SEM is given in [12] and the benefits of high-order discretizations and multigrid
for FNPF models are well-known, e.g. see [1, 2]. In a recent study, a SEM-based FNPF model
(FNPF-SEM) model [4] was developed and then validated in a blind test experiment against
experimental measurements for focusing waves interacting with a fixed FPSO structure. In this
work, we consider a standard benchmark problem for cylindrical structures due to McCamy &
Fuchs (1954), with the objective of evaluating an entirely new extension of this solver with a
p-multigrid method which enables scalable O(n) complexity in work effort. Recently, the first
proof of an efficient geometric p-multigrid method was demonstrated in 2D/3D [7], and in this
work we provide some additional results with the aim of demonstrating the practical feasibility of
using this new SEM-based solver for 3D analysis. In particular, the new FNPF-SEM p-multigrid
solver makes it possible to address both wave propagation and wave-structure problems within
a single solver. The p-multigrid method is designed to exploit the p-type convergence property
in solving the Laplace problem, and by avoiding an h-type convergence strategy, it is possible
to handle the representation of structural bodies with curvilinear features without refining the
underlying mesh-topology. In this sense, this work contributes to demonstrating that the SEM
can be an efficient basis for a technology that is useful for engineering analysis. It comes
with the ability to represent offshore structures and the discretization leads to sparse matrices
after global assembly in the discrete problem, and therefore can be solved iteratively with high
parallel efficiency and scalability. By using a FNPF formulation it is possible to predict the
wave-induced horizontal and vertical hydrodynamic forces on offshore structures, and account
for the nonlinear effects that are significant when standard frequency domain analysis falls short.



Governing equations

We consider the Eulerian formulation based on fully nonlinear potential flow theory [3]. A
Cartesian coordinate system is adopted with the origin on the still water xy-plane and the
z-axis pointing vertically upwards. t is time. The fluid domain is bounded by the sea bottom
at z = −h(x), the free-surface at z = η(x, t), and an enclosing boundary that defines the
dimensions of a Numerical Wave Tank (NWT) as well as the structural boundaries. The free
surface boundary conditions are expressed in terms of ’free-surface only’ variables

∂
∂t
η = −∇η · ∇φ̃+ w̃(1 +∇η · ∇η), (1a)

∂
∂t
φ̃ = −g η − 1

2
∇φ̃ · ∇φ̃+ 1

2
w̃2(1 +∇η · ∇η). (1b)

Here ∇ = (∂/∂x, ∂/∂y) is the horizontal gradient operator, g the gravitational acceleration.
These equations describes the temporal evolution of the free surface elevation η and velocity
potential φ̃. Subject to numerical discretization, these equations can be solved efficiently using
a classical explicit fourth-order Runge-Kutta method. To obtain closure, the vertical velocity
at the free surface w̃ is determined from the known state of the fluid surface defined by η and φ̃,
that requires satisfying a continuity equation (Laplace equation) and solid boundary conditions.

∇2φ+ φzz = 0, −h(x, y) ≤ z ≤ η(x, y, t) (2a)

φz +∇h · ∇φ = 0, z = −h(x, y). (2b)

n · (∇φ, φz) = 0, on Γb, (2c)

where n represents the outward pointing normal vector at structural surfaces Γb.
This Laplace problem is discretized using a Spectral Element discretization where the fluid

volume (domain) is decomposed into a set of non-overlapping elements. These elements are
taken to be prism elements in two layers that are generated using the mesh generator Gmsh.
The elements in the bottom layer are kept fixed and in the upper layer adjusted to the free
surface using elements stretched with the position of the curvilinear free surface at a given
instant of time. Across the domain, solution quantities are represented using global finite
element basis functions that are globally piece-wise continuous polynomial basis functions of
arbitrary polynomial order. This discretization [4] leads to a system of equations that defines
the discrete Laplace problem

Lφ = b, L ∈ Rn×n, b ∈ Rn. (3)

This problem is a computational bottleneck in our procedure and we solve it efficiently using a
geometric p-multigrid method tailored to the MarineSEM library, and is exploited specifically
as an iterative solver in the FNPF-SEM model.

Geometric p-multigrid method

A recursive version of multi-level p-multigrid method is implemented based on a standard V-
cycle algorithm, described in [11]. Consider the span of P grids {Ω1, ...,ΩP} that discretize the
same spatial domain by the same set of non-overlapping shape regular elements, but with dif-
ferent orders of the polynomial basis functions in each spatial direction N p = (Np,1, Np,2, Np,3),
such that ∀ 1 ≤ p ≤ P, 1 ≤ i ≤ 3 : Np,i > Np−1,i. Instead of solving the full linear
system 3, we exploit the SE discretization properties and exclude the interior nodes of the el-
ements. This method is known as Static Condensation [6] and leads to a better conditioned
system of equations with fewer degrees of freedom. The implemented solver requires two main
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Figure 1: Averaged residual plot dur-
ing 100 time steps.
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Figure 2: Illustration of mesh. Free surface plane
including a wave generation zone.

(a) Wave envelope (b) Wave runup
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McCamy & Fuchs (1954)
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Figure 3: (a) Wave envelope with some visible reflections near boundaries away from the prox-
imity of the cylinder. (b) Comparison of maximum wave run-up on a mono-pile in an open sea
for MF solution and computed results shows excellent agreement. kh = 1. kR = 1. Maximum
wave run-up is predicted to be up to 1.67 times larger on front side relative to the incident
wave amplitude as determined from the wave crest envelope. Polynomial expansion orders
(Nxy, Nz) = (5, 6) on elements. ∆t = 0.02 s.

components: grid transfer operators and smoothers. In the p version of multi-level solver,
prolongation P p

p−1 : Ωp−1 → Ωp is a local operation (defined in elemental space) represent-
ing the higher-order basis function in therms of the lower-order basis [10] and suited for the
Continuous Galerkin Spectral Element framework. The restriction operator is its transpose
Rp−1

p = (P p
p−1)

T : Ωp → Ωp−1, cf. [10]. The choice of polynomial orders on each level p and the
total number of grids P , also known as the coarsening strategy, is optimised in terms of computa-
tional cost and tailored for a particular mesh and input parameters. Consider smoothing on each

level p as ν preconditioned Richardson iterations: φ̂
m+1

p ← φ̂
m

p +M(b̂p−L̂pφ̂
m

p ), m = 0, ..., ν−1.
In this study, we examine the performance of the standard relaxation schemes (Jacobi, Gauss-
Seidel) and also modern block techniques in the form of Weighted Additive Schwarz methods
[6, 8]. In order to enhance the performance and robustness on anisotropic meshes, we deploy
p-multigrid as a preconditioner to the outer iterative solver, e.g. the defect correction or Krylov
subspace methods [8, 2].

Numerical experiments

The main purpose of the numerical experiments is to validate the numerical model and highlight
the high accuracy and flexibility of the model for nonlinear wave propagation and wave-structure
interactions. We consider the scattering of regular waves on a single cylinder in an open sea
with flat bottom. We compare to the exact solutions due to McCamy & Fuchs (1954) (MF)



valid for a cylinder positioned in finite depth. This MF solution for small amplitude waves
generalises the solution of Havelock (1940) for a cylinder in deep water. The validity of this
study on diffraction effects lies in the assumption that the inertial forces dominate the drag
forces in interaction of the fluid with the cylinder. The case highlights the ability of the SEM
to accurately account for the circular boundary representation of a realistic shape of an object
such as a mono-pile foundation, cf. Fig. 2. We consider a case for predicting the maximum
wave run-up assuming small amplitude wave propagation at relative depth kh = 1 and relative
size of cylinder kR = π/2. Excellent agreement between the analytical results of MF and the
SEM solution is given in Fig. 3. In the simulation we have used curvilinear iso-parametric
elements to represent the cylinder boundary. The minor discrepancy in the wave run-up at the
front side is due to minor reflections between the wave generation zone and the cylinder. The
result demonstrates the accuracy that can be achieved using the SEM model. The p-multigrid
solver efficiency is highlighted in Fig. 1. At the workshop we plan to demonstrate results for
cases describing the interaction between nonlinear waves and cylindrical structures.
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