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1 Introduction

At the workshop in Guidel-Plages in 2018, Peter et al. (2018) demonstrated rainbow trapping of
water waves. Specifically, they showed how the energy of a normal incident wave can be amplified in
truncated chirped crystals of rigid bottom-mounted cylinders, with lattice spacing increasing in the
direction of the incident wave. The effect is due to the incident wave reaching a region inside the
grating where its effective group velocity vanishes so that the incident energy accumulates. Different
frequencies are amplified in different regions, leading to the phenomenon being referred to as rainbow
trapping in the related literature, e.g. in acoustics. This idea could be used to increase the efficiency
of power take-off devices in the ocean.

A drawback of the structure above is that it requires a considerable number of – albeit simple –
members (some tens of cylinders) to be mounted in the ocean floor, which makes it rather expensive.
Here, we expand on the idea of Peter et al. (2018) as in Bennetts et al. (2018) and present a related
structure consisting of a much smaller number of members assembled in a single line. The chirping
resonance effect is achieved by using C-shaped bottom-mounted cylinders, which provide a (leaky)
internal resonance, as opposed to the full cylinders used previously. A much smaller number of
cylinders suffices, and the amplification is even stronger than in the structure suggested before.

As a motivating example, Fig. 1 shows the depth-integrated wave energy, E, along a line array
of ten C-shaped cylinders in a water domain of infinite horizontal extent (x, y ∈ R), produced by
plane incident waves travelling in the direction of the line (the x-direction, i.e. head-on incidence).
Energy distributions are shown for five different wavelengths, λ, where the cylinder radius gradually
increases from 3.25 m to 6.5 m, and the incident energy is normalised to unity. To put the array
dimensions in context, adjacent cylinder centres are W = 15 m apart, which is less than three
times smaller than the shortest wavelength considered, and means the overall length of the array
is 142.75 m, which is less than three times greater than the shortest wavelength and less than two
times the longest wavelength.

The five incident wavelengths are chosen to be close to the longest-resonant wavelengths for
cylinders 2, 4, 6, 8 and 10 (ordered from left to right). The maximum amplifications increase with
increasing wavelength, from E ≈ 67.2 in cylinder 1 for λ = 49 m, to E ≈ 524 in cylinder 9 for
λ = 88 m, which is over 11 times greater than the amplification for the cylinder in isolation. The
amplifications have been attained without invoking optimisation strategies or parameter tuning.

2 Statement of the problem and solution method

We consider water-wave scattering by an arrangement of (non-overlapping) surface-piercing rigid
bottom-mounted C-shaped cylinders in a domain of water of constant finite depth h and extending
to infinity in all horizontal directions. Let the cylinders be indexed m = 1, . . . ,M from left to right,
and the domain occupied by the mth cylinder be Cm × (−h, 0), where

Cm = {x : (x− xm, y) = am(cosϑm, sinϑm), where ϕ− π < ϑm < π − ϕ}. (1)
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Figure 1: Logarithm of normalised energy along an array of ten C-shaped cylinders for head-on
incident waves (propagating in the positive x-direction) with wavelengths (a) λ = 49 m, (b) 58 m,
(c) 68 m, (d) 79 m and (e) 88 m, corresponding to resonant wavelengths in cylinder 2, 4, 6, 8 and 10,
respectively (ordered left to right), when in isolation.

Here, xm = (m− 1)W is the cylinder centre location along the x-axis, am is its radius, and ϕ is the
half-angle of its opening (identical for all cylinders), and the openings are at the left-hand end of
the cylinders and symmetric about the x-axis, as shown in Fig. 1.

The equations of motion for the water are derived from the linearised inviscid theory assuming
irrotational motion. Restricting to time-harmonic motion with radian frequency ω, the velocity field
is expressed as u(y, t) = Re {(gA/iω)∇φ(y)e−iωt}, where y = (x, y, z) denotes a point in the water
and φ is a (dimensionless) reduced complex-valued velocity potential. Moreover, A is the incident
wave amplitude and g ≈ 9.81 m s−2 is the acceleration due to gravity. In what follows, the notation
x = (x, y) denotes a point on the undisturbed water surface, assumed at z = 0, i.e. x = (x, y, 0).

Writing α = ω2/g, the potential φ has to satisfy the standard boundary-value problem

−∆φ = 0, y ∈ D;
∂φ

∂z
= αφ, x ∈ Γf ;

∂φ

∂z
= 0, y ∈ D, z = −h, (2)

where Γf = R2\⋃j Cj is the free water surface and D = Γf × (−h, 0) is the domain occupied by
the water. The normal derivative of the potential on the cylinder surfaces is required to vanish,
together with a condition ensuring the correct singularity at the tips of the C-shapes. Moreover,
the Sommerfeld radiation condition is imposed in the far field. Owing to the constant cross-section
of the cylinders, the depth dependence can be factored out of the problem. The potential can be
solved for efficiently using a modified version of the recursive algorithm developed by Montiel et al.
(2016) and Bennetts et al. (2017).

3 The role of Rayleigh–Bloch waves

Fig. 2 shows results that provide insights into the large amplifications observed in Fig. 1, for which
the array is defined by M = 10, W = 15 m, ϕ = 0.1 π, and am = a1 (m + M − 2) / (M − 1) where
a1 = 3.25 m. The largest amplification case from Fig. 1, with λ = 88 m, is chosen as an example,
and Fig. 2a is a magnified version of Fig. 1e.

As shown by Thompson et al. (2008) and others for uniform line arrays of ordinary cylinders
(with ϕ = 0, i.e. full cylinders of circular cross-section), the scattered wave field along the array is



Figure 2: (a) Log of normalised energy as in Fig. 1e. (b) Corresponding energy with scattered wave
field approximated by the local Rayleigh–Bloch-wave components only.

dominated by Rayleigh–Bloch waves, which propagate in both directions along the array and decay
exponentially in the transverse direction (i.e. y-direction) away from it. Line arrays of C-shaped
cylinders also support Rayleigh–Bloch waves (a new finding to our knowledge!), and the radius
grading causes their properties to evolve along the array. Fig. 2b is similar to Fig 2a, but with
the scattered wave field approximated by the Rayleigh–Bloch wave components only. The approx-
imation is based on projecting the scattered wave field in each subinterval onto the eigenfunctions
defined by the corresponding transfer matrix, and retaining only the eigenfunctions associated to lo-
cal Rayleigh–Bloch waves, i.e. Rayleigh–Bloch waves associated to a particular cylinder and spacing.
Notwithstanding the small discontinuities, which are an inevitable consequence of the approximation
method, the approximation is highly accurate, particularly with respect to the large amplifications,
thus confirming the amplifications are due to excitation of local Rayleigh–Bloch waves.

4 Amplification spectra

Fig. 3 quantifies the overall energy amplification produced by the graded array over ranges of incident
wavelengths λ and directions ψ (the angle between the direction of propagation of the incident wave
and the x-axis), using metrics analogous to the Q-factor familiar in assessing energy gains (or losses)
given by arrays of interacting wave-energy converters (Falnes, 1980). Fig. 3a shows Qarr = E/Einc

on a logarithmic scale, where E =
∑M

m=1

∫
Ωm
|φ|2 dx and Einc =

∑M
m=1

∫
Ωm
|φinc|2 dx =

∑M
m=1 π a

2
m

are, respectively, the scaled energy contained with the C-shaped cylinders along the array and the
energy of the incident field over the same area. Here, Ωm = {x : (x− xm)2 + y2 < am}. Therefore,
Qarr quantifies the overall amplification given by the array.

For head-on incidence, ψ = 0, the array amplifies the incident energy by over an order of
magnitude for wavelengths λ ∈ (60 m, 98 m), with maximum amplification Qarr ≈ 101.53 ≈ 33.6.
For wavelengths λ < 60 m, the amplification reduces as wavelength decreases, due to the associated
frequencies lying in quasi-bandgaps for the cylinders at the leading end of the array, so that only small
quantities of wave energy penetrate the array. For wavelengths shorter than those shown, higher-
order resonances alter this simple trend. For wavelengths λ > 98 m, the amplification asymptotes
towards unity as the influence of the cylinder on the waves reduces. The behaviour is similar for
non-head-on incidence, with some reduction in amplification, as Rayleigh–Bloch waves are not as
strongly excited due to the loss of symmetry in the incident field with respect to the axis of the array.
Amplifications of over an order of magnitude exist up to ψ ≈ 0.18 π, and the wavelength interval for
which the amplification is over an order of magnitude is at least 25 m long up to ψ = 0.15 π.

Fig. 3b shows Qgrd = E/E0 on a logarithmic scale, where E0 =
∑M

m=1

∫
Ωm
|φm|2 dx, with φm the

velocity potential for the mth cylinder in isolation, i.e. with no surrounding cylinders. Therefore,
Qgrd quantifies the overall energy amplification given by the radius grading, independent of the
amplification due to the cylinder resonances. As indicated by Figs. 1–2, for head-on incidence the
grading is most effective for wavelengths that excite resonances in the cylinders towards the trailing
end of the array. The maximum overall amplification due to grading is Qgrd ≈ 100.77 ≈ 5.87 for
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Figure 3: Logarithmic Q-factors as functions of incident wavelength and direction. (a)Qarr = E / Einc,
where E is the integrated energy within the C-shaped cylinders along the array, and Einc is the incident
energy over the same domain. (b) Qgrd = E / E0, where E0 is the integrated energy within equivalent
isolated C-shaped cylinders.

λ ≈ 92 m. The amplification is positive for λ > 50 m, with negative amplifications associated to
quasi-bandgaps for shorter waves, as noted above. Similarly, the strength of amplification due to
grading slowly decreases as the incident wave direction moves away from head-on incidence, with the
grading more than trebling the overall amplification, i.e. Qgrd > 3, for wavelengths around λ = 92 m
up to ψ ≈ 0.15 π.

5 Conclusions

A graded line array of C-shaped cylinders has been proposed as a structure for frequency separation
and amplification of water-wave energy, and with structural dimensions comparable to the target
wavelengths. Using linear potential-flow theory, and an example in which the array consists of ten
cylinders with graded radii, it was shown that the resonant amplifications within a given cylinder in
the array far exceed those of the cylinder in isolation, and that typically even larger amplifications
occur in the preceding cylinder. Further, the array was shown to be effective in terms of the overall
amplification, over broad ranges of wavelengths and incident directions.
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