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1 Introduction 

Three-dimensional plunging wave impact enclosing an air cavity under the free surface is a very complex phenomenon in 

coastal engineering. To help understanding some physics behind it, this paper studies a simplified impact model of axisymmetric 

water column without/with air entrapment. Potential-flow theory that assumes the fluid to be inviscid, incompressible and 

flow-irrational is used. The air entrapped in the water front is assumed to abide the adiabatic law. Both analytical and numerical 

investigations are carried out.  

 (a)              (b)  
Figure 1. (a) Stretch of the problem; (b) projection of the initial impact at any azimuth, with a spherical air cavity centred at (0, z0) 

Consider a cylindrical liquid column of radius d hitting a rigid wall with a constant velocity U, as shown in Fig. 1(a). This is 

dynamically equivalent to the case where the water column is at rest and the rigid wall moves against it. A cylindrical coordinate 

system o r z  is established. The 3D problem can then be solved in a plane coordinate system o-rz, as shown in Fig. 1(b). A 

spherical air cavity of radius R is entrapped with its centre located at (0, z0). It intersects on the wall with radius Rw. The boundary 

value problem (BVP) of the velocity potential   can be written as 
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The pressure can be obtained after solving the BVP of 
t . The variable of 

t  satisfies Laplace’s equation and the following 

boundary conditions 
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where Pa is the atmospheric pressure,   is the density of water, 1.4   is the heat radio of the air, V is the volume of 

entrapped air, and V0 is the initial value of V. The above BVPs can be solved by the boundary element method (BEM) in the time 

domain. A shallow water approximation of lnA B r Cz     is specially applied in the thin jet region for numerical efficiency 

and accuracy.   

2 Some analytical deductions 

2.1 On the initial instant 

Using the method of separation of variables, the solution of Laplace’s equation in the cylindrical coordinate system has the 

following form 
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where 0 ( )J x  is the zeroth order Bessel function (Abramowitz & Stegun 1972), and 
nA  and 

n  are corresponding parameters. 

According to boundary conditions in Eqs. (2)-(4), the solution can be written as 
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where 1( )J x  is the first order Bessel function, and n denotes the nth root of 0 ( ) 0J x  . From Bernoulli’s equation, the 

pressure impulse at the impact instant 
0 0

0 0 t
pdt dt  

 
        (Batchelor 1967, p.471) follows that of the initial 

potential, from 0 at the free surface r=d to a maximum value at the impact centre r=0 along the wall. Nevertheless, Wu (2001) 

solved the initial impact pressure by a 2D rectangular water column and found it to be a constant value of 2U , before dropping 

abruptly to 0 at the intersection. We may speculate whether there are similar features in the present axisymmetric problem. 

Substituing Eq. (10) into Eqs. (5), (7) & (8), the solution of t  is found to take the form
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is found failing to converge at z=0 in the present form, which demands further investigation.  

 

2.2 On the steady state  

For the case of water column impact with unit radius and velocity, Bernoulli’s equation and the kinetic condition are satisfied 

on the free surface ( , )z r t  
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At the steady state, the combination of Eqs. (12)&(13) leads to  

 
2

1

1 r
r








 
, 

2

1

1 1 r
z






 

 
                               (14) 

Eq. (14) shows that r  approaches 1 as 0r   on the free surface at the steady state. Further consider the conservation law 

of mass 
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and Taylor’s expansion for r  with respect to z, we can find the steady state satisfying 
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3 Results & discussions 

3.1 Impact by pure water 

The initial column radius d, water density   and impact velocity U are utilized for nondimensionalisation. Fig. 2 illustrates 

the evolution of local free surface profiles and pressure variation along the wall at any azimuth. Right after the initial impact 

instant at t=0+, the pressure is found to increase gradually from around 0.8 at the impact centre to around 1 at the intersection, and 

then drops sharply to the zero ambient pressure. After the initial impulsive stage, a thin jet begins to form along the wall. 

Meanwhile, the pressure starts to fall slowly from the impact centre to the jet root. As the impact continues, the overall impact 

dynamics vary more and more slowly along the wall.  



(a)     (b)  

Figure 2. Snapshots of water column impact on the wall: (a) free surface deformation and (b) pressure variation along the wall 

 

From the variation of r  along the free surface shown in Fig. 3, we can see that continuously increasing span of the flow is 

reaching the steady state in the time domain, according to Eq. (14). Fig. 4 shows temporal histories of the total force and pressure 

at the stagnation point (0,0). The former is found to approach 1, equal to the changing rate of flow momentum in the z-axis direction. 

The latter is found to decrease from around 0.8 to 0.5, satisfying Bernoulli’s equation for a steady flow. The steady state shown 

here corresponds to that of the main fluid domain in spite of the stretching thin jet. The steady-state solution may also refer to the 

self-similar solution of impact by a water cone with its inner angle approaching zero in Sun & Wu (2014). 

     
  Figure 3. Variation of r  along the free surface (the asterisk denotes      Figure 4. Histories of the total force and stagnation pressure 

the starting point of shallow water approximation)                         

3.2 Air cavity effect 

The entrapped air would inevitably affect the initial impact pressure. However at this stage the result is still immune to the 

value of initial air pressure P0 and only affected by its size and shape/thickness. From Figs. 5&6, it can be seen that the 

entrapment of an air cavity can significantly increase the initial impact pressure. Besides, cavity with smaller size on the wall and 

thinner shape (i.e. z0<0 in Fig. 1(b)) can lead to a larger pressure maximum, located near the cavity-wall intersection. 

  

Figure 5. Initial impact pressure with different sizes of 

hemispherical cavity (i.e. z0=0) 

Figure 6. Initial impact pressure with different cavity shapes/thickness: 

z0=-0.1, 0 and 0.1 for thin to thick ones (Rw=0.2) 

 

To give an intuitive description of the effect of the entrapped air, the subsequent impact process with hemispherical cavity (z0 

=0) of R=Rw=0.2 is shown in Fig. 7. The initial air pressure is set to be P0=100, corresponding to an impact velocity of 

U=0.9934m/s. The entrapped air is initially compressed by the impacting flow (see Fig. 7(a)), and then starts to expand after it 

reaches the minimum volume at t=0.012 (see Fig. 7(b)). Pressure on the wall oscillates accordingly, which becomes negative after 

t=0.0239. The radial jet impinges at the impact centre at t=0.0295. After that a vertical jet starts to shoots up with an average 

velocity exceeding 70, as shown in Fig. 7(c). At early stage of the formation of the vertical jet, a pressure spike appears at its 

bottom, to provide the large acceleration for the local fluid particles there (see at t=0.030). The jet reaches the top cavity surface at 

t=0.0326. After that a ring cavity is expected to be formed, which is not included in the current study. Applying the conservation 

law of energy at the moment when the air cavity is compressed to its minimum volume and reaches the maximum pressure Pmax, 

we have (see also in Bredmose et al. (2015), Song & Zhang (2018)) 
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where K  is the increment in the kinetic energy of the water, and  0 0 0 1aE PV    is the defined potential energy of the air.  
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(a)  
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(c)   

Figure 7. Water column impact with a hemispherical cavity entrapped (case 1- z0 =0, R=Rw=0.2, P0 =100): deformation of the free surface (left) 

and the corresponding impact pressure (right): (a) contraction stage; (b) expansion stage i: formation of radial jet along the wall until 

impingement; (c) expansion stage ii: formation of the vertical jet 

More case studies of impact with various cavity shape/thickness (z0), size V0 and initial pressure P0 will be presented in the 

workshop, along with quantitative analysis on the effect of V0 and P0 on Pmax based on Eq. (17). 
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