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1 INTRODUCTION 

Deck slamming occurrence and resultant loads are one of crucial elements for offshore platform design. The 

primary concern is the extreme slamming loads in harsh ocean environment which the nonlinearity of water 

waves is highly nonlinear, so that the statistical behavior of motion responses and wave run-up around offshore 

platform also exhibit strong non-Gaussian characteristics. Model-scale experiments and CFD simulation are 

preferred to deal with such strongly nonlinear problem, but those methods are very time consuming and/or 

costly. Furthermore, the number of ocean environment scenarios to be considered is dramatically increased as 

the numbers of wave, current, and win conditions become high. Therefore, we need an efficient method to filter 

extreme ocean environment conditions for heavy computation or model test. To this end, an appropriate scheme 

to predict the slamming loads up to a certain degree of nonlinearity is essential.  

In this study, the statistical behavior of the air gap and deck slamming of a TLP is investigated, considering all 

the second-order components of wave elevation and including the radiated and diffracted waves. The start of 

this analysis is to model the second-order wave elevation as a two-term Volterra series, whose statistical 

moments can be obtained analytically from the eigenvalue problem. Then, the Hermite-moment method is 

applied to calculate the probability distribution and the upcrossing rate of the wave elevation. A rational 

formulation for the upcrossing rate of the relative wave elevation is suggested, taking into account the non-

Gaussian nature of the nonlinear wave elevation and platform set-down. For the TLP model, the air-gap and 

hence the possibility of occurrence are predicted at different locations below of horizontal deck.  

 

2 MATHEMATICAL MODELING 

2.1 Statistical Modeling 

The relative wave elevation between incident wave and the horizontal deck of offshore platform can be written 

as follows:  
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Fig. 1 Definitions of relative wave elevation 

where j  means the motion of j-th mode. This can be approximated by using a two-term Volterra series, s.t. 
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where jA  is complex wave amplitude and  i
H  indicates the i-th order transfer function of relative wave 

elevation.  
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Kac and Sieggart(1947) showed that Eq.(2) can be simplified using eigenvalue analysis as follows: 
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where jc  and j  are eigenvalues of the linear and nonlinear signals, and ( )jW t  is a real stochastic process 

which is independent, zero-mean, stationary Gaussian process. jc  is defined simply as  
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where ( )S   is wave spectrum and *( )j   is the complex conjugate of eigenfunction. The second-order 

eigenvalue, j , must be obtained by solving the following equation (Naess, 1990): 
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where    (2)

1 2 1 2 1 2, ( ) ( ) ,RK S S H       .  

The benefit of the eigenvalue expansion is that the statistical moments can be obtained analytically with those 

eigenvalues and eigenfunctions. The first four statistical moments of η(t) are given by (Winterstein et al., 1994) 
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where m, σ, α3, and α4 are the mean, standard deviation, skewness, and kurtosis of η(t), respectively. 

 

2.2 Probability Analysis Based on Hermite-Moment Approach 

The Hermite-moment method for the probability distribution of non-Gaussian variables using the first four 

statistical moments was introduced by Winterstein (1988). The key idea of Hermite-moment method is to 

transform the non-Gaussian variable into a standard normal variable by a mapping function. Winterstein (1988) 

expanded this mapping function with the Hermite polynomials, whose unknown coefficients are related to the 

statistical moments. The equation of the mapping function g(u) is given by 
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Here, nHe  is the n-th order Hermite polynomial, κ is the scaling factor, and h3 and h4 are the coefficients 

reflecting the shape of the distribution. The unknown coefficients κ, h3, and h4 are related to the first four 

statistical moments by a system of nonlinear equations. Detailed equations and the solution process used in this 

study can be found in Yang et al. (2013). 

Since deck slamming occurs when the air gap is less than zero, i.e. a<0 (see Fig.1) and the relative velocity is 

positive, the joint probability of R  and R  must be considered. Nam(2019) showed that the joint probability 

density function of R  and R  can be written as below: 
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where |  ,u u /  ,R R  | is the Jacobian matrix and 1( )g u is the inverse function of ( )g u . Then, the 

probability of deck slamming occurrence can be written as 
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where n means the number of wave crest during the time window RT . 

 

2.3 Estimation of Deck-Slamming Pressure 

A typical approximation of deck-slamming pressure can be written as below:  
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where VC  is an empirical coefficient. DNV-GL (2010) proposed to apply 5.0 for decks-slamming in head sea 

condition and 10.0 for 45-deg wave heading, but the value of VC  is not important in this study since we focus 

on the methodology of analysis, not the accuracy of pressure. 

Extending the above approach, the pressure at the moment of deck slamming occurrence can be written as 

foolow: 

 
     

0 2 2
2 1 2 1

0 0

1 1
exps R s

V u V u

P P a P
C g g a C g g a


    

 
   
          

         (11) 

 

3 APPLICATION & RESULTS 

3.1 Computational Model 

The computational model is a tension-leg platform shown in Fig. 2. Its column has 19.52m diameter and 

pontoon length is 41.58m. Its draft is 31.42m and displacement is 35,290 tons. Five points, P1~P5, are chosen to 

observe deck slamming occurrence using the present method. The hydrodynamic coefficients, i.e. linear and 

second-order quadratic transfer functions, are computed using the WADAM program. Fig. 2 shows the solution 

panels for QTF computation and five locations to be considered. In this application case, the irregular ocean 

waves are represented by JONSWAP spectrum and 13m significant wave height and 14sec modal period are 

assumed. 

Fig. 3 shows the PDF of relative wave elevation and the probability of exceedance of wave crest at P4. In this 

case, the signal of ηR was generated from linear and second-order transfer functions, and the results from 

rainflow counting are observed with the present statistical method and the approximation based on Rayleigh 

distribution. It is natural that the current nonlinear statistical method has a better correspondence with the results 

of rainflow counting. Fig. 4 compares the probability of deck slamming in 3 hours at five locations. It should be 

mentioned that the severest condition may occur at P4, i.e. near column in lee side. Fig. 5 shows the maximum 

averaged slamming pressure at P4, showing the largest peak pressure may occur when the deck height is about 

13m. 

 

Fig. 2 Computational TLP model, solution panels for QTF computation and observation points 
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              (a) PDF of ηR                         (b) Probability of exceedance of wave crest 

Fig. 3 Probability density function and probability of exceedance of wave crest at P4 

.     

Fig. 4 Exceedance probability distribution of deck 

slamming occurrence in 3-hour 

 

Fig. 5 Maximum average slamming pressure at P4

 

 

4 CONCLUSIONS 

Based on the present study, the following conclusions are possible: 

 The relative wave velocity is statistically dependent with the relative wave elevation when the second-

order components are included.  

 The proposed statistical model well follows the change of probability distribution of relative wave velocity 

depending on the value of relative wave elevation. 

 It can be seen that the second-order component of relative wave elevation causes the increase of deck 

slamming pressure, and the sum-frequency component of relative wave elevation provides a main 

contribution 
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