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Figure 1: Geometry and governing equations

Consider the schematic shown in Figure 1. The ice shelf is modelled as a two dimensional elastic
body. The open water region is denoted as Ωo and the sub-shelf cavity region is denoted as Ωw.
The ice shelf is denoted by Ωi and the boundaries of the ice-shelf and the cavity are shown in
Figure 1.

The seabed under the ice-shelf is assumed to be non-uniform and is given by the function z =
−H(x). The set of governing equations for the fluid motion in the ocean and the shelf/cavity
region is given by

∆Φ = 0 in Ωo ∪ Ωw,

∂tw = ∂zΦ, x < 0,

ρwgw = −ρw∂tΦ, x < 0,

(1)

with the appropriate boundary conditions shown in Figure 1. Here w = w(x, t) is displacement of
the free surface. The ice shelf is modelled as a 2D elastic body assuming plane strain conditions.
The strain and stress tensors are given by the relation

ϵ(η) =
1

2

(
∇η +∇ηT

)
, σ(u) = λ∇.u I+ 2µ ϵ(u)

where I denotes the identity tensor and λ, µ are the Lamé parameters. The governing equations



for the displacement of the ice shelf are given as
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2
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(2)

where u = u(x, z, t) is the displacement of the ice shelf. We non-dimensionalise the problem by
defining the following scalings

x̂ → x

Lc

, x̂ → z

Lc

, t̂ → t

tc
, with Lc =

4

√
D

ρwg
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ρwL6

c

DH
.

We obtain the time harmonic motions at an angular frequency ω by setting Φ(x, z, t) = Re{ϕ(x, z) e−iωt}
and u(x, z, t) = Re{u(x, z) e−iωt}. The time-harmonic, non dimensional versions of (1) is

∆ϕ = 0 in Ωo ∪ Ωw,

−iωw =
1

Lc

∂zϕ, x < 0,

ρwgw = iωρw ϕ, x < 0,

∂nϕ = 0, on Γ(1)
w ,Γ(3)

w and z = −H (x < 0),

∂nϕ = −iωLc u.n, on Γ(3)
w .

(3)

and (2) is
1
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2 u in Ωi,

σ.n = −ρwgLc u− iωρwLc ϕn, on Γ
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(4)

We solve the coupled shelf–cavity system (3– 4) using the finite element method, which can handle
arbitrary shelf and cavity geometries. The solution method is based on the methods used to solve
hydroelastic problems for modelling very large container ships.

The boundary condition at x = 0, i.e. at the interface between the open water and the shelf/cavity
regions is expressed as

∂xϕ(0, z) = Qϕ(0, z) + χ(z), on Γ(4)
w .

The operator Q and the function χ(z) are constructed using analytical expressions for the potential
in the open ocean region, as discussed by Ilyas et al. [1]. The weak formulation of the boundary
value problem (4) is
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c

∫
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2
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i

uh.vhds, (5)

where uh and ϕh are the solutions to the displacement of the ice shelf and the potential in the appro-
priate finite element space. The displacement of the ice-shelf and the potential in the shelf/cavity



region is expressed as

uh(x, z) =
∞∑
j=1

λjuj(x, z), ϕh(x, z) = ϕ0(x, z) +
∞∑
j=1

λjϕj(x, z), (6)

where uj(x, z) are eigenmodes, which are solutions to the eigenvalue problem
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(7)

They are found using the finite element method. The diffraction potential ϕ0 and the radiation
potential ϕj are the solutions to Laplace’s equation in the cavity region, which is also found using
the finite element method. We then substitute (6) into (5) and set vh = ui to obtain the linear
system (

K− ω2M− iωB
)
λ = f

which is solved to obtain the coefficients λj.

2 Results

In the numerical examples, the length of the ice-shelf is taken as L = 10 km and the density of
the ice-shelf as ρi = 922.5 kg m-3. For a non-uniform ice-shelf, the thickness is taken to be 200m
at the seaward end and 600m at the landward end. The base of the ice shelf was constructed
using cubic spline interpolation. Figure 2 shows the different mode shapes and the corresponding
eigenvalues for the eigenvalue problem in (7).

The left-hand panel of Figure 3 shows the forced displacement of the ice shelf for an incident wave-
period of T = 100 s. The right-hand panel compares the solution of the linear-elasticity model with
the solution of the thin-beam model for two different incident wave periods. The linear-elasticity
model agrees well with the thin-beam model for the uniform thickness case, since the thickness to
length ratio is small for the choice of parameters which are examples of typical ice-shelf geometries.

3 Conclusions

We have shown how vibrations of the ice-shelf can be modelled using the linear elasticity equations
and how the finite element method can be used to solve the problem for arbitrary ice-shelf and
cavity geometries. We have also compared the solution of the linear elasticity model to the Euler-
Bernoulli model and we have observed that the two solutions agree well with each other for uniform
ice-shelf thickness.
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Figure 2: Figure showing the first five eigenfunctions uj and the corresponding eigenvalues Ωj for
the eigenvalue problem in (7).

Figure 3: (Left) Figure showing the forced displacement of the ice shelf for an incident wave period
T = 100 s. (Right) Figure comparing the Euler-Bernoulli solution (blue) with the solution of the
linear-elasticity model (red) for two incident wave periods and a uniform thickness of 200m.


