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Indeterminism and quantum randomness

I Quantum randomness is
I postulated and

I generally reduced to the indeterminism of quantum
measurements: “because the outcome is indeterministic there
is no way to predict it, hence it is random”

I However, indeterminism does not imply randomness and
randomness does not imply indeterminism:

I pseudo-randomness
I coin-tossing (chaoticity)
I Omega number
I Schrödinger equation
I cellular automata, non-deterministic Turing machines
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Randomness

I Product randomness modelled as algorithmic randomness
(algorithmic information theory)

I true/perfect randomness does not exist
I there are degrees of randomness (based on resources)
I unpredictability is a requirement of randomness

I Process randomness
I no mathematical formalisation
I can be accessed/validated only with theory or product

randomness

I “. . . randomness is not in the world, it is in the interface
between our theoretical descriptions and ‘reality’ as accessed
by measurement. Randomness is unpredictability with respect
to the intended theory and measurement.” (G. Longo)
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Eigenvalue-eigenstate principle

EPR: “If, without in any way disturbing a system, we
can predict with certainty the value of a physical
quantity, then there exists an element of physical reality
corresponding to this physical quantity.”

Eigenvalue-eigenstate principle: A system in a state |ψ〉
has a definite property of an observable A if and only if
|ψ〉 is an eigenstate of A.
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The Kochen-Specker theorem

A context in Cn is a set of n compatible (commuting) observables.

A value assignment function v : O → {0, 1} models the
measurement of an observable.

Kochen-Specker Theorem. In n ≥ 3 Hilbert space there is a
finite set of (projection) observables O such that no value
assignment function v : O → {0, 1} can have the following three
properties:

1. Value definiteness (VD): v is total, i.e., v(P) defined for all
P ∈ O.

2. Noncontextuality (NC): v is a function of P only.

3. Quantum mechanics predictions (QM): For every context
C ⊂ O:

∑
P∈C v(P) = 1.
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A possible choice

Either, we reject:

I QM (but then we depart from quantum theory), or

I NC (definite values depend on measurement context), or

I VD (some observables are value indefinite).

A (rather accepted) option is to assume QM and NC and adopt
value indefiniteness as a model of quantum indeterminacy.

In this case some observables are value indefinite, hence some
quantum measurements are indeterminate.
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How much value indefiniteness is reasonable?

I Rather than assuming that value indefiniteness apply
uniformly, can we prove it from “simpler” assumptions?

I To this aim we need to localise the VD hypothesis:
I VD: Every observable is assigned a defined value.

I VD′: One observable is assigned a defined value.
I VD′′: An observable P is assigned 1, and a non-compatible

observable P ′ is value definite.

I It is reasonable to expect that a
system in state |ψ〉 has v(Pψ) = 1.

I One direction of
eigenvalue-eigenstate principle.

I Intuitively, expect everything outside
this ‘star’ to be value indefinite.

I We need explicit assumptions.
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A formal framework

I Consider value assignment partial functions v : O → {0, 1}:
v(P) undefined if P value indefinite.

I NC: If v(P) is value definite, then its value is noncontextual.

I Value indefinite observables are considered contextual.

I QM: Use “admissibility” to model the condition that for all C ,∑
P∈C v(P) = 1 if some v(P) may be undefined.

Admissibility of v

A value assignment function v is admissible whenever for every
context C ⊂ O:

(a) if there exists a P ∈ C with v(P) = 1, then v(P ′) = 0 for all
P ′ ∈ C \ {P};

(b) if there exists a P ∈ C with v(P ′) = 0 for all P ′ ∈ C \ {P},
then v(P) = 1.
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Failure of existing Greechie diagrams

Admissibility provides a way of deducing the value definiteness of
observables.

Does there exist a set of observables O such that there is
no admissible value assignment function with two
non-compatible observables P,P ′ ∈ O and v(P) = 1 and
P ′ value definite?

Classical Greechie orthogonality diagrams proving the
Kochen-Specker theorem fail to prove this statement.
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Localised value indefiniteness

Theorem 1. Let n ≥ 3 and |ψ〉, |φ〉 ∈ Cn be states such that
0 < |〈ψ|φ〉| < 1. Then we effectively construct a finite set of
observables O containing Pψ and Pφ for which there is no
admissible value assignment function on O such that v(Pψ) = 1
and Pφ is value definite.
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Proof

The proof has three steps:

1. We first prove the explicit case that |〈ψ|φ〉| = 1√
2

.

2. We prove a reduction for 0 < |〈ψ|φ〉| < 1√
2

to the first case.

3. We prove a reduction for the last case of 1√
2
< |〈ψ|φ〉| < 1

case.
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Almost all observables are value indefinite

Theorem 2. The set of value indefinite observables has
constructive measure 1.
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A physical interpretation

These results are purely mathematical. How should we interpret
them physically?

Eigenstate value definiteness

If a system is in a state |ψ〉, then v(Pψ) = 1 for any admissible
value assignment function v .

Interpretation

If a system is in a state |ψ〉, then the result of measuring an
observable A is indeterministic unless |ψ〉 is an eigenstate of A.

We assumed one direction of the eigenvalue-eigenstate principle,
but derived the other direction.
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Value indefiniteness, unpredictability and randomness

The Kochen-Specker theorem shows (via the adopted
interpretation) that quantum-mechanics is indeterministic.

Theorem 1 shows the extent of this indeterminism and indicates
precisely which observables are value indefinite.

Indeterminism does not imply randomness. However,
unpredictability is a requirement of randomness. So,

are quantum mechanical measurements unpredictable?
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A non-probabilistic model of prediction

Consider a physical experiment E producing a single bit.

An example is the measurement of a photon’s polarisation after it
has passed through a 50-50 beam splitter.

With a particular trial (instantiation) of E we associate the real
parameter λ which fully describes it. While λ is not in its entirety
an obtainable quantity, it contains any information that may be
pertinent to prediction and we may have practical access to finite
aspects of this information.
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A non-probabilistic model of prediction (cont.)

An extractor is a physical device selecting a finite amount of
information included in λ without altering the experiment E .
Mathematically, an extractor is a (deterministic) function
λ 7→ ξ(λ) ∈ {0, 1}∗ where ξ(λ) is a finite string of bits.

A predictor for E is an algorithm (computable function) PE which
halts on every input and outputs 0 or 1 or prediction withheld.

PE can utilise as input the information ξ(λ), but, as required by
EPR, must be passive, that is, it must not disturb or interact with
E in any way.
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A non-probabilistic model of prediction (cont.)

A predictor PE provides a correct prediction using the extractor ξ
for an instantiation of E with parameter λ if, when taking as input
ξ(λ), it outputs 0 or 1 (i.e. it does not refrain from making a
prediction) and this output is equal to x , the result of the
experiment.

The predictor PE is k-correct for ξ if there exists an n ≥ k such
that when E is repeated n times with associated parameters
λ1, . . . , λn producing the outputs x1, x2, . . . , xn, PE outputs the
sequence

PE (ξ(λ1)),PE (ξ(λ2)), . . . ,PE (ξ(λn))

with the following two properties:

1. no prediction in the sequence is incorrect, and

2. in the sequence there are k correct predictions.
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A non-probabilistic model of prediction (cont.)

If PE is k-correct for ξ for all k then PE is correct for ξ. The
infinity used in the above definition is potential not actual: its role
is to guarantee arbitrarily many correct predictions.

The outcome x of a single trial of the experiment E performed
with parameter λ is predictable (with certainty) if there exist an
extractor ξ and a predictor PE which is correct for ξ, and
PE (ξ(λ)) = x .

Accordingly, PE correctly predicts the outcome x , never makes an
incorrect prediction, and can produce arbitrarily many correct
predictions.
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Unpredictability and strong incomputability

Theorem 3. If E is an experiment measuring a quantum value
indefinite observable, then for every predictor PE using any
extractor ξ, PE is not correct for ξ.

Theorem 4. In an infinite repetition of the experiment E
measuring a quantum value indefinite observable which generates
the infinite sequence x1x2 . . . , no single bit xi can be predicted
with certainty.
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An open problem

I Assume noncontextuality.

I Theorem 1 doesn’t hold in
two-dimensional Hilbert
space.

I Does Theorem 4 hold in
two-dimensional Hilbert
space?
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