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Work

This is ongoing joint work with Xander Faber.
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manypoints.org

For given (small) finite field and (small) genus, what is the
maximum number of points a smooth, projective curve can
have?

There is a fairly extensive database at manypoints.org.

For F2 and F3 it looks like:

g N2(g) N3(g)

0 3 4
1 5 7
2 6 8
3 7 10
4 8 12
5 9 13
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Gonality

The gonality γ of a curve X over a field k is the minimum
degree of a k-morphism X → P1.

Gonality 1 curves are isomorphic to P1, so coincide with genus
0 curves.

Gonality 2 curves are hyperelliptic, and include elliptic curves
(genus 1 and up).

Gonality 3 curves are known as trigonal curves.
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Why

Why study the maximum number of points a curve can have
with fixed genus and gonality?

Van der Geer (2000) asks, “What is the maximum number of
rational points on a curve of genus g and gonality γ defined
over Fq?”

or

It’s fun and interesting.

4/20



Why

Why study the maximum number of points a curve can have
with fixed genus and gonality?

Van der Geer (2000) asks, “What is the maximum number of
rational points on a curve of genus g and gonality γ defined
over Fq?”

or

It’s fun and interesting.

4/20



Why

Why study the maximum number of points a curve can have
with fixed genus and gonality?

Van der Geer (2000) asks, “What is the maximum number of
rational points on a curve of genus g and gonality γ defined
over Fq?”

or

It’s fun and interesting.

4/20



Let’s start a table for binary curves

I’ll be concentrating on F2 until further notice.

Proposition: If g = 0, then γ = 1. If g = 1, then γ = 2.
If g ≥ 2, then γ ≤ g + 1.

γ
g

0 1 2 3 4 5

1 3
2 5 6 ? ? ?
3 ? ? ?
4 ? ? ?
5 ? ?
6 ?
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Hyperelliptic curves

Proposition: The number of points on a binary curve of
gonality γ is ≤ 3γ.

Proposition: For each genus g ≥ 2, there exists a hyperelliptic
curve over F2 with 6 rational points.

Proof: Look at y2 + [1 + xg (x + 1)] y = [x(x + 1)]g−δ,
where δ = g (mod 2).

γ
g

0 1 2 3 4 5

1 3
2 5 6 6 6 6
3 ? ? ?
4 ? ? ?
5 ? ?
6 ?
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Genus 3, Gonality 3

Proposition: For a curve with rational points, γ ≤ g .

γ
g

0 1 2 3 4 5

1 3
2 5 6 6 6 6
3 7 ? ?
4 ? ? ?
5 ? ?
6 ?
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Genus 3, Gonality 4

A genus-3 curve with rational points must have gonality ≤ 3.

(x2 + xz)2 + (x2 + xz)(y2 + yz) + (y2 + yz)2 + z4 = 0 has
gonality 4 and no points.

(Can prove non-hyperelliptic pointless curves of genus 3 have
gonality 4.)

γ
g

0 1 2 3 4 5

1 3
2 5 6 6 6 6
3 7 ? ?
4 0 ? ?
5 ? ?
6 ?
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Fun facts about genus 4 non-hyperelliptic curves

Non-hyperelliptic curves of genus 4 can be embedded as the
intersection of a quadric surface and a cubic surface.

If the quadric surface is xy + zw = 0 or xy + z2 = 0, the
curve is trigonal.

If the quadric surface is xy + z2 + wz + w2 = 0, the curve is
not.
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Genus 4, Gonality 3

Consider the curve:

xy + zw = 0

xy2 + y3 + x2z + y2z + xz2 + x2w + y2w + xw2 = 0.

It has 8 points and is trigonal.
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Genus 4, Gonality 4

The surface xy + z2 + wz + w2 = 0 has only 5 rational points.

Consider the curve:

xy + z2 + zw + w2 = 0

xy2 + x2z + y2z + yz2 + x2w + z2w = 0.

It has 5 points.
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Genus 4, Pointless Curves

If a genus 4 curve has gonality 5, it must be pointless.

Consider the curve:

xy + z2 + zw + w2 = 0

x3 + y3 + z3 + y2w + xzw = 0.

Not gonality 4; look at F4 and F16 points.
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Updated Table

γ
g

0 1 2 3 4 5

1 3
2 5 6 6 6 6
3 7 8 ?
4 0 5 ?
5 0 ?
6 ?
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Genus 5, Gonality 3 and 4

Trigonal curves of genus 5 are birationally equivalent to plane
quintics with a multiplicity-2 singularity.

This gives an upper bound of 22 + 2 + 1 + 1 (based on the
size of P2).

We achieve this bound with

xyz3 + x3z2 + y3z2 + x4z + xy3z + y4z + x4y + x2y3 = 0.

The genus-5 curves on manypoints.org with 9 points have
degree-4 morphisms and thus gonality 4.
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Genus 5, Gonality 5 and 6

Non-hyperelliptic, non-trigonal genus-5 curves are
intersections of three quadric surfaces.

Can exhaust over pointless genus-5 curves to rule out gonality
6.

Can exhaust over all genus-5 curves by looking at possible
divisors to show that the maximum number of points on a
gonality-5 curve is 3.
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Binary Table

γ
g

0 1 2 3 4 5

1 3
2 5 6 6 6 6
3 7 8 8
4 0 5 9
5 0 3
6
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Start of Ternary Table

Applying what we learned in constructing the binary table, we start
with the following for F3:

γ
g

0 1 2 3 4 5

1 3
2 7 ? ? ? ?
3 10 ? ?
4 ? ? ?
5 ? ?
6 ?
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Things we learned about ternary curves

It’s easy to find hyperelliptic curves of genus 3, 4, 5 with 8
points.

An example from [Howe-Lauter-Top, 2003] gives N3(3, 4) = 0.

We exhibit a genus-4 curve with gonality 3 and 12 points,
thus N3(4, 3) = 12.

The relevant surface for gonality-4 curves has 10 points; we
exhibit such a curve.

A curve showing N3(4, 5) = 0 is in [Castryck-Tuitman, 2017].

A search finds a curve showing that N3(5, 3) = 12.

The manypoints.org example with N3(5) = 13 has gonality
4.

An exhaustive search found that N3(5, 5) = 4.

An exhaustive search showed there is no genus-5, gonality-6
curve.
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Ternary Table

γ
g

0 1 2 3 4 5

1 3
2 7 8 8 8 8
3 10 12 12
4 0 10 13
5 0 4
6

19/20



Things to Think About

Things we are thinking about:

GF(4), GF(5) and GF(7).
Does there exist a genus-5, gonality-6 curve over a finite field?
General construction to show Nq(g , k) = (q + 1)k for fixed k
and large enough q. (Vermeulen has a trigonal construction for
GF(2)).
gonality.org

Things we are not thinking about:

Maximum number of points with a given gonality sequence.
q > 7 or g > 5 (except sporadically).
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