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Introduction

Let D ⊂ {0, 1, . . . , g − 1} be a non-empty set of g-ary digits.

We define a generalised Cantor set Cg(D) as

Cg(D) =
{
α =

∞∑
i=1

dig
−i, di ∈ D

}
.

In particular, we denote by K = C3({0, 2}) the classical Cantor set.

We will discuss the distribution and arithmetic structure of integer
denominators q for which for some integer r with gcd(r, q) = 1 and
some α ∈ Cg(D) the difference α−r/q is very small (i.e., much smaller
than 1/q), including the special case when it is zero, i.e. r/q ∈ Cg(D).

Conventions: 1 ≤ #D < g and r/q is always with gcd(rg, q) = 1

1 ≤ #D < g r/q is always with gcd(rg, q) = 1 2 / 18



Outline of this talk

We start with a short survey of results . . . by someone who had
never heard about this less that 12 month ago before ‘Dynamics
and Number Theory’, Univ. of Sydney, 12–14 June 2019.

We discuss what bounds of short exponential sums with
exponential functions due to Korobov (1972) can tell us about
denominators of rationals close to Cantor sets Cg(D).

We present a new approach and results about the arithmetic
structure of denominators of rationals in Cantor sets Cg(D),
improving those of Schleischitz (2019).

1 ≤ #D < g r/q is always with gcd(rg, q) = 1 3 / 18



Rational numbers and Cantor sets — Survey

Counting rationals in Cantor sets

Define
Ng(D;Q) = #{r/q ∈ Cg(D) : 1 ≤ q ≤ Q}.

Important quantity: ϑg(D) =
log#D
log g

, the Hausdorff dimension of Cg(D).

Conjecture: Broderick, Fishman and Reich (2011)

We have Ng(D;Q) ≤ Qϑg(D)+o(1).

Schleischitz (2019)

We have Qϑg(D)+o(1) ≤ Ng(D;Q) ≤ Q2ϑg(D)+o(1).
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Denominators of rationals in Cantor sets

Motivation:

Sets Cg(D) are very special sets of g-ary numbers; can they
contain rationals r/q with very special denominators q?

For an integer q ≥ 2, let

P (q) = max
p|q,

p prime

p and rad(q) =
∏
p|q,

p prime

p.
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Using some techniques from ergodic theory, as a result of a more general
statement:

Schleischitz (2019)

If r/q ∈ Cg(D) then P (q)→∞ as q →∞.

Using results of Korobov (1970):

Shparlinski (2019)

There is a constant c > 0 depending only on g, such that if r/q ∈ Cg(D)
then

P (q) ≥ c
√

log q log log q and rad(q) ≥ c log q.

1 ≤ #D < g r/q is always with gcd(rg, q) = 1 6 / 18



Denominators of rationals close to Cantor sets

Let ‖ξ‖ be the distance between a real ξ and the closest integer.

We have the following general result:

Schleischitz (2019)

There is a constant c > 0 depending only on g, such that for any
ξ ∈ Cg(D) \Q, for all but finitely many q:

‖qξ‖ ≥ g−cq
ϑg(D)

.

Question: What about small values of ‖qξ‖ for “special” q?

The above results show that for any ξ ∈ Cg(D) the equation

‖qξ‖ = 0

is possible only for finitely many “special” q (e.g. for g = 3 and q = 2n).

Can we say more?
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Perfect powers:

Bugeaud (2012)

There is an absolute constant c > 0 such that there are uncountably many
real numbers ξ ∈ K which for all integers m ≥ 2 and k ≥ 1, satisfy

‖mkξ‖ > e−cm(logm)2 .

Open Question: What about ‖anξ‖ for all or almost all ξ ∈ K \Q?

Powers of 2:
Let as before ϑ = log 2/ log 3 be the Hausdorff dimension of C.

Allen, Chow, Yu (2020)

For almost all ξ ∈ C, w.r.t. a natural measure on K, for q = 2n we have

‖qξ‖ > (log q)−1/ϑ+o(1)

Remark: Both works are based on Diophantine approximation theory.
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Using results of Korobov (1972), we have a result for arbitrary sets Cg(D)
and products of arbitrary finite sets of primes.

Shparlinski (2019)

Let S be a finite set of primes such that gcd(g, p) = 1 for any p ∈ S. For
any ε > 0, for all but finitely many q with all prime factors in S, for any
ξ ∈ Cg(D) we have

‖qξ‖ > g− exp((log q)2/3+ε).

Idea of the proof: By Korobov (1972), rational fractions r/q with q
as above, have uniformly distributed g-ary digits starting with segments
of length N ≥ exp

(
(log q)2/3+ε

)
and hence disagree with ξ ∈ Cg(D).

Remark: The method of Korobov (1972), uses bounds on exponential
sums (Weyl sums) and in particular the Vinogradov Mean Value Theorem.
Unfortunately, it is not affected by the spectacular progress due to
Bourgain, Demeter and Guth (2016) and Wooley (2016–2019).
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Sketch of the proof of lower bounds on P (q) and rad(q)

Recall:

Using results of Korobov (1970):

Shparlinski (2019)

There is a constant c > 0 depending only on g, such that if r/q ∈ Cg(D)
then

P (q) ≥ c
√

log q log log q and rad(q) ≥ c log q.

This improves P (q)→∞ as q →∞ due to Schleischitz (2019).
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Preparations

Let τ(q) be the multiplicative order of g modulo q, that is, the smallest
integer t ≥ 1 with gt ≡ 1 (mod q).

We also define
τ0(q) = τ (rad(q)) .

For any integer r ≥ 1 with gcd(gr, q) = 1, the g-ary expansion of r/q is
purely periodic with period τ(q).

For a g-ary digit d ∈ {0, 1, . . . , g − 1} we denote by Nr,q(d) the number of
occurrences of d in the full period of the g-ary expansion of r/q.

Korobov (1970)

For any positive integers r and q with gcd(gr, q) = 1 we have∣∣∣∣Nr,q(d)−
1

g
τ(q)

∣∣∣∣ < 2τ0(q).

1 ≤ #D < g r/q is always with gcd(rg, q) = 1 11 / 18



Upper bound

To simplify the notation we denote

t = τ(q) and t0 = τ0(q).

We fix some d ∈ {0, 1, . . . , g − 1} \ D and r/q ∈ Cg(D).

Clearly Nr,q(d) = 0. Hence, by Korobov (1970)

t/g = |0− t/g| = |Nr,q(d)− t/g| ≤ 2t0

Hence

t ≤ 2gt0
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Lower bound

Let
q = pα1

1 . . . pαss and rad(q) = p1 . . . ps

for some distinct primes p1, . . . , ps and integers α1, . . . , αs ≥ 1.

To show the ideas we ignore p = 2 as if it never existed.

We write
gt0 = 1 + u0p

β1
1 . . . , pβss , (q is odd).

The following is very elementary and can also be found in Korobov (1970):

t = t0p
γ1
1 . . . pγss

where
γν = max{0, αν − βν}, ν = 1, . . . , s.

Hence

t ≥ t0pα1−β1
1 . . . pαs−βss = t0qp

−β1
1 . . . p−βss .
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Combining lower and upper bounds on t
So we have

2gt0 ≥ t ≥ t0pα1−β1
1 . . . pαs−βss = t0qp

−β1
1 . . . p−βss .

Hence

pβ11 . . . pβss ≥
1

2g
q.

We are now done since the LHS can be upper bounded in terms
of p1, . . . , ps rather than q leading to a statement of the form
F (p1, . . . , ps) ≥ q for some explicit function F . From here we estimate

P (q) = max
i=1,...,s

pi and rad(q) = p1 . . . ps
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Gory details

So we now examine this more carefully:

F pβ11 . . . pβss � q

Let νp(a) be the p-adic order of a ∈ Z: the largest integer α with pα | a.

By Korobov (1970) we have the following elementary relation

βi = νpi

(
gτ(pi) − 1

)
+ νpit0, (pi ≥ 3).

Using the trivial bounds

pνp(g
τ(p)−1) < gτ(p) < gp and t0 ≤ p1 . . . ps,

we derive

• pβ11 . . . pβss =

s∏
i=1

p
νpi(g

τ(pi)−1)+νpi t0
i = t0g

p1 . . . gps ≤ g2(p1+...+ps).

Putting together F and •:

p1 + . . .+ ps � log
(
gp1+...+ps

)
� log

(
pβ11 . . . pβss

)
� log q.
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So arrive to our main inequality

p1 + . . .+ ps � log q.

Using the trivial inequality

rad(q) = p1 . . . ps ≥ p1 + . . .+ ps,

we derive the desired lower bound on rad(q).

Remark

This looks very crude, but what if s = 1? Or s = 5, p1 = 3, p2 = 5,
p3 = 7, p4 = 11, p5 = P (q)? We only lose a constant.

Furthermore, we have

sP (q) ≥ p1 + . . .+ ps.

By the PNT, P (q)� s log(s+ 1) or s� P (q)/ logP (q). Hence

P (q)2/ logP (q)� log q

and we derive the desired lower bound on P (q).
1 ≤ #D < g r/q is always with gcd(rg, q) = 1 16 / 18



Question

How tight are the bounds

P (q) ≥ c
√
log q log log q and rad(q) ≥ c log q?

. . . perhaps not so much. However Cantor sets do contain infinitely many
rational numbers with denominators free of large prime divisors.

Construction

For m→∞ we define

tm =
∏
p≤m
p prime

p = exp(m+ o(m)),

and

rm/qm =
1

gtm − 1
=

∞∑
i=1

1

gtmi
∈ Cg ({0, 1}) .
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Using factorisation of Xt − 1 into cyclotomic polynomials Φu(X),

qm = gtm − 1 =
∏
u|tm

Φu(g).

Since the Φu(g) are positive integers of size at most

Φu(g) =

u∏
k=1

gcd(k,u)=1

(g − exp(2πik/u)) ≤ (g + 1)ϕ(u),

where ϕ is the Euler function, we see that

P (qm) = P
(
gtm − 1

)
≤ (g + 1)ϕ(tm).

By the Mertens formula,

ϕ(tm) = tm
∏
p≤m
p prime

(1− 1/p)� tm/ logm� tm/ log log tm.

Therefore there are infinitely many rational fractions r/q ∈ Cg ({0, 1}) with

P (q) ≤ qO(1/ log log q).
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